Chaenomeles: А promising functional product for the food and pharmaceutical industries
https://doi.org/10.21323/2618-9771-2025-8-4-533-540
Abstract
In light of the deteriorating environmental situation, the search for phytogenic resources with radioprotective and antioxidant properties has become increasingly relevant for the food industry. Certain fruit crops are rich sources of biologically active compounds (BACs). The plants of particular interest are those that accumulate these compounds not only in their fruit, but also in other parts such as seeds and leaves. Representatives of the genus Chaenomeles Lindl. may represent a promising crop for agriculture, the food and pharmaceutical industries in Russia. Although Chaenomeles is mainly cultivated for its fruit production, there are other potential applications that are worth noting. This review examines the biological characteristics, breeding, and biochemical composition of different parts of Chaenomeles species. The most suitable species for cultivation in the Russian Federation include C. japonica, C. speciosa, C. × superba, and C. cathayensis. The paper provides an overview of Chaenomeles cultivars developed by major Russian breeding centers, such as the Nikitsky Botanical Gardens — National Scientific Center (NBS-NSC) and Michurinsk State Agrarian University. Both domestic and international studies on the biochemical composition of Chaenomeles fruits, leaves, and seeds are analyzed. The content of major antioxidant compounds (vitamin C and polyphenols), as well as other bioactive substances, in various plant parts is described. According to literature data, the highest vitamin C concentrations are found in the fruits of C. speciosa and С. cathayensis. All parts of the plant contain chlorogenic acid and polyphenols in varying concentrations. Among the studied species, C. japonica and C. speciosa are the most thoroughly investigated, whereas C. cathayensis remains insufficiently studied.
About the Authors
E. N. Raeva-BogoslovskayaRussian Federation
Ekaterina N. Raeva-Bogoslovskaya, Researcher, Laboratory of Plant Biotechnology
4, Botanicheskaya str., Moscow, 127276
O. I. Molkanova
Russian Federation
Olga I. Molkanova, Candidate of Technical Sciences, Leading Researcher, Head of the Laboratory of Plant Biotechnology
4, Botanicheskaya str., Moscow, 127276
I. I. Krakhmaleva
Russian Federation
Irina L. Krakhmaleva, Researcher, Laboratory of Plant Biotechnology
4, Botanicheskaya str., Moscow, 127276
O. A. Kuznetsova
Russian Federation
Oksana A. Kuznecova, Doctor of Technical Sciences, Director
26, Talalikhin str., 109316, Moscow
D. A. Utyanov
Russian Federation
Dmitry A. Utyanov, Candidate of Technical Sciences, Researcher, Laboratory of Scientific and Methodical Work, Biological and Analytical Research, V. M. Gorbatov Federal Research Center for Food Systems
26, Talalikhin str., 109316, Moscow
I. V. Mitrofanova
Russian Federation
Irina V. Mitrofanova, Corresponded Member of the Russian Academy of Sciences, Doctor of Biological Sciences, Chief Researcher, Head of Plant Experimental Biology and Pathology Department
4, Botanicheskaya str., Moscow, 127276
References
1. Halliwell, B., Rafter, J., Jenner, A. (2005). Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: Direct or indirect effects? Antioxidant or not? The American Journal of Clinical Nutrition, 81(1), 268S 276S. https://doi.org/10.1093/ajcn/81.1.268S
2. Essa, M. M., Bishir, M., Bhat, A., Chidambaram, S. B., Al-Balushi, B., Hamdan, H. et al. (2023). Functional foods and their impact on health. Journal of Food Science and Technology, 60(3), 820–834. https://doi.org/10.1007/s13197-021-05193-3
