Preview

Food systems

Advanced search

Core strategies of lactic acid biosynthesis in key Lactobacillaceae species: Phylogenetic patterns, metabolic pathways, and genetic regulation

https://doi.org/10.21323/2618-9771-2025-8-4-541-554

Abstract

Lactic acid bacteria of the Lactobacillaceae family play a key role in the food, chemical, agricultural, cosmetic and pharmaceutical industries as the main producer of lactic acid. The main success in production of lactic acid is achieved due to introduction of genetic engineering methods and precision fermentation aimed at the control of synthesis of individual optically clean L/D-isomers and utilization of certain components of sugar-containing substrates of nutrient media. At the same time, bacteria Lactobacillaceae have several natural evolutionary advantages that ensure success of their industrial use, including high acid resistance, productivity and safety. Lactobacillus delbrueckii, L. amylovorus, L. acidophilus, Lacticaseibacillus сasei, L. paracasei, Lactiplantibacillus plantarum and some others can be mentioned as the most promising strains — producers of lactic acid in natural conditions. Productivity of strains to a large extend depends on their ability to ferment specific substrates, first of all, different carbohydrate sources. The use of wastes of the food, agricultural and timber industries as substrates for largescale production of lactic acid is of particular scientific and practical interest. This approach makes it possible to significantly reduce expenses on complex nutrient media and cut production costs. The understanding of the main strategies of substrate utilization by various representatives of Lactobacillaceae allows for a more specific choice of a strain. In this review, the main attention is given to the key peculiarities of fermentation of L. сasei, L. delbrueckii, L. plantarum, and L. acidophilus strains with account for their phylogenetic characteristics and metabolic features. The paper examines the central mechanisms of the utilization of carbohydrates, substrate-specific activation of alternative pathways of metabolism, as well as key genes and their patterns associated with lactic acid synthesis. The authors describe the Embden–Meyerhof–Parnas metabolic pathway, pentose phosphate and phosphoketolase pathways, mechanism of carbon catabolite repression and the role of the Leloir pathway. The role of the key enzymes participating in the process of substrate utilization and formation of lactic acid, including lactate dehydrogenase, lactate racemase, aldolase, citrate lyase and others, is demonstrated.

About the Authors

A. A. Belenko
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Andrey A. Belenko, Candidate of Biological Sciences, Head of the Laboratory of Genetic Research (the Branch)

55, Liteiny prospekt, 191014, Saint Petersburg



V. E. Putilov
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Vladislav E. Putilov, Research Assistant, Laboratory of Biotechnology and Bioengineering (the Branch)

55, Liteiny prospekt, 191014, Saint Petersburg



A. P. Nepomnyashchiy
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Anatoliy P. Nepomnyashchiy, Research Scientist, Laboratory of Biotechnology and Bioengineering (the Branch)

55, Liteiny prospekt, 191014, Saint Petersburg



A. O. Prichepa
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Artem O. Prichepa, Junior Research Scientist, Laboratory of Biotechnology and Bioengineering (the Branch)

55, Liteiny prospekt, 191014, Saint Petersburg



A. A. Semenova
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Anastasia A. Semenova, Doctor of Technical Sciences, Deputy Director for Scientific Work

55, Liteiny prospekt, 191014, Saint Petersburg



V. Yu. Sitnov
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Veniamin Yu. Sitnov, Director the Branch

55, Liteiny prospekt, 191014, Saint Petersburg



N. P. Sorokina
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Ninel P. Sorokina, Candidate of Technical Sciences, Leading Researcher, Department of Microbiology (the Branch)

55, Liteiny prospekt, 191014, Saint Petersburg



References

1. Wood, B. J. B., Holzapfel, W. H. N. (1995). The Genera of Lactic Acid Bacteria. Springer New York, NY, 1995.

2. Goldstein, E. J. C., Tyrrell, K. L., Citron, D. M. (2015). Lactobacillus species: Taxonomic complexity and controversial susceptibilities. Clinical Infectious Diseases, 60 (Suppl 2), S98-S107. https://doi.org/10.1093/cid/civ072

3. Mokoena, M. P. (2017). Lactic acid bacteria and their bacteriocins: Classification, biosynthesis and applications against uropathogens: A mini-review. Molecules, 22(8), Article 1255. https://doi.org/10.3390/molecules22081255

4. Abdel-Rahman, M. A., Tashiro, Y., Sonomoto, K. (2011). Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: Overview and limits. Journal of Biotechnology, 156(4), 286–301. https://doi.org/10.1016/j.jbiotec.2011.06.017

5. Wang, Y., Wu, J., Lv, M., Shao, Z., Hungwe, M., Wang, J. et al. (2021). Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Frontiers in Bioengineering and Biotechnology, 9, Article 612285. https://doi.org/10.3389/fbioe.2021.612285

6. Bintsis, T. (2018). Lactic acid bacteria as starter cultures: An update in their metabolism and genetics. AIMS Microbiology, 4(4), 665–668. https://doi.org/10.3934/microbiol.2018.4.665

7. Gänzle, M. G. (2015). Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Current Opinion in Food Science, 2, 106–117. https://doi.org/10.1016/j.cofs.2015.03.001

8. Pastor, J. M., Borges, N., Pagán, J. P., Castaño-Cerezo, S., Csonka, L. N., Goodner, B. W. et al. (2019). Fructose metabolism in Chromohalobacter salexigens: Interplay between the Embden — Meyerhof — Parnas and Entner — Doudoroff pathways. Microbial Cell Factories, 18(1), Article 134. https://doi.org/10.1186/s12934-019-1178-x

9. Prückler, M., Lorenz, C., Endo, A., Kraler, M., Dürrschmid, K., Hendriks, K. et al. (2015). Comparison of homo- and heterofermentative lactic acid bacteria for implementation of fermented wheat bran in bread. Food Microbiology, 49, 211–219. https://doi.org/10.1016/j.fm.2015.02.014

10. Martinez, F. A. C., Balciunas, E. M., Salgado, J. M., González, J. M. D., Converti, A., de Sousa Oliveira, R. P. (2013). Lactic acid properties, applications and production: A review. Trends in Food Science and Technology, 30(1), 70–83. https://doi.org/10.1016/j.tifs.2012.11.007

