Optimization of technological parameters of casein hydrolysis
https://doi.org/10.21323/2618-9771-2025-8-4-616-623
Abstract
Milk proteins are valuable raw materials for obtaining protein hydrolysates and active peptides formed during hydrolysis. Various proteolytic enzymes and bacteria are most often used for hydrolysis. Important parameters for regulating the degree of protein hydrolysis are duration, temperature of hydrolysis and concentration of a biological agent. The aim of the study was to establish optimum parameters for casein hydrolysis with chymotrypsin and bacterial starter of acidophilus bacillus. A three-factor experiment was used to determine optimum conditions for the hydrolysis process. Three factors were varied during the experiment: hydrolysis time (from 6 to 26 h) with a step of 10 h; temperature (from 32 to 42 °C) with a step of 5 °C; starter amount (from 0.5 to 1.5 %) with a step of 0.5 %. The dependent variable was the degree of hydrolysis. The content of total nitrogen in casein was determined by the Kjeldahl method, and that of amine nitrogen was determined by formol titration. The influence of independent variables on the dependent variable was analyzed using MathCAD, where response surfaces were also constructed. For the obtained multiple regression equations, the authors determined the reliability of the equation by the determination coefficient (R2) and Fisher’s criterion (Fkr), and the statistical significance of the parameters of the multiple regression equation by the Student’s criterion (t). Two regression equations were obtained for the process of casein hydrolysis with chymotrypsin and bacterial starter. Determination coefficients were established, confirming the high significance of the models. Response surfaces were constructed showing the dependence of the hydrolysis degree on the hydrolysis parameters. The optimum parameters of hydrolysis with the enzyme chymotrypsin and acidophilus starter were established. For example, when using chymotrypsin with a hydrolysis duration of 21.99 h, a temperature of 43.3 °C, and an enzyme amount of 0.02 %, the hydrolysis degree will be 28.6 % and when using acidophilus starter with a hydrolysis duration of 31.1 h, a temperature of 35.8 °C, and an amount of starter of 1.5 %, the hydrolysis degree will be 17.33 %.) Thus, the results of the multifactorial experiment made it possible to establish the optimum hydrolysis parameters for obtaining casein hydrolysates with chymotrypsin and acidophilus starter.
About the Authors
O. V. ZininaRussian Federation
Oksana V. Zinina, Doctor of Technical Sciences, Professor, Department of Food and Biotechnology
76, Lenin av., 454080, Chelyabinsk
I. M. Chanov
Russian Federation
Ilya M. Chanov, Postgraduate Student, Department of Food and Biotechnology
76, Lenin av., 454080, Chelyabinsk
M. B. Rebezov
Russian Federation
Maksim B. Rebezov, Doctor of Agricultural Sciences, Professor, Chief Researcher
26, Talalikhin str., Moscow, 109316
Y. Li
China
Yang Li, Professor, Doctor of Engineering, College of Food Science, School of Food
150036, Harbin, Changjiang Road, 600
C. Li
China
Chun Li, Doctor of food Science, Professor, College of Food Science
150036, Harbin, Changjiang Road, 600
Yi. Zhao
China
Yingying Zhao, Doctoral Candidate, College of Food Science
150036, Harbin, Changjiang Road, 600
References
1. Zaky, A. A., Simal-Gandara, J., Eun, J. B., Shim, J. H., Abd El-Aty, A. M. (2022). Bioactivities, applications, safety, and health benefits of bioactive peptides from food and by-Products: A review. Frontiers in Nutrition, 8, Article 815640. https://doi.org/10.3389/fnut.2021.815640
2. Lorenzo, J. M., Munekata, P. E. S., Gómez, B., Barba, F. J., Mora, L., Pérez-Santaescolástica, C. et al. (2018). Bioactive peptides as natural antioxidants in food products — A review. Trends in Food Science and Technology, 79, 136–147. https://doi.org/10.1016/j.tifs.2018.07.003