3. Menshchikova, E. B., Lankin, V. Z., Kandalintseva, N. V. (2012). Phenolic antioxidants in biology and medicine. Structure, properties, mechanisms of action. Saarbrücken: LAP LAMBERT Academic Publishing, 2012. (In Russian)
4. Lesnikova, N. A., Protasova, L. G., Kokoreva, L. A., Pishchikov, G. B. (2019). Prospects for the use of non-traditional vegetable raw materials for the creation of new food products. Proceedings of the Voronezh State University of Engineering Technologies, 81(4), 89–97. (In Russian) http://doi.org/10.20914/2310-1202-2019-4-89-97
5. Borisova, A. V., Shayarova, M. V., Shishkina, N. Yu. (2021). Functional food products: The relationship between the theory, the production and a consumer. New Technologies, 17(1), 21–32. (In Russian) https://doi.org/10.47370/2072-0920-2021-17-1-21-32
6. Zhbanova, E. V., Zhidekhina, T. V., Akimov, M. Yu., Rodyukova, O. S., Khromov, N. V., Gur’eva, I. V. (2021). The fruits varieties of berry-like and nontraditional horticultural crops grown in Black Soil zone are the valuable sources of indispensable micronutrients. Food Industry, 3, 8–11. (In Russian) https://doi.org/10.24412/0235-2486-2021-3-0020
7. Bastias, J. M., Cepero, Y. (2016). La vitamina C como un eficaz micronutriente en la fortificación de alimentos. Revista Chilena de Nutrición, 43(1), 81–86. [Bastias, J. M., Cepero, Y. (2016). Vitamin C as an effective micronutrient in the food fortification. Revista Chilena de Nutrición, 43(1), 81–86. (In Spanish) https://doi.org/10.4067/S0717-75182016000100012
8. Seeram, N. P. (2008). Berry fruits: Compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. Journal of Agricultural and Food Chemistry, 56(3), 627–629. https://doi.org/10.1021/jf071988k
9. Akimov, M. Yu., Makarov, V. N., Zhbanova, E. V. (2019). Role of fruits and berries in providing human with vital biologically active substances. Achievements of Science and Technology in Agro-Industrial Complex, 33(2), 56–60. (In Russian) https://doi.org/10.24411/0235-2451-2019-10214
10. Vinnitskaya, V. F., Solomatina, E. A., Kruglov, N. M., Palfitov, V. F. (2020). Investigation of the content of biologically active substances in the leaves of fruit crops and plant extracts based on them. Technologies of the Food and Processing Industry of the Agro-Industrial Complex-Healthy Food Products, 2, 115–121. (In Russian) https://doi.org/10.24411/2311-6447-2020-10050
11. Berezina, N. A., Khmeleva, E. V. (2023). Analysis of the current state of application of secondary plant raw materials in the food industry. Bakery of Russia, 67(1), 17–33. (In Russian)
12. Kostecka-Gugała, A. (2024) Quinces (Cydonia oblonga, Chaenomeles sp., and Pseudocydonia sinensis) as medicinal fruits of the Rosaceae family: Current state of knowledge on properties and use. Antioxidants, 13(1), Article 71. https://doi.org/10.3390/antiox13010071
13. Marat, N., Danowska-Oziewicz, M., Narwojsz, A. (2022). Chaenomeles species — characteristics of plant, fruit and processed products: A review. Plants, 11(22), Article 3036. https://doi.org/10.3390/plants11223036
14. Strugała, P., Cyboran-Mikołajczyk, S., Dudra, A., Mizgier, P., Kucharska, A. Z., Olejniczak, T. et al. (2016). Biological activity of Japanese quince extract and its interactions with lipids, erythrocyte membrane, and human albumin. The Journal of Membrane Biology, 249(3), 393–410. https://doi.org/10.1007/s00232-016-9877-2
15. Han, Y.-K., Kim, Y.-S., Natarajan, S.B., Kim, W.-S., Hwang, J.-W., Jeon, N.-J. et al. (2016). Antioxidant and anti-inflammatory effects of Chaenomeles sinensis leaf extracts on LPS stimulated RAW 264.7 cells. Molecules, 21(4), Article 422. https://doi.org/10.3390/molecules21040422