11. Juturu, V., Wu, J. C. (2016). Microbial production of lactic acid: The latest development. Critical Reviews in Biotechnology, 36(6), 967–977. https://doi.org/10.3109/07388551.2015.1066305

12. Zaunmüller, T., Eichert, M., Richter, H., Unden, G. (2006). Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids. Applied Microbiology and Biotechnology, 72(3), 421–429. https://doi.org/10.1007/s00253-006-0514-3

13. Eiteman, M. A., Ramalingam, S. (2015). Microbial production of lactic acid. Biotechnology Letters, 37(5), 955–972. https://doi.org/10.1007/s10529-015-1769-5

14. Arskold, E., Lohmeler-Vogel, E., Cao, R., Roos, S., Radstrom, P., van Niel, E. W. J. (2008). Phosphoketolase pathway dominates in Lactobacillus reuteri ATCC55730 containing dual pathways for glycolysis. Journal of Bacteriology, 190(1), 206–212. https://doi.org/10.1128/JB.01227-07

15. Kilstrup, M., Hammer, K., Jensen, P. R., Martinussen, J. (2005). Nucleotide metabolism and its control in lactic acid bacteria. FEMS Microbiology Reviews, 29(3), 555–590. https://doi.org/10.1016/j.femsre.2005.04.006

16. Salvetti, E., Fondi, M., Fani, R., Torriani, S., Felis, G. E. (2013). Evolution of lactic acid bacteria in the order Lactobacillales as depicted by analysis of glycolysis and pentose phosphate pathways. Systematic and Applied Microbiology, 36(5), 291–305. https://doi.org/10.1016/j.syapm.2013.03.009

17. Fukui, S., Oi, A., Obayashi, A., Kitahara, K. (1957). Studies on the pentose metabolism by microorganisms. The Journal of General and Applied Microbiology, 3(4), 258–268. https://doi.org/10.2323/jgam.3.258

18. Stincone, A., Prigione, A., Cramer, T., Wamelink, M. M. C., Campbell, K., Cheung, E. et al. (2015). The return of metabolism: Biochemistry and physiology of the pentose phosphate pathway. Biological Reviews, 90(3), 927–963. https://doi.org/10.1111/brv.12140

19. Horecker, B. L. (2002). The pentose phosphate pathway. Journal of Biological Chemistry, 277(50), 47965–47971. https://doi.org/10.1074/jbc.X200007200

20. Kim, K. H., Chun, B. H., Baek, J. H., Roh, S. W., Lee, S. H., Jeon, C. O. (2020). Genomic and metabolic features of Lactobacillus sakei as revealed by its pangenome and the metatranscriptome of kimchi fermentation. Food Microbiology, 86, Article 103341. https://doi.org/10.1016/j.fm.2019.103341

21. Shinkawa, S., Okano, K., Yoshida, S., Tanaka, T., Ogino, C., Fukuda, H. et al. (2011). Improved homo l-lactic acid fermentation from xylose by abolishment of the phosphoketolase pathway and enhancement of the pentose phosphate pathway in genetically modified xylose-assimilating Lactococcus lactis. Applied Microbiology and Biotechnology, 91(6), 1537–1544. https://doi.org/10.1007/s00253-011-3342-z

22. Burgé, G., Saulou-Bérion, C., Moussa, M., Allais, F., Athes, V., Spinnler, H.-E. (2015). Relationships between the use of Embden Meyerhof pathway (EMP) or Phosphoketolase pathway (PKP) and lactate production capabilities of diverse Lactobacillus reuteri strains. Journal of Microbiology, 53(10), 702–710. https://doi.org/10.1007/s12275-015-5056-x

23. Posthuma, C. С., Bader, R., Engelmann, R., Postma, P. W., Hengstenberg, W., Pouwels, P. H. (2002). Expression of the Xylulose 5-Phosphate Phosphoketolase Gene, xpkA, from Lactobacillus pentosus MD363 is induced by sugars that are fermented via the phosphoketolase pathway and is repressed by glucose mediated by CcpA and the mannose phosphoenolpyruvate phosphotransferase system. Applied and Environmental Microbiology, 68(2), 831–837. https://doi.org/10.1128/AEM.68.2.831-837.2002

24. Frey, P. A. (1996). The Leloir pathway: A mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. The FASEB Journal, 10(4), 461–470.

25. Rodríguez, J., Vázquez, L., Flórez, A. B., Mayo, B. (2022). Phenotype testing, genome analysis, and metabolic interactions of three lactic acid bacteria strains existing as a consortium in a naturally fermented milk. Frontiers in Microbiology, 13, Article 1000683. https://doi.org/10.3389/fmicb.2022.1000683

26. Ponnusamy, V., Sankaranarayanan, M. (2023). Targeted gene manipulation of Leloir pathway genes for the constitutive expression of β-galactosidase and its transgalactosylation product galacto-oligosaccharides from Kluyveromyces lactis GG799 and knockout strains. Enzyme and Microbial Technology, 169, Article 110263. https://doi.org/10.1016/j.enzmictec.2023.110263

27. Rozhkova, I. V., Yurova, E. A., Leonova, V. A. (2023). Evaluation of the amino acid composition and content of organic acids of complex postbiotic substances obtained on the basis of metabolites of probiotic bacteria Lacticaseibacillus paracasei ABK and Lactobacillus helveticus H9. Fermentation, 9(5), Article 460. https://doi.org/10.3390/fermentation9050460

28. Yun, J.-S., Ryu, H.-W. (2001). Lactic acid production and carbon catabolite repression from single and mixed sugars using Enterococcus faecalis RKY1. Process Biochemistry, 37(3), 235–240. https://doi.org/10.1016/S0032-9592(01)00205-9

29. Maeda, T., Yoshimura, T., Shimazu, T., Shirai, Y., Ogawa, H. I. (2009). Enhanced production of lactic acid with reducing excess sludge by lactate fermentation. Journal of Hazardous Materials, 168(2–3), 656–663. https://doi.org/10.1016/j.jhazmat.2009.02.067

30. Abedi, E., Hashemi, S. M. B. (2020). Lactic acid production — producing microorganisms and substrates sources-state of art. Heliyon, 6(10), Article e04974. https://doi.org/10.1016/j.heliyon.2020.e04974