3. Nielsen, S.D., Beverly, R.L., Qu, Y., Dallas, D.C. (2017). Milk bioactive peptide database: A comprehensive database of milk protein-derived bioactive peptides and novel visualization. Food Chemistry, 232, 673–682. https://doi.org/10.1016/j.foodchem.2017.04.056
4. Najafian, L. (2023). A review of bioactive peptides as functional food ingredients: Mechanisms of action and their applications in active packaging and food quality improvement. Food and Function, 14, 5835–5857. https://doi.org/10.1039/ D3FO00362K
5. Lemes, A. C., de Oliveira Filho, J. G., Fernandes, S. S., Gautério, G. V., Egea, M. B. (2023). Bioactive Peptides from Protein-Rich Waste. Chapter in a book: Agricultural Waste: Environmental Impact, Useful Metabolites and Energy Production. Sustainable Development and Biodiversity. Springer, Singapore, 2023. https://doi.org/10.1007/978-981-19-8774-8_6
6. Chourasia, R., Phukon, L. C., Singh, S. P., Rai, A. K., Sahoo, D. (2020). Role of enzymatic bioprocesses for the production of functional food and nutraceuticals. Chapter in a book: Biomass, Biofuels, Biochemicals, Elsevier, 2020. https://doi.org/10.1016/B978-0-12-819820-9.00015-6
7. Castañeda-Valbuena, D., Berenguer-Murcia, Á., Fernandez-Lafuente, R., Morellon-Sterling, R., Tacias-Pascacio, V. G. (2022). Biological activities of peptides obtained by pepsin hydrolysis of fishery products. Process Biochemistry, 120, 53–63. https://doi.org/10.1016/j.procbio.2022.05.029
8. Vaishnav, A., Mehta, N. K., Hussain, S. A., Acharya, P. Ch., Biswal, S., Nath, H. et al. (2025). Bromelain excised hydrolysates with potent bioactivity from Bellamya bengalensis soft tissues: Process optimization and characterization. Journal of Agriculture and Food Research, 19, Article 101595. https://doi.org/10.1016/j.jafr.2024.101595
9. Coscueta, E. R., Batista, P., Gomes, J. E. G., da Silva, R., Pintado, M. M. (2022). Screening of novel bioactive peptides from goat casein: In silico to in vitro validation. International Journal of Molecular Sciences, 23(5), Article 2439. https://doi.org/10.3390/ijms23052439
10. Korhonen, H. (2009). Milk-derived bioactive peptides: From science to applications. Journal of Functional Foods, 1(2), 177–187. https://doi.org/10.1016/j.jff.2009.01.007
11. Ugwu, C. P., Abarshi, M. M., Mada, S. B., Sanusi, B., Nzelibe, H. Ch. (2019). Camel and horse milk casein hydrolysates exhibit angiotensin converting enzyme inhibitory and antioxidative effects in vitro and in silico. International Journal of Peptide Research and Therapeutics 25, 1595–1604. https://doi.org/10.1007/s10989-018-09802-2
12. Bamdad, F., Shin, S. H., Suh, J. -W., Nimalaratne, C., Sunwoo, H. (2017). Antiinflammatory and antioxidant properties of casein hydrolysate produced using high hydrostatic pressure combined with proteolytic enzymes. Molecules, 22(4), Article 609. https://doi.org/10.3390/molecules22040609
13. Moita, T., Pedroso, L., Santos, I., Lima, A. (2025). Casein and casein-derived peptides: Antibacterial activities and applications in health and food systems. Nutrients, 17, Article 1615. https://doi.org/10.3390/nu17101615
14. Ren, R., Liu, L., Li, X., Zhang, X., Xu, M., Zhang, Z. et al. (2026). Identification and in-silico screening of ACE inhibitory peptides from casein hydrolysate via fermentation with different probiotics. International Dairy Journal, 172, Article 106425. https://doi.org/10.1016/j.idairyj.2025.106425
15. Mada, S. B., Abaya, P. C., James, D. B., Abarshi, M. M., Tanko, M. S. (2020). Milkderived bioactive peptides with antiosteoporotic effect: A mini review. FUDMA Journal of Sciences, 4(3), 351–357. https://doi.org/10.33003/fjs 2020-0403-277
16. Wang, X., Yuan, X., Yan, R., Song, J., Ren, C., Li, H. et al. (2025). Purification, characterization, and functional validation of a novel casein complex enzyme hydrolysate-binding calcium. Food Chemistry, 476, Article 143438. https://doi.org/10.1016/j.foodchem.2025.143438