16. Suh, W. S., Park, K. J., Kim, D. H., Subedi, L., Kim, S. Y., Choi, S. U. et al. (2017). A biphenyl derivative from the twigs of Chaenomeles speciosa. Bioorganic Chemistry, 72, 156–160. https://doi.org/10.1016/j.bioorg.2017.04.003
17. Zhang, S.-Y., Han, L.-Y., Zhang, H., Xin, H.-L. (2014). Chaenomeles speciosa: A review of chemistry and pharmacology. Biomedical Reports, 2(1), 12–18. https://doi.org/10.3892/br.2013.193
18. Ma, B., Wang, J., Tong, J., Zhou, G., Chen, Y., He, J. et al. (2016). Protective effects of Chaenomeles thibetica extract against carbon tetrachloride-induced damage via the MAPK/Nrf2 pathway. Food and Function, 7(3), 1492–1500. https://doi.org/10.1039/c5fo01430a
19. Baranowska-Bosiacka, I., Bosiacka, B., Rast, J., Gutowska, I., Wolska, J., RębaczMaron, E. et al. (2017). Macro-and microelement content and other properties of Chaenomeles japonica L. fruit and protective effects of its aqueous extract on hepatocyte metabolism. Biological Trace Element Research, 178(2), 327–337. https://doi.org/10.1007/s12011-017-0931-4
20. Zakłos-Szyda, M., Pawlik, N. (2018). Japanese quince (Chaenomeles japonica L.) fruit polyphenolic extract modulates carbohydrate metabolism in HepG2 cells via AMP activated protein kinase. Acta Biochimica Polonica, 65(1), 67–78. https://doi.org/10.18388/abp.2017_1604
21. Watychowicz, K., Janda, K., Jakubczyk, K., Wolska, J. (2017). Chaenomeles — health promoting benefits. Roczniki Państwowego Zakładu Higieny, 68(3), 217–227.
22. Lācis, G., Kārkliņa, K., Bartulsons, T., Kaufmane, E. (2024). Intergeneric transfer of simple sequence repeat molecular markers for the study of Chaenomeles as fruit crop breeding material. Horticulturae, 10(11), Article 1233. https://doi.org/10.3390/horticulturae10111233
23. Rumpunen, K., Kviklys, D., Kaufmane, E. Garkava, L. (1998). Breeding Chaenomeles — A new aromatic fruit crop. Acta Horticulturae, Article 484, 211–216. https://doi.org/10.17660/ActaHortic.1998.484.3
24. Bartish, I. V., Garkava, L. P., Rumpunen, K., Nybom, H. (2000). Phylogenetic relationships and differentiation among and within populations of Chaenomeles Lindl. (Rosaceae) estimated with RAPDs and isozymes. Theoretical and Applied Genetics, 101(4), 554–563. https://doi.org/10.1007/s001220051515
25. Kaufmane, E., Ruisa, S. (2020). Breeding of new cultivars of the fruit crop Japanese quince (Chaenomeles japonica) in Latvia. Acta Horticulturae, 1281, 51–58. https://doi.org/10.17660/ActaHortic.2020.1281.9
26. Sun, J., Wang, Y., Liu, Y., Xu, C., Yuan, Q., Guo, L. et al. (2020). Evolutionary and phylogenetic aspects of the chloroplast genome of Chaenomeles species. Scientific Reports, 10(1), Article 11466. https://doi.org/10.1038/s41598-020-67943-1
27. Klimenko, S. V, Nedviga, O. M. (1999). Flowering quince: Introduction, present condition and prospects of the culture. Plant Introduction, 3–4, 125–134. (In Russian)
28. Khromykh, N., Lykholat, Y., Shupranova, L., Kabar, A., Didur, O., Lykholat, T. et al. (2018). Interspecific differences of antioxidant ability of introduced Chaenomeles species with respect to adaptation to the steppe zone conditions. Biosystems Diversity, 26(2), 132–138. https://doi.org/10.15421/011821
29. Mezhenskyj, V. M. (2010). The pomological value of Japanese Quinces ornamental cultivars. Contemporary Horticulture, 1, 25–28. (In Russian)
30. Pigul, M. L., Shalkevich, M. S., Ostapchuk, I. N. (2022). Biochemical composition of Chaenomeles japonica fruits (Chaenomeles japonica (Thunb.) Lindl. ex Spach) in the conditions of Belarus Frui Growing, 34(1), 43–47. (In Russian) https://doi.org/10.47612/0134-9759-2022-34-43-47
31. Rumpunen K. (2022). Chaenomeles: Potential new fruit crop for northern Europe. Chapter in a book: Trends in New Crops and New Uses. Alexandria: ASHS Press. 2002.