31. Pedersen, M. B., Garrigues, C., Tuphile, K., Brun, C., Vido, K., Bennedsen, M. et al. (2008). Impact of aeration and heme-activated respiration on Lactococcus lactis gene expression: Identification of a heme-responsive operon. Journal of Bacteriology, 190(14), 4903–4911. https://doi.org/10.1128/JB.00447-08

32. Siezen, R. J., van Hylckama Vlieg, J. E. (2011). Genomic diversity and versatility of Lactobacillus plantarum, a natural metabolic engineer. Microbial Cell Factories, 10 (Suppl 1), Article S3. https://doi.org/10.1186/1475-2859-10-S1-S3

33. Karczewska, L., Lukjan, Z. (1969). 2 cases of atypical mycobacteria. Gruzlica i Choroby Pluc; Tuberculosis et Pneumonologia, 37(9), 863–867. (In Polish)

34. Kim, D.-H., Lim, W.-T., Lee, M.-K., Kim, M.-S. (2012). Effect of temperature on continuous fermentative lactic acid (LA) production and bacterial community, and development of LA producing UASB reactor. Bioresource Technology, 119, 355–361. https://doi.org/10.1016/j.biortech.2012.05.027

35. Makarova, K. S., Koonin, E. V. (2006). Evolutionary genomics of lactic acid bacteria. Journal of Bacteriology, 189(4), 1199–2008. https://doi.org/10.1128/JB.01351-06

36. Lawson, P. A. (2018). The phylum Actinobacteria. Chapter in the book: The Bifidobacteria and Related Organisms. Academic Press, 2018. https://doi.org/10.1016/B978-0-12-805060-6.00001-6

37. Olofsson, T. C., Vásquez, A. (2008). Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee apis mellifera. Current Microbiology, 57(4), 356–363. https://doi.org/10.1007/s00284-008-9202-0

38. Zheng, Z., Zhao, M., Zhang, Z., Hu, X., Xu, Y., Wei, C. et al. (2022). Lactic acid bacteria are prevalent in the infrabuccal pockets and crops of ants that prefer aphid honeydew. Frontiers in Microbiology, 12, Article 785016. https://doi.org/10.3389/fmicb.2021.785016

39. Muñoz-Atienza, E., Gómez-Sala, B., Araújo, C., Campanero, C., del Campo, R., Hernández, P. E. et al. (2013). Antimicrobial activity, antibiotic susceptibility and virulence factors of Lactic Acid Bacteria of aquatic origin intended for use as probiotics in aquaculture. BMC Microbiology, 13(1), Article 15. https://doi.org/10.1186/1471-2180-13-15

40. Stackebrandt, E., Teuber, M. (1988). Molecular taxonomy and phylogenetic position of lactic acid bacteria. Biochimie, 70(3), 317–324. https://doi.org/10.1016/0300-9084(88)90204-0

41. Wetterstrand, K. A. (2023). DNA Sequencing Costs: Data. Retrieved from https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-CostsData Accessed August 7, 2025

42. Vandamme, P., Pot, B., Gillis, M., de Vos, P., Kersters, K., Swings, J. (1996). Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiological Reviews, 60(2), 407–438. https://doi.org/10.1128/mr.60.2.407-438.1996

43. Sun, Z., Harris, H. M. B., McCann, A., Guo, C., Argimón, S., Zhang, W. et al. (2015). Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nature Communications, 6(1), Article 8322. https://doi.org/10.1038/ncomms9322

44. Zheng, J., Ruan, L., Sun, M., Gänzle, M. (2015). A genomic view of lactobacilli and pediococci demonstrates that phylogeny matches ecology and physiology. Applied and Environmental Microbiology, 81(20), 7233–7243. https://doi.org/10.1128/AEM.02116-15

45. Konstantinidis, K. T., Tiedje, J. M. (2005). Towards a genome-based taxonomy for prokaryotes. Journal of Bacteriology, 187(18), 6258–6264. https://doi.org/10.1128/JB.187.18.6258-6264.2005

46. Qin, Q.-L., Xie, B.-B., Zhang, X.-Y., Chen, X.-L., Zhou, B.-C., Zhou, J. et al. (2014). A proposed genus boundary for the prokaryotes based on genomic insights. Journal of Bacteriology, 196(12), 2210–2215. https://doi.org/10.1128/jb.01688-14

47. Pfeiler, E. A., Klaenhammer, T. R. (2007). The genomics of lactic acid bacteria. Trends in Microbiology, 15(12), 546–553. https://doi.org/10.1016/j.tim.2007.09.010

48. Xing, Z., Geng, W., Li, C., Sun, Y., Wang, Y. (2017). Comparative genomics of Lactobacillus kefiranofaciens ZW3 and related members of Lactobacillus. spp reveal adaptations to dairy and gut environments. Scientific Reports, 7(1), Article 12827. https://doi.org/10.1038/s41598-017-12916-0

49. Prost, F., Chamba, J. F. (1994). Effect of aminopeptidase activity of thermophilic lactobacilli on emmental cheese characteristics. Journal of Dairy Science, 77(1), 24–33. https://doi.org/10.3168/jds.S0022-0302(94)76924-1

50. Fontana, A., Zacconi, C., Morelli, L. (2018). Genetic signatures of dairy Lactobacillus casei group. Frontiers in Microbiology, 9, Article 2611. https://doi.org/10.3389/fmicb.2018.02611

51. O’Sullivan, O., O’Callaghan, J., Sangrador-Vegas, A., McAuliffe, O., Slattery, L., Kaleta, P. et al. (2009). Comparative genomics of lactic acid bacteria reveals a nichespecific gene set. BMC Microbiology, 9(1), Article 50. https://doi.org/10.1186/1471-2180-9-50

52. Nadkarni, M. A., Chen, Z., Wilkins, M. R., Hunter, N. (2014). Comparative genome analysis of Lactobacillus rhamnosus clinical isolates from initial stages of dental pulp infection: Identification of a new exopolysaccharide cluster. PLoS One, 9(3), Article e90643. https://doi.org/10.1371/journal.pone.0090643