17. Duan, C., Zhang, L., Wu, C., Zhang, Y., Ma, F., Li, X. et al. (2025). An exploration on the structural characteristics and antioxidant activities of casein hydrolysates fermented by Lactiplantibacillus plantarum A56 and A157. Food Bioscience, 65, Article 106069. https://doi.org/10.1016/j.fbio.2025.106069
18. Jauhiainen, T., Rönnback, M., Vapaatalo, H., Wuolle, K., Kautiainen, H., Korpela, R. (2007). Lactobacillus helveticus fermented milk reduces arterial stiffness in hypertensive subjects. International Dairy Journal, 17(10), 1209–1211. https://doi.org/10.1016/j.idairyj.2007.03.002
19. Quirós, A., Ramos, M., Muguerza, B., Delgado, M. A., Miguel, M., Aleixandre, A. et al. (2007). Identification of novel antihypertensive peptides in milk fermented with Enterococcus faecalis. International Dairy Journal, 17(1), 33–41. https://doi.org/10.1016/j.idairyj.2005.12.011
20. Baars, T., van Esch, B., Diks, M., van Ooijen, L., Zhang, Z., Dekker, P. et al. (2025). Bacterial diversity, bioactive peptides, and enhanced immunomodulatory effects in raw milk kefir made with defined starter cultures versus backslopping. International Dairy Journal, 164, Article 106202. https://doi.org/10.1016/j.idairyj.2025.106202
21. Zhou, S., Xu, T., Zhang, X., Luo, J., An, P., Luo, Y. (2022). Effect of casein hydrolysate on cardiovascular risk factors: A systematic review and meta-analysis of randomized controlled trials. Nutrients, 14(19), Article 4207. https://doi.org/10.3390/nu14194207
22. Thomsen, J. P. S., Poulsen, N. A., Larsen, L. B. (2026). Effect of enzymatic dephosphorylation on in vitro digestion of purified bovine caseins. International Dairy Journal, 172, Article 106426. https://doi.org/10.1016/j.idairyj.2025.106426
23. Stokes, T., Hector, A. J., Morton, R. W., McGlory, C., Phillips, S. M. (2018). Recent perspectives regarding the role of dietary protein for the promotion of muscle hypertrophy with resistance exercise training. Nutrients, 10(2), Article 180. https://doi.org/10.3390/nu10020180
24. Jiang, Y., Li, S., Yuan, R., Tuo, Y., Mu, G., Jiang, S. (2024). Preparation of casein hydrolysate by two-step enzymatic hydrolysis and its immunomodulatory activities in vitro and in vivo. Food Bioscience, 59, Article 104007. https://doi.org/10.1016/j.fbio.2024.104007
25. Bueno-Gavilá E., Abellán A., Girón-Rodríguez F., Cayuela J. M., Salazar E., Gómez R. et al. (2019). Bioactivity of hydrolysates obtained from bovine casein using artichoke (Cynara scolymus L.) proteases. Journal of Dairy Science, 102(12), 10711–10723. https://doi.org/10.3168/jds.2019-16596
26. Kitaevskaya, S. V., Ponomarev, V. Y., Reshetnik, O. A. (2022). Evaluation of the proteolytic activity of new cryoresistant lactobacillus strains. Proceedings of Universities. Applied Chemistry and Biotechnology, 12(1), 76–86. (In Russian) https://doi.org/10.21285/2227-2925-2022-12-1-76-86
27. Zhao, L., Gao, P., Zhang, Y., Wang, X., lu, S., Yue, C. et al. (2024). Measurement of degree of hydrolysis and molecular weight distribution of protein hydrolysates by liquid chromatography-mass spectrometry. Talanta, 268(Part 1), Article 125347. https://doi.org/10.1016/j.talanta.2023.125347
28. Cruz-Casas, D. E., Chávez-García, S. N., García-Flores, L. A., Martínez-Medina, G. A., Ramos-González, R., Prado-Barragán, L. A. et al. (2023). Bioactive peptides from fermented milk products. Chapter in a book: Foundations and Frontiers in Enzymology, Enzymes Beyond Traditional Applications in Dairy Science and Technology, Academic Press, 2023. https://doi.org/10.1016/B978-0-323-96010-6.00010-2
29. Doneva, M., Dyankova, S., Terziyska, M., Metodieva, P., Nacheva, I. (2024). Antioxidant protein hydrolysates from hemp seed oil cake — optimization of the process using response surface methodology. Applied Sciences, 14(19), Article 8602. https://doi.org/10.3390/app14198602
30. Santos, B. A. S., Azambuja, S. P. H., Ávila, P. F., Pacheco, M. T. B., Goldbeck, R. (2020). n-Butanol production by Saccharomyces cerevisiae from protein-rich agro-industrial by-products. Brazilian Journal of Microbiology, 51, 1655–1664. https://doi.org/10.1007/s42770-020-00370-6