32. Kuklina, A. G., Komar-Tyomnaya, L.D., Fedulova, Ju. A. (2020). Assessment of new Russian Chaenomeles Lindl. Cultivars. Bulletin of the Central Botanical Garden, 1, 46–56. (In Russian)
33. Federal State Budgetary Institution “Gossortkommission”. Catalog of breeding achievements. Retrieved from https://gossortrf.ru/activity/#activityregistry. Accessed October 29, 2025 (In Russian)
34. Pilkevitch, R. A., Komar-Tyоmnaya, L. D. (2015). Water regime dynamics of Chaenomeles in the South of Crimea. Works of the State Nikita Botanical Garden, 140, 195–205. (In Russian)
35. Weber, C. (1964). The genus Chaenomeles (Rosaceae). Journal of the Arnold Arboretum, 45(3), 161–205.
36. Thomas, M., Guillemin, F., Guillon, F., Thibault, J.-F. (2003). Pectins in the fruits of Japanese quince (Chaenomeles japonica). Carbohydrate Polymers, 53(4), 361– 372. https://doi.org/10.1016/S0144-8617(03)00118-8
37. Seglina, D., Krasnova, I., Heidemane, G., Ruisa, S. (2009). Influence of drying technology on the quality of dried candied Chaenomeles japonica during storage. Latvian Journal of Agronomy/Agronomija Vestis, 12, 113–118.
38. Strelets, V. D., Filatova, A. A. (2011). Fruit yield and quality of the promising forms of flowering quince (Chaenomeles maulei) in the Moscow region. Plodorodie, 2(59), 44–45. (In Russian)
39. Bieniasz, M., Dziedzic, E., Kaczmarczyk, E. (2017). The effect of storage and processing on vitamin C content in Japanese quince fruit. Folia Horticulturae, 29(1), 83–93. https://doi.org/10.1515/fhort-2017-0009
40. Urbanavičiūtė, I., Liaudanskas, M., Bobinas, Č., Šarkinas, A., Rezgienė, A., Viskelis, P. (2020). Japanese quince (Chaenomeles japonica) as a potential source of phenols: Optimization of the extraction parameters and assessment of antiradical and antimicrobial activities. Foods, 9(8), Article 1132. https://doi.org/10.3390/foods9081132
41. Zvikas, V., Urbanaviciute, I., Bernotiene, R., Kulakauskiene, D., Morkunaite, U., Balion, Z. et al. (2020). Investigation of phenolic composition and anticancer properties of ethanolic extracts of Japanese quince leaves. Foods, 10(1), Article 18. https://doi.org/10.3390/foods10010018
42. Fedulova, Yu. A., Kuklina, A. G., Koltsov, V. A. (2024). Characteristics of Chaenomeles varieties according to the content of biologically active phenolic compounds in fruits. The Bulletin of Michurinsk State Agrarian University, 2(77), 24–28. (In Russian)
43. Lewandowska, U., Szewczyk, K., Owczarek, K., Hrabec, Z., Podsędek, A., Koziołkiewicz, M. et al. (2013). Flavanols from Japanese quince (Chaenomeles japonica) fruit inhibit human prostate and breast cancer cell line invasiveness and cause favorable changes in Bax/Bcl 2 mRNA ratio. Nutrition and Cancer, 65(2), 273–285. https://doi.org/10.1080/01635581.2013.749292
44. Gorlach, S., Wagner, W., Podsędek, A., Szewczyk, K., Koziołkiewicz, M., Dastych, J. (2011). Procyanidins from Japanese quince (Chaenomeles japonica) fruit induce apoptosis in human colon cancer Caco 2 cells in a degree of polymerization-dependent manner. Nutrition and Cancer, 63(8), 1348–1360. https://doi.org/10.1080/01635581.2011.608480
45. Owczarek, K., Hrabec, E., Fichna, J., Sosnowska, D., Koziołkiewicz, M., Szymański, J. et al. (2017). Flavanols from Japanese quince (Chaenomeles japonica) fruit suppress expression of cyclooxygenase 2, metalloproteinase 9, and nuclear factorkappaB in human colon cancer cells. Acta Biochimica Polonica, 64(3), 567–576. https://doi.org/10.18388/abp.2017_1599
46. Ros, J. M., Laencina, J., Hellın, P., Jordan, M. J., Vila, R., Rumpunen, K. (2004). Characterization of juice in fruits of different Chaenomeles species. LWT-Food Science and Technology, 37(3), 301–307. https://doi.org/10.1016/j.lwt.2003.09.005
47. Hellín, P., Vila, R., Jordán, M. J., Laencina, J., Rumpunen, K., Ros, J. M. (2003). Characteristics and composition of Chaenomeles fruit juice. Chapter in a book: Japanese Quince — Potential Fruit Crop for Northern Europe. Alnarp: Swedish University of Agricultural Sciences, 2003.
