Preview

Food systems

Advanced search

DNA authentication technologies for product quality monitoring in the wine industry

https://doi.org/10.21323/2618-9771-2020-3-4-11-14

Full Text:

Abstract

Identification of wine product authenticity is a topical question in theRussian Federation. A solution to this problem can be DNA authentication of wines, which is a technological process of product authenticity control using genetic identification of the main plant ingredient — wine grape varieties. This type of wine verification is carried out by analyzing residual amounts of Vitis vinifera L. nucleic acids extracted from cell debris of final products by molecular genetic methods. The aim of this work is the analysis of the existing methods for extraction of nucleic acids from grapes, wine raw materials and commercial wines, as well as description of the molecular genetic approaches to technical genetic identification of grape varieties and authentication of wines made from them. The obtained data suggest suitability of DNA authentication of wine products as a supplement to earlier approved analytical methods (documentary, visual, sensory, physico-chemical).

About the Authors

E. G. Lazareva
V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences
Russian Federation

Ekaterina G. Lazareva — Junior research scientist, Laboratory of Molecular Biology and Bioinformatic

109316, Moscow, Talalikhina str., 26.



Kh. Kh. Gilmanov
V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences
Russian Federation

Khamid Kh. Gilmanov — Candidate of biological sciences, Staff Scientist, Laboratory of Molecular Biology and Bioinformatics

109316, Moscow, Talalikhina str., 26.



A. V. Bigaeva
V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences
Russian Federation

Alana V. Bigaeva — Staff Scientist, Laboratory of Molecular Biology and Bioinformatics

109316, Moscow, Talalikhina str., 26.



I. Yu. Mikhailova
All-Russian Scientific Research Institute of the Brewing, Non-Alcoholic and Wine Industry — Branch of the V. M. Gorbatov Federal Research Center for Food Systems of RAS
Russian Federation

Irina Yu.  Mikhailova — Scientist, Interdisciplinary  scientific and  technical center  of food  quality monitoring

119021, Moscow, Rossolimo str., 7.



V. K. Semipyatny
All-Russian Scientific Research Institute of the Brewing, Non-Alcoholic and Wine Industry — Branch of the V. M. Gorbatov Federal Research Center for Food Systems of RAS
Russian Federation

Vladislav K. Semipyatny — Candidate of technical sciences, Senior research scientist, Interdisciplinary scientific and technical center of food quality monitoring

119021, Moscow, Rossolimo str., 7.



R. R. Vafin
All-Russian Scientific Research Institute of the Brewing, Non-Alcoholic and Wine Industry — Branch of the V. M. Gorbatov Federal Research Center for Food Systems of RAS
Russian Federation

Ramil R. Vafin — Doctor of Biological Sciences, Professor of RAS, leading scientistсt, Interdisciplinary scientific and technical center of food quality monitoring

119021, Moscow, Rossolimo str., 7.



References

1. Oganesyants, L.A., Khurshudyan, S.A., Galstyan, A.G. (2018). Food quality monitoring as the basic strategic element. Production Quality Control, 4, 56–59. (In Russian)

2. Parkhomenko, A.I. (2016). Identification and detection of wine falsifications for customs purposes. Education and Science Without Borders: Social Sciences and Humanities, 3, 298–301. (In Russian)

3. Oganesyants, L.A., Vafin, R.R., Galstyan, A.G., Semipyatniy, V.K., Khurshudyan, S.A., Ryabova, A.E. (2018). Prospects for DNA authentication in wine production monitoring. Foods and Raw Materials. 6(2), 438– 448. https://doi.org/10.21603/2308–4057–2018–2–438–448

4. Pereira, L., Guedes-Pinto, H., Martins-Lopes, P. (2011). An enhanced method for vitis vinifera L. DNA extraction from wines. American Journal of Enology and Viticulture, 62(4), 547–552. https://doi.org/10.5344/ajev.2011.10022

5. Savazzini, F., Martinelli, L. (2006). Development of methods for enhanced extraction and real-time polymerase chain reaction quantification. Analytica Chimica Acta, 536(1–2), 274–282. https://doi.org/10.1016/j.aca.2005.10.078