31. Mirzaei Teshnizi, Z., Robatjazi, S. M., Mosaabadi, J. M. (2020). Optimization of the enzymatic hydrolysis of poultry slaughterhouse wastes using alcalase enzyme for the preparation of protein hydrolysates. Applied Food Biotechnology, 7(3), 153–160. https://doi.org/10.22037/afb.v7i3.28417
32. Fang, K.-X., Sun, X., Chen, L.-K., Wang, K., Yang, C.-J., Mei, S.-S. et al. (2025). A novel integrated strategy for discovering absorbable anticoagulant bioactive peptides: A case study on leech protein hydrolysates. Molecules, 30(15), Article 3184. https://doi.org/10.3390/molecules30153184
33. Ostroumov, L. A., Babich, O. O., Milentyeva, I. S. (2013). Evaluation of composition and physicochemical properties of the enzyme casein hydrolysates. ESSUTM Bulletin,1(40), 82–85. (In Russian)
34. Knuf, F., Caspers-Weiffenbach, R., Schieber, A., Fontana, A. (2025). Peptidomics profiling and biological activities of grape pomace protein hydrolysates. Food Chemistry, 463(Part 1), Article 141032. https://doi.org/10.1016/j.foodchem.2024.141032
35. Damen, D., Thibodeau, J., Gaaloul, S., Fliss, I., Labrie, S., Hamoudi, S. et al. (2024). Influence of enzymatic hydrolysis conditions on antimicrobial activities and peptide profiles of milk protein-derived hydrolysates from white wastewater. Cleaner Waste Systems, 9, Article 100172. https://doi.org/10.1016/j.clwas.2024.100172
36. Habib, M., Singh, S., Hanan, E., Jan, K., Bashir, K. (2025). Optimization of enzymatic hydrolysis for obtaining antioxidant hydrolysates from pumpkin seed protein: Improvement of the physicochemical, structural and functional properties. Applied Food Research, 5(2), Article 101272. https://doi.org/10.1016/j.afres.2025.101272
37. Lepilkina, O. V., Grigorieva, A. I. (2023). Enzymatic proteolysis during the conversion of milk into cheese. Food Systems, 6(1), 36–45. (In Russian) https://doi.org/10.21323/2618-9771-2023-6-1-36-45
38. Lotfi, M., Keshvari, T., Taghizadeh, M. S., Afsharifar, A., Moghadam, A., Aram, F. et al. (2025). Optimizing Camelina sativa oil extraction and its cytotoxicity using RSM by emphasis on antioxidant properties, physical characteristics, and molecular docking insights. Industrial Crops and Products, 224, Article 120334. https://doi.org/10.1016/j.indcrop.2024.120334
39. Ren, J., Yu, D., Li, N., Liu, S., Xu, H., Li, J. et al. (2023). Biological characterization and whole-genome analysis of Bacillus subtilis MG 1 isolated from mink fecal samples. Microorganisms, 11(12), Article 2821. https://doi.org/10.3390/microorganisms11122821
40. Reale, A., Di Stasio, L., Di Renzo, T., De Caro, S., Ferranti, P., Picariello, G. et al. (2021). Bacteria do it better! Proteomics suggests the molecular basis for improved digestibility of sourdough products. Food Chemistry, 359, Article 129955. https://doi.org/10.1016/j.foodchem.2021.129955
41. Zhao, Q., Shi, Y., Wang, X., Huang, A. (2020). Characterization of a novel antimicrobial peptide from buffalo casein hydrolysate based on live bacteria adsorption. Journal of Dairy Science, 103(12), 11116–11128. https://doi.org/10.3168/jds.2020-18577
42. Kurbanova, M. G., Bondarchuk, O. N., Maslennikova, S. M. (2013). Practical aspects of hydrolysis of milk casein by endopeptidases. Food Processing: Techniques and Technology, 2(29), 34–39. (In Russian)
43. Milentyeva, I. S., Davydenko, N. I., Rasshchepkin, A. N. (2020). Casein Proteolysis in Bioactive Peptide Production: Optimal Operating Parameters. Food Processing: Techniques and Technology, 50(4), 726–735. (In Russian) https://doi.org/10.21603/2074-9414-2020-4-726-735
44. Agarkova, E. Yu., Kruchinin, A. G. (2018). Enzymatic conversion as a method of producing biologically active peptides. Vestnik of MSTU, 21(3), 412–419. (In Russian)
Review
For citations:
Zinina O.V., Chanov I.M., Rebezov M.B., Li Y., Li C., Zhao Y. Optimization of technological parameters of casein hydrolysis. Food systems. 2025;8(4):616-623. (In Russ.) https://doi.org/10.21323/2618-9771-2025-8-4-616-623
JATS XML
