48. Du, H., Wu, J., Li, H., Zhong, P.-X., Xu, Y.-J., Li, C.-H. et al. (2013). Polyphenols and triterpenes from Chaenomeles fruits: Chemical analysis and antioxidant activities assessment. Food Chemistry, 141(4), 4260–4268. https://doi.org/10.1016/j.foodchem.2013.06.109
49. Lykholat, Y. V., Khromykh, N. O., Didur, O. O., Sklyar, T. V., Holubieva, T. A., Lykholat, T. Y. et al. (2021). GC–MS analysis of cuticular waxes and evaluation of antioxidant and antimicrobial activity of Chaenomeles cathayensis and Ch.× californica fruits. Regulatory Mechanisms in Biosystems, 12(4), 718–723. https://doi.org/10.15421/022199
50. Komar-Tyomnaya, L. D., Paly, A. E. (September, 16–18, 2015). Strategy of Chaenomeles selection on the chemical composition of fruits. Book of abstracts III Balkan Symposium on Fruit Growing, Belgrade, Serbia, 2015.
51. Byczkiewicz, S., Szwajgier, D., Cisowska, J. K., Szczepaniak, O., Szulc, P. (2021). Comparative examination of bioactive phytochemicals in quince (Chaenomeles) fruits and their in vitro antioxidant activity. Emirates Journal of Food and Agriculture, 33(4), 293–302. https://doi.org/10.9755/ejfa.2021.v33.i4.2667
52. Ponder, A., Hallmann, E. (2017). Comparative evaluation of the nutritional value and the content of bioactive compounds in the fruit of individual species of chaenomeles and quince. World Scientific News, 2(73), 101–108.
53. Turkiewicz, I. P., Wojdyło, A., Tkacz, K., Nowicka, P., Golis, T., Bąbelewski, P. (2020). ABTS On-line antioxidant, α-amylase, α-glucosidase, pancreatic lipase, acetyl-and butyrylcholinesterase inhibition activity of Chaenomeles fruits determined by polyphenols and other chemical compounds. Antioxidants, 9(1), Article 60. https://doi.org/10.3390/antiox9010060
54. Strek, M., Gorlach, S., Podsedek, A., Sosnowska, D., Koziolkiewicz, M., Hrabec, Z. et al. (2007). Procyanidin oligomers from Japanese quince (Chaenomeles japonica) fruit inhibit activity of MMP 2 and MMP 9 metalloproteinases. Journal of Agricultural and Food Chemistry, 55(16), 6447–6452. https://doi.org/10.1021/jf070621c
55. Kikowska, M., Włodarczyk, A., Rewers, M., Sliwinska, E., Studzińska-Sroka, E., Witkowska-Banaszczak, E. et al. (2019). Micropropagation of Chaenomeles japonica: A step towards production of polyphenol-rich extracts showing antioxidant and antimicrobial activities. Molecules, 24(7), Article 1314. https://doi.org/10.3390/molecules24071314
56. Teleszko, M., Wojdyło, A. (2015). Comparison of phenolic compounds and antioxidant potential between selected edible fruits and their leaves. Journal of Functional Foods, 14, 736–746. https://doi.org/10.1016/j.jff.2015.02.041
57. Chojnacka, K., Sosnowska, D., Polka, D., Owczarek, K., Gorlach-Lira, K., Oliveira De Verasa, B. et al. (2020). Comparison of phenolic compounds, antioxidant and cytotoxic activity of extracts prepared from Japanese quince (Chaenomeles japonica L.) leaves. Journal of Physiology and Pharmacology, 71(2), 213–222. http://doi.org/10.26402/jpp.2020.2.05
58. Efenberger-Szmechtyk, M., Nowak, A., Czyżowska, A., Kucharska, A. Z., Fecka, I. (2020). Composition and antibacterial activity of Aronia melanocarpa (Michx.) Elliot, Cornus mas L. and Chaenomeles superba Lindl. leaf extracts. Molecules, 25(9), Article 2011. https://doi.org/10.3390/molecules25092011