6. Nakamura, S., Haraguchi, K., Mitani, N., Ohtsubo, K. (2007). Novel preparation method of template DNAs from wine for PCR to differentiate grape (Vitis vinifera L.) cultivar. Journal of Agricultural and Food Chemistry, 55(25), 10388–10395. https://doi.org/10.1021/jf072407u

7. Catalano, V., Moreno-Sanz, P., Lorenzi, S., Grando, M.S. (2016). Experimental Review of DNA-Based Methods for Wine Traceability and Development of a Single-Nucleotide Polymorphism (SNP) Genotyping Assay for Quantitative Varietal Authentication. Journal of Agricultural and Food Chemistry, 64(37), 6969–6984. https://doi.org/10.1021/acs.jafc.6b02560

8. Thomas, M.R., Scott, N.S. (1993). Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence-tagged sites (STSs). Theoretical and Applied Genetics, 86(8), 985–990. https://doi.org/10.1007/BF00211051

9. Bowers, J.E., Dangl, G.S., Vignani, R., Meredith, C.P. (1996). Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome, 39(4), 628–633. https://doi.org/10.1139/g96–080

10. Sefc, K.M., Regner, F., Turetschek, E., Glössl, J., Steinkellner, H. (1999). Identification of microsatellite sequences in Vitis riparia and their applicability for genotyping of different Vitis species. Genome, 42(3), 367–373. https://doi.org/10.1139/g98–168

11. Maul, E., Töpfer, R., Carka, F., Cornea, V., Crespan, M., Dallakyan, M., de Andrés Domínguez, T., de Lorenzis, G., Dejeu, L., Goryslavets, S., Grando, S., Hovannisyan, N., Hudcovicova, M., Hvarleva, T., Ibáñez, J., Kiss, E., Kocsis, L., Lacombe, T., Laucou, V., Maghradze, D., Maletić, E., Melyan, G., Mihaljević, M.Z., Muñoz-Organero, G., Musayev, M., Nebish, A., Popescu, C.F., Regner, F., Risovanna, V., Ruisa, S., Salimov, V., Savin, G., Schneider, A., Stajner, N., Ujmajuridze, L., Failla, O. (2015). Identification and characterization of grapevine genetic resources maintained in Eastern European Collections. Journal of Grapevine Research, 54, 5–12.

12. This, P., Jung, A., Boccacci, P., Borrego, J., Botta, R., Costantini, L., Crespan, M., Dangl, G.S., Eisenheld, C., Ferreira-Monteiro, F., Grando, S.,

13. Ibáñez, J., Lacombe, T., Laucou, V., Magalhães, R., Meredith, C.P., Milani, N., Peterlunger, E., Regner, F., Zulini, L., Maul, E. (2004). Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theoretical and Applied Genetics, 109(7), 1448–1458. https://doi.org/10.1007/s00122–004–1760–3

14. Drábek, J., Stávek, J., Jalvková, M., Jurcek, T., Frébort, I. (2008). Quantification of DNA during winemaking by fluorimetry and Vitis vinifera L.-specific quantitative PCR. European Food Research and Technology, 226(3), 491–497. https://doi.org/10.1007/s00217–007–0561–8

15. Bigliazzi, J., Scali, M., Paolucci, E., Cresti, M., Vignani, R. (2012). DNA extracted with optimized protocols can be genotyped to reconstruct the varietal composition of monovarietal wines. American Journal of Enology and Viticulture, 63(4), 568–573. https://doi.org/10.5344/ajev.2012.12014

16. Rodríguez-Plaza, P., González, R., Moreno-Arribas, M.V., Polo, M.C., Bravo, G., Martínez-Zapater, J.M., Martínez, M.C., Cifuentes, A. (2006). Combining microsatellite markers and capillary gel electrophoresis with laser-induced fluorescence to identify the grape (Vitis vinifera) variety of musts. European Food Research and Technology, 223(5), 625–631. https://doi.org/10.1007/s00217–005–0244–2

17. Siret, R., Gigaud, O., Rosec, J.P., This, P. (2002). Analysis of grape Vitis vinifera L. DNA in must mixtures and experimental mixed wines using microsatellite markers. Journal of Agricultural and Food Chemistry, 50(13), 3822–3827. https://doi.org/10.1021/jf011462e

18. Hârta, M.H., Pamfil, D., Pop, R., Vicaş, S. (2011). DNA Fingerprinting Used for Testing Some Romanian Wine Varieties. Bulletin UASVM Horticulture, 68(1), 143–148.

