The article presents the results of manufacture and experimental studies of the use of hot wire method, implemented on standard elements of automation equipment, for online determination of milk curd readiness to cutting in the cheesemaking process. the values of the elastic modulus for different types of cheeses at the moment of milk curd readiness to cutting are determined. the statistical processing of the results of experimental studies was carried out. It is shown that the average value of the elastic modulus at this moment is 1.68 c.u., and the standard deviation is 0.017 c.u. The investigations have been performed to evaluate the effect of the type of enzyme preparation on the milk curd properties and the accuracy of determining the moment of milk curd readiness to cutting, obtained with their use. It is established that the value of the elastic modulus, specific for the moment of milk curd readiness to cutting, will be different for each type of enzyme preparation. The average value of the elastic modulus of the curd at the moment of its readiness to cutting with the use of different types of enzyme preparations can vary from 1.5 to 1.95 c.u., but it is a constant value for each of them. The researches showed that the hot wire method could be used for mechanization and automatization of the industrial manufacture process
In this paper, the results of studies on the release of biological active compounds from their encapsulated forms under conditions of enzymatic hydrolysis in vitro are presented. In the phase of the model «small intestine» swelling of the capsules and their subsequent decay occurs, which allows to speak about the controlled release of encapsulated bioactive components. It was revealed that almost 90 % of the residual quantity of essential ingredients was released from the capsules in the model phase of the artificial «small intestine». At the end of the experiment, the capsules released all the encapsulated biologically active substances, regardless of the content of fish oil and phenolic compounds in them. It was noted that the poly-capsules had the greatest propensity to withstand the aggressive environment of the «model stomach» and concentrate in themselves the maximum amount of biologically active substances. Mathematical modeling confirms the direct transport of biologically active compounds and the role of the swelling of capsules in the release of biologically active compounds. two mathematical models describing the classical theory of diffusion from capsules and incorporating the material relaxation coefficient demonstrate a combination of empirical and theoretical approaches in controlling the properties of encapsulated biologically active substances. the obtained data are promising in the field of development of improved and functional food products, as well as the dry ingredients and concentrates
Providing the country’s population with quality food products in a demanded range and quantity is an important national economic task. A priori in the implementation of appropriate social and economic programs, an important place is taken by products of the dairy industry. Taking into account the geographical features and climatic conditions of Russia, strategic considerations, the existing fragmentation of the consumer market and economic factors, special importance is acquired by researches, aimed at improving traditional and developing new technologies for canned milk products, as high-nutritional products with a pronounced priority of enhanced storage stability. The system of ensuring the stabilization of canned milk in storage is represented by two main blocks: technologically formed potential and post-technological requirements for its maintenance. The first forms the basic properties of the product and stabilizes them. The second one is to ensure the conditions under which the risks of initiation and/or intensity of the abiogenic and biogenic nature degradation reactions are minimized. To assess the canned milk quality and safety proposed and standardized a number of relevant indicators. However, taking into account the technology development, the expansion of the raw ingredients range, the requirements for the extension of shelf life and much more, the scope of the evaluation criteria for quality and safety indicators is constantly expanding, new methods of a priori and a posteriori analysis are being created, which is fixed in normative and technical documents, that are integrally reflected the level of modern technology. An analysis of the world tendencies in the development of canning, shows, that the reserves of improving the traditional technologies of dairy canned food, increasing their quality, are far from exhausted. Significant potential lies in the research of thermodynamic characteristics, functional and technological indicators of dairy products and further implementation of the obtained data, as system criteria of the technological operations rationality definition, the validity of production schemes, and the evaluation of product quality. The data, obtained over the last decades on the indicator of «water activity», inhibition of the degradation of micro and macro components, «barrier» conservation technologies and many other directions in various food systems can suggest, that it is possible to mediate most of the methodological approaches applied to canned milk technologies, to predict strategic, economic and social significance of such developments.
The goal of this study is to examine sorption capacity of chitin-glucan (ChGC) and chitosan-glucan (CsGC) biopolymer complexes extracted from the fungus Aspergillus niger mycelium. According to the findings chitosanglucan complex sorbs lead and copper ions (130–140 mg/g) better than chitin-glucan complex (50–80 ex mg/g). Langmuir theoretical model with R2= 0,996 determination coefficient well describe sorption isotherms. It is shown the chelate complex formation compound character based on ion and coordination bonds by chitin and chitosan biopolymers is more complex. According to test results the production of chitin and chitosan containing biopolymers from citric acid production mycelium by-products has a good future. The above biopolymers have a functional use. Besides of that they sorbs heavy metals and radionuclide ions.
ISSN 2618-7272 (Online)