53. Bourdichon, F. P., Budde-Niekiel, A., Dubois, A., Fritz, D., Hatte, J. L., Laulund, S. et al. (2022). Inventory of microbial food cultures with safety demonstration in fermented food products Update of the Bulletin of the IDF N° 377–2002, N° 455– 2012 and N° 495–2018. Bulletin of the International Dairy Federation, 514. Retrieved from https://openurl.ebsco.com/contentitem/gcd:157423297?sid=ebsco:plink:crawler&id=ebsco:gcd:157423297 Accessed August 7, 2025

54. Koutsoumanis, K., Allende, A., Alvarez-Ordóñez, A., Bolton, D., Bover-Cid, S., Chemaly, M. et al. (2020). Scientific opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA (2017– 2019). EFSA Journal, 18(2), Article e05966. https://doi.org/10.2903/j.efsa.2020.5966

55. Garvie, E. I. (1980). Bacterial lactate dehydrogenases. Microbiological Reviews, 44(1), 106–139. https://doi.org/10.1128/mr.44.1.106-139.1980

56. Manome, A., Okada, S., Uchimura, T., Komagata, K. (1998). The ratio of L form to D form of lactic acid as a criteria for the identification of lactic acid bacteria. The Journal of General and Applied Microbiology, 44(6), 371–374. https://doi.org/10.2323/jgam.44.371

57. Razeto, A., Kochhar, S., Hottinger, H., Dauter, M., Wilson, K. S., Lamzin, V. S. (2002). Domain Closure, Substrate Specificity and Catalysis of d-Lactate Dehydrogenase from Lactobacillus bulgaricus. Journal of Molecular Biology, 318(1), 109–119. https://doi.org/10.1016/S0022-2836(02)00086-4

58. Viana, R., Yebra, M. J., Galán, J. L., Monedero, V., Pérez-Martínez, G. (2005). Pleiotropic effects of lactate dehydrogenase inactivation in Lactobacillus casei. Research in Microbiology, 156(5–6), 641–649. https://doi.org/10.1016/j.resmic.2005.02.011

59. Rico, J., Yebra, M. J., Pérez-Martínez, G., Deutscher, J., Monedero, V. (2008). Analysis of ldh genes in Lactobacillus casei BL23: Role on lactic acid production. Journal of Industrial Microbiology and Biotechnology, 35(6), 579–586. https://doi.org/10.1007/s10295-008-0319-8

60. Malleret, C., Lauret, R., Ehrlich, S. D., Morel-Deville, F., Zagorec, M. (1998). Disruption of the sole IdhL gene in Lactobacillus sakei prevents the production of both L- and D lactate. Microbiology, 144(Pt 12), 3327–3333. https://doi.org/10.1099/00221287-144-12-3327

61. Tatum, E. L., Peterson, W. H., Fred, E. B. (1936). Enzymic racemization of optically active lactic acid. Biochemical Journal, 30(10), 1892–1897. https://doi.org/10.1042/bj0301892

62. Stetter, K. O., Kandler, O. (1973). Formation of DL lactic acid by lactobacilli and characterization of a lactic acid racemase from several streptobacteria (author’s transl). Archiv Fur Mikrobiologie, 94(3), 221–247. (In German)

63. Goffin, P., Deghorain, M., Mainardi, J.-L., Tytgat, I., Champomier-Vergès, M.-C., Kleerebezem, M. et al. (2005). Lactate racemization as a rescue pathway for supplying d-lactate to the cell wall biosynthesis machinery in Lactobacillus plantarum. Journal of Bacteriology, 187(19), 6750–6761. https://doi.org/10.1128/JB.187.19.6750-6761.2005

64. Ferain, T., Garmyn, D., Bernard, N., Hols, P., Delcour, J. (1994). Lactobacillus plantarum ldhL gene: Overexpression and deletion. Journal of Bacteriology, 176(3), 596–601. https://doi.org/10.1128/jb.176.3.596-601.1994

65. Ferain, T., Hobbs, J. N., Richardson, J., Bernard, N., Garmyn, D., Hols, P. et al. (1996). Knockout of the two ldh genes has a major impact on peptidoglycan precursor synthesis in Lactobacillus plantarum. Journal of Bacteriology, 178(18), 5431–5437. https://doi.org/10.1128/jb.178.18.5431-5437.1996

66. Billot-Klein, D., Gutmann, L., Sablé, S., Guittet, E., van Heijenoort, J. (1994). Modification of peptidoglycan precursors is a common feature of the low-level vancomycin-resistant VANB type Enterococcus D366 and of the naturally glycopeptide-resistant species Lactobacillus casei, Pediococcus pentosaceus, Leuconostoc mesenteroides, and Enterococcus gallinarum. Journal of Bacteriology, 176(8), 2398–2405. https://doi.org/10.1128/jb.176.8.2398-2405.1994

67. Handwerger, S., Pucci, M. J., Volk, K. J., Liu, J., Lee, M. S. (1994). Vancomycin-resistant Leuconostoc mesenteroides and Lactobacillus casei synthesize cytoplasmic peptidoglycan precursors that terminate in lactate. Journal of Bacteriology, 176(1), 260–264. https://doi.org/10.1128/jb.176.1.260-264.1994

68. Nagar, M., Narmandakh, A., Khalak, Y., Bearne, S. L. (2011). Redefining the minimal substrate tolerance of mandelate racemase. Racemization of trifluorolactate. Biochemistry, 50(41), 8846–8852. https://doi.org/10.1021/bi201188j

69. Cava, F., Lam, H., de Pedro, M. A., Waldor, M. K. (2011). Emerging knowledge of regulatory roles of D amino acids in bacteria. Cellular and Molecular Life Sciences, 68(5), 817–831. https://doi.org/10.1007/s00018-010-0571-8

70. Richard, J. P., Amyes, T. L. (2004). On the importance of being zwitterionic: Enzymatic catalysis of decarboxylation and deprotonation of cationic carbon. Bioorganic Chemistry, 32(5), 354–366. https://doi.org/10.1016/j.bioorg.2004.05.002

71. Desguin, B., Goffin, P., Viaene, E., Kleerebezem, M., Martin-Diaconescu, V., Maroney, M. J. et al. (2014). Lactate racemase is a nickel-dependent enzyme activated by a widespread maturation system. Nature Communications, 5(1), Article 3615. https://doi.org/10.1038/ncomms4615