59. Didur, O. O., Khromykh, N. O., Drehval, O. A., Sklyar, T. V., Dzhagan, V. M., Mazur, N. V. et al. (2024). Influence of silver nanoparticles synthesized from Chaenomeles leaf extracts on pathogenic microorganisms Klebsiella pneumoniae, Staphylococcus aureus, and Fusarium culmorum. Biosystems Diversity, 32(3), 380– 388. https://doi.org/10.15421/012441
60. Mierina, I., Serzanel, R., Strele, M., Moskaluka, J., Ivdre, E., Jure, M. (2013). Investigation of the oil and meal of Japanese quince (Chaenomeles japonica) seeds. Proceedings of the Latvian Academy of Sciences. Section B, 67(4/5)(685/686)), 405– 410. https://doi.org/10.2478/prolas-2013-0071
61. Górna, P., Pugajeva, I., Seglia, D. (2014). Seeds recovered from by-products of selected fruit processing as a rich source of tocochromanols: RP-HPLC/FLD and RP-UPLC-ESI/MSn study. European Food Research and Technology, 239(3), 519– 524. https://doi.org/10.1007/s00217-014-2247-3
62. Sipeniece, E., Mišina, I., Grygier, A., Qian, Y., Rudzińska, M., Kaufmane, E. et al. (2021). Impact of the harvest year of three cultivars of Japanese quince (Chaenomeles japonica) on the oil content and its composition. Scientia Horticulturae, 275, Article 109683. https://doi.org/10.1016/j.scienta.2020.109683
63. Turkiewicz, I. P., Wojdyło, A., Tkacz, K., Nowicka, P. (2021). Comprehensive characterization of Chaenomeles seeds as a potential source of nutritional and biologically active compounds. Journal of Food Composition and Analysis, 102, Article 104065. https://doi.org/10.1016/j.jfca.2021.104065
64. Voitkevich, S. A. (1994). 865 scented substances for perfumery and household chemicals. Moscow: Food industry, 1994. (In Russian)
65. Zhang, R., Li, Sh., Zhu, Zh., He, J. (2019). Recent advances in valorization of Chaenomeles fruit: A review of botanical profile, phytochemistry, advanced extraction technologies and bioactivities. Trends in Food Science and Technology, 91, 467–482. https://doi.org/10.1016/j.tifs.2019.07.012
66. Wang, L., Liu, H.-M., Xie, A.-J., Wang, X.-D., Zhu, C.-Y., Qin, G.-Y. (2018). Chinese quince (Chaenomeles sinensis) seed gum: Structural characterization. Food Hydrocolloids, 75, 237–245. https://doi.org/10.1016/j.foodhyd.2017.08.001
67. Turkiewicz, I. P., Wojdyło, A., Tkacz, K., Lech, K., Michalska-Ciechanowska, A., Nowicka, P. (2020). The influence of different carrier agents and drying techniques on physical and chemical characterization of Japanese quince (Chaenomeles japonica) microencapsulation powder. Food Chemistry, 323, Article 126830. https://doi.org/10.1016/j.foodchem.2020.126830
68. Turkiewicz, I. P., Tkacz, K., Nowicka, P., Michalska-Ciechanowska, A., Lech, K., Wojdyło, A. (2021). Physicochemical characterization and biological potential of Japanese quince polyphenol extract treated by different drying techniques. LWT, 152, Article 112247. https://doi.org/10.1016/j.lwt.2021.112247
69. Ben-Othman, S., Bleive, U., Kaldmäe, H., Aluvee, A., Rätsep, R., Karp, K. et al. (2023). Phytochemical characterization of oil and protein fractions isolated from Japanese quince (Chaenomeles japonica) wine by-product. LWT, 178, Article 114632. https://doi.org/10.1016/j.lwt.2023.114632
70. Hendrich, A. B., Strugała, P., Dudra, A., Kucharska, A. Z., Sokół-Łętowska, A., Wojnicz, D. et al. (2020). Microbiological, antioxidant and lipoxygenase 1 inhibitory activities of fruit extracts of chosen Rosaceae family species. Advances in Clinical and Experimental Medicine, 29(2), 215–224. https://doi.org/10.17219/acem/115086