19. Siret, R., Boursiquot, J.M., Merle, M.H., Cabanis, J.C., This, P. (2000). Toward the authentication of varietal wines by the analysis of grape (Vitis vinifera L.) Residual DNA in must and wine using microsatellite markers. Journal of Agricultural and Food Chemistry, 48(10), 5035–5040. https://doi.org/10.1021/jf991168a

20. Boccacci, P., Akkak, A.. Marinoni, D. T. Gerbi, V., Schneider, A. (2012). Genetic traceability of Asti Spumante and Moscato d’Asti musts and wines using nuclear and chloroplast microsatellite markers. European Food Research and Technology, 235(3),439–446. https://doi.org/10.1007/s00217–012–1770–3

21. Pereira, L., Martins-Lopes, P., Batista, C., Zanol, G.C., Clímaco, P., Brazão, J., Eiras-Dias, J.E., Guedes-Pinto, H. (2012). Molecular Markers for Assessing Must Varietal Origin. Food Analytical Methods, 5(6), 1252–1259. https://doi.org/10.1007/s12161–012–9369–7

22. Scali, M., Elisa, P., Jacopo, B., Mauro, C., Vignani, R. (2014). Vineyards genetic monitoring and Vernaccia di San Gimignano wine molecular fingerprinting. Advances in Bioscience and Biotechnology, 5(2), 142–154. https://doi.org/10.4236/abb.2014.52018

23. Chung, S.-M., Staub, J.E. (2003). The development and evaluation of consensus chloroplast primer pairs that possess highly variable sequence regions in a diverse array of plant taxa. Theoretical and Applied Genetics, 107(4), 757–767. https://doi.org/10.1007/s00122–003–1311–3

24. Weising, K., Gardner, R.C. (1999). A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome, 42(1), 9–19. https://doi.org/10.1139/g98–104

25. Arroyo-Garcı´a, R., Lefort, F., de Andre´s, M.T., Iban˜ez, J., Borrego, J., Jouve, N., Cabello, F., Martı´nez-Zapater, J.M. (2002). Chloroplast microsatellite polymorphisms in Vitis species. Genome, 45(6), 1142–1149. https://doi.org/10.1139/g02–087

26. Ebert, D., Peakall, R. (2009). Chloroplast simple sequence repeats (cpSSRs): technical resources and recommendations for expanding cpSSR discovery and applications to a wide array of plant species. Molecular Ecology Resources, 9(3), 673–690. https://doi.org/10.1111/j.1755–0998.2008.02319.x

27. Lijavetzky, D., Cabezas, J.A., Ibáñez, A., Rodríguez, V., Martínez-Zapater, J.M. (2007). High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology. BMC Genomics, 8, 424. https://doi.org/10.1186/1471– 2164–8–424

28. Gomes, S., Castro, C., Barrias, S., Pereira, L., Jorge, P., Fernandes, J.R., Martins-Lopes. P. (2018). Alternative SNP detection platforms, HRM and biosensors, for varietal identification in Vitis vinifera L. using F3H and LDOX genes. Scientific Reports, 8(1), 5850. https://doi.org/10.1038/s41598–018–24158–9

29. Kurbakov, K.A., Konorov, E.A., Minaev, M. Yu., Kuznetsova, O.A. (2019). Multiplex real-time PCR with HRM for detection of Lactobacillus sakei and Lactobacillus curvatus in Food Samples. Food Technology and Biotechnology, 57(1), 97–104. https://doi.org/10.17113/ftb.57.01.19.5983

30. Druml, B., Cichna-Markl, M. (2014). High resolution melting (HRM) analysis of DNA — Its role and potential in food analysis. Food Chemistry, 158, 245–254. https://doi.org/10.1016/j.foodchem.2014.02.111


For citation:


Lazareva E.G., Gilmanov K.K., Bigaeva A.V., Mikhailova I.Y., Semipyatny V.K., Vafin R.R. DNA authentication technologies for product quality monitoring in the wine industry. Food systems. 2020;3(4):11-14. https://doi.org/10.21323/2618-9771-2020-3-4-11-14

Views: 245


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)