72. Desguin, B., Soumillion, P., Hausinger, R. P., Hols, P. (2017). Unexpected complexity in the lactate racemization system of lactic acid bacteria. FEMS Microbiology Reviews, 41 (Supp_1), 71–83. https://doi.org/10.1093/femsre/fux021

73. Bienert, G. P., Desguin, B., Chaumont, F., Hols, P. (2013). Channel-mediated lactic acid transport: A novel function for aquaglyceroporins in bacteria. The Biochemical Journal, 454(3), 559–570. https://doi.org/10.1042/bj20130388

74. Kant, R., Blom, J., Palva, A., Siezen, R. J., de Vos, W. M. (2011). Comparative genomics of Lactobacillus. Microbial biotechnology, 4(3), 323–332. https://doi.org/10.1111/j.1751-7915.2010.00215.x

75. Titgemeyer, F., Hillen, W. (2002). Global control of sugar metabolism: A Gram-positive solution. Antonie van Leeuwenhoek, 82(1), 59–71. https://doi.org/10.1023/A:1020628909429

76. Iskandar, C. F., Cailliez-Grimal, C., Borges, F., Revol-Junelles, A.-M. (2019). Review of lactose and galactose metabolism in Lactic Acid Bacteria dedicated to expert genomic annotation. Trends in Food Science and Technology, 88, 121–132. https://doi.org/10.1016/j.tifs.2019.03.020

77. Galinier, A., Deutscher, J. (2017). Sophisticated regulation of transcriptional factors by the bacterial phosphoenolpyruvate: Sugar phosphotransferase system. Journal of Molecular Biology, 429(6), 773–789. https://doi.org/10.1016/j.jmb.2017.02.006

78. Deutscher, J., Francke, C., Postma, P. W. (2006). How phosphotransferase systemrelated protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiology and Molecular Biology Reviews, 70(4), Article 939. https://doi.org/10.1128/mmbr.00024-06

79. Wu, Y., Yang, Y., Ren, C., Yang, C., Yang, S., Gu, Y. et al. (2015). Molecular modulation of pleiotropic regulator CcpA for glucose and xylose coutilization by solvent-producing Clostridium acetobutylicum. Metabolic Engineering, 28, 169–179. https://doi.org/10.1016/j.ymben.2015.01.006

80. Marciniak, B. C., Pabijaniak, M., de Jong, A., Dűhring, R., Seidel, G., Hillen, W. et al. (2012). High- and low-affinity cre boxes for CcpA binding in Bacillus subtilis revealed by genome-wide analysis. BMC Genomics, 13(1), Article 401. https://doi.org/10.1186/1471-2164-13-401

81. Barrangou, R., Azcarate-Peril, M. A., Duong, T., Conners, S. B., Kelly, R. M., Klaenhammer, T. R. (2006). Global analysis of carbohydrate utilization by Lactobacillus acidophilus using cDNA microarrays. Proceedings of the National Academy of Sciences of the United States of America, 103(10), 3816–3821. https://doi.org/10.1073/pnas.0511287103

82. Li, C., Sun, J. W., Zhang, G. F., Liu, L. B. (2016). Effect of the absence of the CcpA gene on growth, metabolic production, and stress tolerance in Lactobacillus delbrueckii ssp. Bulgaricus. Journal of Dairy Science, 99(1), 104–111. https://doi.org/10.3168/jds.2015-10321

83. Zotta, T., Ricciardi, A., Guidone, A., Sacco, M., Muscariello, L., Mazzeo, M. F. et al. (2012). Inactivation of ccpA and aeration affect growth, metabolite production and stress tolerance in Lactobacillus plantarum WCFS1. International Journal of Food Microbiology, 155(1–2), 51–59. https://doi.org/10.1016/j.ijfoodmicro.2012.01.017

84. Chen, C., Lu, Y., Wang, L., Yu, H., Tian, H. (2018). CcpA dependent carbon catabolite repression regulates fructooligosaccharides metabolism in Lactobacillus plantarum. Frontiers in Microbiology, 9, Article 1114. https://doi.org/10.3389/fmicb.2018.01114

85. Bekal, S., Diviès, C., Prévost, H. (1998). Citrate lyases of lactic acid bacteria. Le Lait, 78(1), 3–10. https://doi.org/10.1051/lait:199811

86. García-Quintáns, N., Blancato, V., Repizo, G., Magni, C., López, P. (2008). Citrate metabolism and aroma compound production in lactic acid bacteria. Chapter in the book: Molecular Aspects of Lactic Acid Bacteria for Traditional and New Applications. Kerala, India: Research Signpost, 2008.

87. Martin, M. G., Magni, C., de Mendoza, D., López, P. (2005). CitI, a transcription factor involved in regulation of citrate metabolism in lactic acid bacteria. Journal of Bacteriology, 187(15), 5146–5155. https://doi.org/10.1128/JB.187.15.5146–5155.2005

88. Mortera, P., Pudlik, A., Magni, C., Alarcón, S., Lolkema, J. S. (2013). Ca2+-citrate uptake and metabolism in Lactobacillus casei ATCC334. Applied and Environmental Microbiology, 79(15), 4603–4612. https://doi.org/10.1128/AEM.00925-13

89. Drider, D., Bekal, S., Prévost, H. (2004). Genetic organization and expression of citrate permease in lactic acid bacteria. Genetics and Molecular Research, 3(2), 273–281.