71. Urbanavičiūtė, I., Viškelis, P. (2022) Biochemical composition of Japanese quince (Chaenomeles japonica) and its promising value for food, cosmetic, and pharmaceutical industries. Chapter in a book: Fruit Industry. IntechOpen, 2022. https://doi.org/10.5772/intechopen.102361
72. Urbanavičiūtė, I., Rubinskiene, M., Viškelis, P. (2019). The fatty acid composition and quality of oils from post-industrial waste of quince Chaenomeles japonica. Chemistry and Biodiversity, 16(9), Article e1900352. https://doi.org/10.1002/cbdv.201900352
73. Mierina, I., Serzane, R, Strele, M., Moskaluka, Ju., Seglina, D., Jure, M. (May 5–6, 2011.). Extracts of Japanese quince seeds-potential source of antioxidants. 6th Conference Proceedings of 6th Baltic Conference on Food Science and Technology: Innovations for Food Science and Production (FOODBALT 2011). Jelgava, Latvia, 2011.
74. Górnaś, P., Siger, A., Juhņeviča, K., Lācis, G., Šnē, E., Segliņa, D. (2014). Coldpressed Japanese quince (Chaenomeles japonica (Thunb.) Lindl. ex Spach) seed oil as a rich source of α-tocopherol, carotenoids and phenolics: A comparison of the composition and antioxidant activity with nine other plant oils. European Journal of Lipid Science and Technology, 116(5), 563–570. https://doi.org/10.1002/ejlt.201300425
75. McCusker, M. M., Grant-Kels MD, J. M. (2010). Healing fats of the skin: The structural and immunologic roles of the ω 6 and ω 3 fatty acids. Clinics in Dermatology, 28(4), 440–451. https://doi.org/10.1016/j.clindermatol.2010.03.020
76. Górnaś, P., Siger, A., Rudzińska, M., Grygier, A., Marszałkiewicz, S., Ying, Q., et al. (2019). Impact of the extraction technique and genotype on the oil yield and composition of lipophilic compounds in the oil recovered from Japanese quince (Chaenomeles japonica) seeds. European Journal of Lipid Science and Technology, 121(1), Article 1800262. https://doi.org/10.1002/ejlt.201800262
77. Ghafourian, M., Tamri, P., Hemmati, A. (2015). Enhancement of human skin fibroblasts proliferation as a result of treating with quince seed mucilage. Jundishapur Journal of Natural Pharmaceutical Products, 10(1), Article e18820. https://doi.org/10.17795/jjnpp-18820
78. Kawahara, T., Tsutsui, K., Nakanishi, E., Inoue, T., Hamauzu, Y. (2017). Effect of the topical application of an ethanol extract of quince seeds on the development of atopic dermatitis-like symptoms in NC/Nga mice. BMC Complementary and Alternative Medicine, 17(1), Article 80. https://doi.org/10.1186/s12906-017-1606-6
79. Kirtil, E., Oztop, M. H. (2016). Characterization of emulsion stabilization properties of quince seed extract as a new source of hydrocolloid. Food Research International, 85, 84–94. https://doi.org/10.1016/j.foodres.2016.04.019
80. Itoh, S., Yamaguchi, M., Shigeyama, K., Sakaguchi, I. (2019). The anti-aging potential of extracts from Chaenomeles sinensis. Cosmetics, 6(1), Article 21. https://doi.org/10.3390/cosmetics6010021
Review
For citations:
Raeva-Bogoslovskaya E.N., Molkanova O.I., Krakhmaleva I.I., Kuznetsova O.A., Utyanov D.A., Mitrofanova I.V. Chaenomeles: А promising functional product for the food and pharmaceutical industries. Food systems. 2025;8(4):533-540. (In Russ.) https://doi.org/10.21323/2618-9771-2025-8-4-533-540
JATS XML
