90. Yang, X., Zhao, L., Chen, Q., Wang, N., Shi, K., Liu, S. (2022). Functional verification of the citrate transporter gene in a wine lactic acid bacterium, Lactiplantibacillus plantarum. Frontiers in Bioengineering and Biotechnology, 10, Article 894870. https://doi.org/10.3389/fbioe.2022.894870

91. Guo, T., Zhang, L., Xin, Y., Xu, Z., He, H., Kong, J. (2017). Oxygen-Inducible conversion of lactate to acetate in heterofermentative Lactobacillus brevis ATCC367. Applied and Environmental Microbiology, 83(21), Article e01659–17. https://doi.org/10.1128/AEM.01659-17

92. Abbe, K., Takahashi, S., Yamada, T. (1982). Involvement of oxygen-sensitive pyruvate formate-lyase in mixed-acid fermentation by Streptococcus mutans under strictly anaerobic conditions. Journal of Bacteriology, 152(1), 175–182. https://doi.org/10.1128/jb.152.1.175-182.1982

93. Ianniello, R. G., Zheng, J., Zotta, T., Ricciardi, A., Gänzle, M. G. (2015). Biochemical analysis of respiratory metabolism in the heterofermentative Lactobacillus spicheri and Lactobacillus reuteri. Journal of Applied Microbiology, 119(3), 763–775. https://doi.org/10.1111/jam.12853

94. Broadbent, J. R., Larsen, R. L., Deibel, V., Steele, J. L. (2010). Physiological and transcriptional response of Lactobacillus casei ATCC334 to acid stress. Journal of Bacteriology, 192(9), 2445–2458. https://doi.org/10.1128/JB.01618-09

95. Hamon, E., Horvatovich, P., Marchioni, E., Aoudé-Werner, D., Ennahar, S. (2014). Investigation of potential markers of acid resistance in Lactobacillus plantarum by comparative proteomics. Journal of Applied Microbiology, 116(1), 134–144. https://doi.org/10.1111/jam.12339

96. Hernandez-Hernandez, O., Muthaiyan, A., Moreno, F. J., Montilla, A., Sanz, M. L., Ricke, S. C. (2012). Effect of prebiotic carbohydrates on the growth and tolerance of Lactobacillus. Food Microbiology, 30(2), 355–361. https://doi.org/10.1016/j.fm.2011.12.022

97. Teixeira, J. S., Seeras, A., Sanchez-Maldonado, A. F., Zhang, C., Su, M. S.-W., Gänzle, M. G. (2014). Glutamine, glutamate, and arginine-based acid resistance in Lactobacillus reuteri. Food Microbiology, 42, 172–180. https://doi.org/10.1016/j.fm.2014.03.015

98. Kullen, M. J., Klaenhammer, T. R. (1999). Identification of the pH-inducible, proton-translocating F1F0-ATPase (atpBEFHAGDC) operon of Lactobacillus acidophilus by differential display: Gene structure, cloning and characterization. Molecular Microbiology, 33(6), 1152–1161. https://doi.org/10.1046/j.1365-2958.1999.01557.x

99. Azcarate-Peril, M. A., Altermann, E., Hoover-Fitzula, R. L., Cano, R. J., Klaenhammer, T. R. (2004). Identification and inactivation of genetic loci involved with Lactobacillus acidophilus acid tolerance. Applied and Environmental Microbiology, 70(9), 5315–5322. https://doi.org/10.1128/AEM.70.9.5315-5322.2004

100. Nomura, M., Nakajima, I., Fujita, Y., Kobayashi, M., Kimoto, H., Suzuki, I. et al. (1999). Lactococcus lactis contains only one glutamate decarboxylase gene. Microbiology, (6), 1375–1380. https://doi.org/10.1099/13500872-145-6-1375

101. Lorca, G. L., de Valdez, G. F., Ljungh, Å. (2002). Characterization of the proteinsynthesis dependent adaptive acid tolerance response in Lactobacillus acidophilus. Journal of Molecular Microbiology and Biotechnology, 4(6), 525–532.

102. Wang, R.-M., Li, N., Zheng, K., Hao, J.-F. (2018). Enhancing acid tolerance of the probiotic bacterium Lactobacillus acidophilus NCFM with trehalose. FEMS Microbiology Letters, 365(19), Article fny217. https://doi.org/10.1093/femsle/fny217

103. Guo, Y., Tian, X., Huang, R., Tao, X., Shah, N. P., Wei, H. et al. (2017). A physiological comparative study of acid tolerance of Lactobacillus plantarum ZDY2013 and L. plantarum ATCC8014 at membrane and cytoplasm levels. Annals of Microbiology, 67(10), 669–677. https://doi.org/10.1007/s13213-017-1295-x

104. Jang, H.-Y., Kim, M. J., Bae, M., Hwang, I. M., Lee, J.-H. (2023). Transcriptional analysis of the molecular mechanism underlying the response of Lactiplantibacillus plantarum to lactic acid stress conditions. Heliyon, 9(6), Article e16520. https://doi.org/10.1016/j.heliyon.2023.e16520

105. Andrea, K., Oliveira, J. A. R. de, Martins, L. H. da S., Maciel, M. R. W., Filho, R. M. (2017). Lactic acid production to purification: A review. BioResources, 12(2), 4364–4383. https://doi.org/10.15376/biores.12.2.komesu

106. Zhou, A., Cao, Y., Zhou, D., Hu, S., Tan, W., Xiao, X. et al. (2020). Global transcriptomic analysis of Cronobacter sakazakii CICC21544 by RNA seq under inorganic acid and organic acid stresses. Food Research International, 130, Article 108963. https://doi.org/10.1016/j.foodres.2019.108963

107. Zhou, C., Fey, P. D. (2020). The acid response network of Staphylococcus aureus. Current Opinion in Microbiology, 55, 67–73. https://doi.org/10.1016/j.mib.2020.03.006

108. Tran, V. G., Zhao, H. (2022). Engineering robust microorganisms for organic acid production. Journal of Industrial Microbiology and Biotechnology, 49(2), Article kuab067. https://doi.org/10.1093/jimb/kuab067

109. King, T., Lucchini, S., Hinton, J. C. D., Gobius, K. (2010). Transcriptomic analysis of Escherichia coli O157: H7 and K 12 cultures exposed to inorganic and organic acids in stationary phase reveals acidulant- and strain-specific acid tolerance responses. Applied and Environmental Microbiology, 76(19), 6514–6528. https://doi.org/10.1128/AEM.02392-09

110. Li, M., Carpenter, C. E., Broadbent, J. R. (2021). Organic acid exposure enhances virulence in some Listeria monocytogenes strains using the Galleria mellonella infection model. Frontiers in Microbiology, 12, Article 675241. https://doi.org/10.3389/fmicb.2021.675241

111. Rode, T. M., Møretrø, T., Langsrud, S., Langsrud, O., Vogt, G., Holck, A. (2010). Responses of Staphylococcus aureus exposed to HCl and organic acid stress. Canadian Journal of Microbiology, 56(9), 777–792. https://doi.org/10.1139/w10-057

112. Ueno, Y., Hayakawa, K., Takahashi, S., Oda, K. (1997). Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005. Bioscience, Biotechnology, and Biochemistry, 61(7), 1168–1171. https://doi.org/10.1271/bbb.61.1168

113. Li, W., Yang, L., Nan, W., Lu, J., Zhang, S., Ujiroghene, O. J. et al. (2020). Wholegenome sequencing and genomic-based acid tolerance mechanisms of Lactobacillus delbrueckii subsp. Bulgaricus LJJ. Applied Microbiology and Biotechnology, 104(17), 7631–7642. https://doi.org/10.1007/s00253-020-10788-5

114. Liguori, R., Soccol, C. R., Vandenberghe, L. P. D. S., Woiciechowski, A. L., Ionata, E., Marcolongo, L. et al. (2015). Selection of the strain Lactobacillus acidophilus ATCC43121 and its application to brewers’ spent grain conversion into lactic acid. BioMed Research International, 2015(1), Article 240231. https://doi.org/10.1155/2015/240231

115. Zhao, R., Sun, J., Mo, H., Zhu, Y. (2007). Analysis of functional properties of Lactobacillus acidophilus. World Journal of Microbiology and Biotechnology, 23(2), 195–200. https://doi.org/10.1007/s11274-006-9209-2

116. Phan, P. (2011). Kinetic investigation in lactic acid production by L. Acidophilus (SSRN Scholarly Paper No. 2195809). Social Science Research Network. https://doi.org/10.2139/ssrn.2195809

117. Thakur, A., Panesar, P. S., Saini, M. S. (2018). Parametric optimization of lactic acid production by immobilized Lactobacillus casei using box-behnken design. Periodica Polytechnica Chemical Engineering, 62(3), 274–285. https://doi.org/10.3311/PPch.11403

118. Costa, S., Summa, D., Radice, M., Vertuani, S., Manfredini, S., Tamburini, E. (2024). Lactic acid production by Lactobacillus casei using a sequence of seasonally available fruit wastes as sustainable carbon sources. Frontiers in Bioengineering and Biotechnology, 12, Article 1447278. https://doi.org/10.3389/fbioe.2024.1447278

119. Stephen, J. M., Saleh, A. M. (2025). Strategic choices in bioprocessing of L(+) Lactic acid: Homo-fermentative Lactobacilli monocultures with novel agroresidue combination enhances economic production. Heliyon, 11(1), Article e41532. https://doi.org/10.1016/j.heliyon.2024.e41532

120. Tu, W.-L., Hsu, T.-C., Wang, C.-A., Guo, G.-L., Chao, Y. (2019). Using novel Lactobacillus plantarum to produce lactic acid from lignocellulosic biomass in an integrated simultaneous saccharification and fermentation process. BioResources, 14(2), 3873–3885. https://doi.org/10.15376/biores.14.2.3873-3885

121. Senedese, A. L. C., Maciel Filho, R., Maciel, M. R. W. (2015). L-Lactic Acid Production by Lactobacillus rhamnosus ATCC10863. The Scientific World Journal, 2015(1), Article 501029. https://doi.org/10.1155/2015/501029

122. Kylä-Nikkilä, K., Hujanen, M., Leisola, M., Palva, A. (2000). Metabolic engineering of Lactobacillus helveticus CNRZ32 for production of pure L-(+)-lactic acid. Applied and Environmental Microbiology, 66(9), 3835–3841. https://doi.org/10.1128/AEM.66.9.3835-3841.2000

123. Zhang, Y., Vadlani, P. V. (2015). Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum. Journal of Bioscience and Bioengineering, 119(6), 694–699. https://doi.org/10.1016/j.jbiosc.2014.10.027

124. Homma, H., Funaoka, Y., Kazuoka, T., Tokuda, H., Nakanishi, K. (2021). Preparation of high-optical-purity l-lactic acid from dl-lactate using optical isomer preferential lactic acid assimilating microorganisms. Food Preservation Science, 47(3), 153–159. https://doi.org/10.5891/jafps.47.153

125. Hu, C., Zhang, Y., Pang, X., Chen, X. (2024). Poly(Lactic Acid): Recent stereochemical advances and new materials engineering. Advanced Materials, 37(22), Article 2412185. https://doi.org/10.1002/adma.202412185

126. Bruno-Bárcena, J. M., Ragout, A. L., Córdoba, P. R., Siñeriz, F. (1999). Continuous production of l(+)-lactic acid by Lactobacillus casei in two-stage systems. Applied Microbiology and Biotechnology, 51(3), 316–324. https://doi.org/10.1007/s002530051397

127. Farrokh, A., Ehsani, M. R., Moayednia, N., Azizi Nezhad, R. (2018). Lactic acid fermentation of synbiotic cream: Effects on physicochemical characteristics and formation of L (+), and D (–)-lactic acid isomers. Applied Ecology and Environmental Research, 16(6), 7447–7466. https://doi.org/10.15666/aeer/1606_74477466

128. Bernardo, M. P., Coelho, L. F., de Lima, C. J. B., de Melo Rodovalho, C., de Oliveira, P.M., de Paula, F.C. et al. (2013). Isolation and characterization of bacterial producers of optically pure D(–) and L(+) lactic acid. African Journal of Microbiology Research, 7(21), 2618–2628. https://doi.org/10.5897/AJMR2013.5388

129. Wang, T., Liu, L., Li, P., Deng, T., Yue, S., Nie, J. et al. (2025). Optimization of fermentation conditions for production of D lactic acid with high optical purity by Lactobacillus delbrueckii HB49–2. Zhongguo Niangzao, 44(3), 203–207. https://doi.org/10.11882/j.issn.0254-5071.2025.03.030

130. Tashiro, Y., Kaneko, W., Sun, Y., Shibata, K., Inokuma, K., Zendo, T. et al. (2011). Continuous D lactic acid production by a novelthermotolerant Lactobacillus delbrueckii subsp. lactis QU41. Applied Microbiology and Biotechnology, 89(6), 1741–1750. https://doi.org/10.1007/s00253-010-3011-7

131. Srivastava, A. K., Tripathi, A. D., Jha, A., Poonia, A., Sharma, N. (2015). Production, optimization and characterization of lactic acid by Lactobacillus delbrueckii NCIM 2025 from utilizing agro-industrial byproduct (cane molasses). Journal of Food Science and Technology, 52(6), 3571–3578. https://doi.org/10.1007/s13197-014-1423-6

132. Beitel, S. M., Coelho, L. F., Contiero, J. (2020). Efficient conversion of agroindustrial waste into D(–) lactic acid by Lactobacillus delbrueckii using fed-batch fermentation. BioMed Research International, 2020, Article 4194052. https://doi.org/10.1155/2020/4194052

133. Karnaouri, A., Asimakopoulou, G., Kalogiannis, K. G., Lappas, A., Topakas, E. (2020). Efficient d-lactic acid production by Lactobacillus delbrueckii subsp. Bulgaricus through conversion of organosolv pretreated lignocellulosic biomass. Biomass and Bioenergy, 140, Article 105672. https://doi.org/10.1016/j.biombioe.2020.105672

134. Hao, P., Zheng, H., Yu, Y., Ding, G., Gu, W., Chen, S. et al. (2011). Complete sequencing and pan-genomic analysis of Lactobacillus delbrueckii subsp. bulgaricus reveal its genetic basis for industrial yogurt production. PLoS One, 6(1), Article e15964. https://doi.org/10.1371/journal.pone.0015964

135. Song, Y., Zhao, J., Liu, W., Li, W., Sun, Z., Cui, Y. et al. (2021). Exploring the industrial potential of Lactobacillus delbrueckii ssp. bulgaricus by population genomics and genome-wide association study analysis. Journal of Dairy Science, 104(4), 4044–4055. https://doi.org/10.3168/jds.2020-19467

136. Gao, H., Li, X., Chen, X., Hai, D., Wei, C., Zhang, L. et al. (2022). The functional roles of lactobacillus acidophilus in different physiological and pathological processes. Journal of Microbiology and Biotechnology, 32(10), 1226–1233. https://doi.org/10.4014/jmb.2205.05041

137. Schmitt, J. D., de Fariña, L. O., Simões, M., Kottwitz, L. B. M. (2018). Evaluation of the probiotic profile of the Lactobacillus acidophilus used in pharmaceutical and food applications. Acta Scientiarum. Health Sciences, 40, Article 36664. https://doi.org/10.4025/actascihealthsci.v40i1.36664

138. Buriti, F. C. A., Saad, S. M. I. (2007). Bacteria of Lactobacillus casei group: Characterization, viability as probiotic in food products and their importance for human health. Archivos Latinoamericanos De Nutricion, 57(4), 373–380. (In Portuguese)

139. Hosseini Nezhad, M., Hussain, M. A., Britz, M. L. (2015). Stress responses in probiotic Lactobacillus casei. Critical Reviews in Food Science and Nutrition, 55(6), 740–749. https://doi.org/10.1080/10408398.2012.675601

140. Arakawa, K., Kawai, Y., Fujitani, K., Nishimura, J., Kitazawa, H., Komine, K. -i. et al. (2008). Bacteriocin production of probiotic Lactobacillus gasseri LA39 isolated from human feces in milk-based media. Animal Science Journal, 79(5), 634–640. https://doi.org/10.1111/j.1740–0929.2008.00574.x

141. Daliu, P., Souto, E. B., Santini, A. (2025). Novel applications of Lactobacillus in the food industry. Journal of Asian Scientific Research, 15(1), 111–121. https://doi.org/10.55493/5003.v15i1.5333

142. Anumudu, C. K., Miri, T., Onyeaka, H. (2024). Multifunctional applications of lactic acid bacteria: Enhancing safety, quality, and nutritional value in foods and fermented beverages. Foods, 13(23), Article 3714. https://doi.org/10.3390/foods13233714

143. Shah, A. B., Baiseitova, A., Zahoor, M., Ahmad, I., Ikram, M., Bakhsh, A. et al. M. (2024). Probiotic significance of Lactobacillus strains: A comprehensive review on health impacts, research gaps, and future prospects. Gut Microbes, 16(1), Article 2431643. https://doi.org/10.1080/19490976.2024.2431643

144. Liu, R. (2024). A promising area of research in medicine: Recent advances in properties and applications of Lactobacillus-derived exosomes. Frontiers in Microbiology, 15, Article 1266510. https://doi.org/10.3389/fmicb.2024.1266510

145. Baral, K. C., Bajracharya, R., Lee, S. H., Han, H.-K. (2021). Advancements in the pharmaceutical applications of probiotics: Dosage forms and formulation technology. International Journal of Nanomedicine, 16, 7535–7556. https://doi.org/10.2147/IJN.S337427

146. Spangler, J. R., Caruana, J. C., Medintz, I. L., Walper, S. A. (2021). Harnessing the potential of Lactobacillus species for therapeutic delivery at the lumenal-mucosal interface. Future Science OA, 7(4), Article FSO671. https://doi.org/10.2144/fsoa-2020-0153

147. Bron, P. A., Kleerebezem, M. (2018). Lactic acid bacteria for delivery of endogenous or engineered therapeutic molecules. Frontiers in Microbiology, 9, Article 1821. https://doi.org/10.3389/fmicb.2018.01821

148. Mu, Y., Zhang, C., Li, T., Jin, F.-J., Sung, Y.-J., Oh, H.-M. et al. (2022). Development and applications of CRISPR/Cas9-based genome editing in Lactobacillus. International Journal of Molecular Sciences, 23(21), Article 12852. https://doi.org/10.3390/ijms232112852

149. Papagianni, M. (2012). Metabolic engineering of lactic acid bacteria for the production of industrially important compounds. Computational and Structural Biotechnology Journal, 3(4), Article e201210003. https://doi.org/10.5936/csbj.201210003


Review

For citations:


Belenko A.A., Putilov V.E., Nepomnyashchiy A.P., Prichepa A.O., Semenova A.A., Sitnov V.Yu., Sorokina N.P. Core strategies of lactic acid biosynthesis in key Lactobacillaceae species: Phylogenetic patterns, metabolic pathways, and genetic regulation. Food systems. 2025;8(4):541-554. (In Russ.) https://doi.org/10.21323/2618-9771-2025-8-4-541-554

Views: 31

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)