Preview

Food systems

Advanced search

Valorization of citrus fruit wastes: Sustainable extraction of bioactive compounds for food and health applications

https://doi.org/10.21323/2618-9771-2025-8-3-407-413

Abstract

Globally grown and handled citrus fruits produce a lot of by-products, including pulp, seeds, and peels. Often considered agroindustrial waste, rich in significant bioactives such as flavonoids, phenolic acids, limonoids, pectin, and essential oils, these materials are now considered attractive sustainable sources. This review explores recent developments in green extraction techniques, including ultrasonic-assisted, microwave-assisted, enzyme-assisted, supercritical fluid, pressurized liquid extraction, and natural deep eutectic solvents. Key parameters like solvent type, temperature, duration, and particle size are evaluated for their influence on yield and quality. Green methods provide better selectivity, scalability, and environmental benefits than traditional approaches. Citrus-derived compounds have promise in antimicrobial packaging and cosmetics beyond their application as nutritional supplements and food preservatives. Combining intelligent optimization techniques with circular biorefinery designs indicates a bright future for citrus waste valorization. The review emphasizes the change toward environmentally friendly technology for sustained value recovery despite difficulties in cost and regulation.

About the Authors

A. S. M. Ammar
Cairo University
Egypt

Abdalla S.  M.  Ammar, Professor, Food Science Department, Faculty of Agriculture

Gamaa Street, Giza, 12613



Y. M. Riyad
Cairo University
Egypt

Youssef M. Riyad, Professor, Food Science Department, Faculty of Agriculture

Gamaa Street, Giza, 12613



M. I. Younis
Cairo University
Egypt

Mohamed I. Younis, Teaching Assistant, Food Science Department, Faculty of Agriculture

Gamaa Street, Giza, 12613



M. R. Ali
Cairo University
Egypt

Marwa R.  Ali, Associate Professor, Food Science Department, Faculty of Agriculture

Gamaa Street, Giza, 12613



References

1. Kato-Noguchi, H., Kato, M. (2025). Pesticidal activity of citrus fruits for the development of sustainable fruit-processing waste management and agricultural production. Plants, 14(5), Article 754. https://doi.org/10.3390/plants14050754

2. FAOSTAT. (2025). Commodities by country. Retrieved from https://www.fao.org/faostat/en/#rankings/commodities_by_country Accessed March 25, 2025.

3. Andrade, M. A., Barbosa, C. H., Shah, M. A., Ahmad, N., Vilarinho, F., Khwaldia, K. et al. (2023). Citrus by-products: Valuable source of bioactive compounds for food applications. Antioxidants, 12(1), Article 38. https://doi.org/10.3390/antiox12010038

4. Russo, C., Maugeri, A., Lombardo, G.E., Musumeci, L., Barreca, D., Rapisarda, A. et al. (2021). The second life of citrus fruit waste: A valuable source of bioactive compounds. Molecules, 26(19), Article 5991. https://doi.org/10.3390/molecules26195991

5. Anticona, M., Blesa, J., Frigola, A., Esteve, M. J. (2020). High biological value compounds extraction from citrus waste with non-conventional methods. Foods, 9(6), Article 811. https://doi.org/10.3390/foods9060811

6. Grover, S., Aggarwal, P., Kumar, A., Kaur, S., Yadav, R., Babbar, N. (2025). Utilizing citrus peel waste: A review of essential oil extraction, characterization, and food-industry potential. Biomass Conversion and Biorefinery, 15(4), 5043–5064. https://doi.org/10.1007/s13399-024-05382-y

7. Maqbool, Z., Khalid, W., Atiq, H.T., Koraqi, H., Javaid, Z., Alhag, S.K. (2023). Citrus waste as source of bioactive compounds: Extraction and utilization in health and food industry. Molecules, 28(4), Article 1636. https://doi.org/10.3390/molecules28041636

8. Fernández-Cabal, J., Avilés-Betanzos, K. A., Cauich-Rodríguez, J. V., Ramírez-Sucre, M. O., Rodríguez-Buenfil, I. M. (2025). Recent developments in Citrus aurantium L.: An overview of bioactive compounds, extraction techniques, and technological applications. Processes, 13(1), Article 120. https://doi.org/10.3390/pr13010120

9. Acosta-vega, L., Cifuentes, A., Ibáñez, E. (2025). Exploring natural deep eutectic solvents (NADES) for enhanced essential oil extraction: Current insights and applications. Molecules, 30(2), Article 284. https://doi.org/10.3390/molecules30020284

10. Talhami, M., Kashem, A. H. M., Alkhamri, K. A., Albatarni, O., Thaher, M. I., Das, P. et al. (2025). Sustainable and low-cost protic ionic liquid-based recovery of oil from agricultural wastes “date pits” for biofuel production. Resources, Conservation and Recycling Advances, 25, Article 200246. https://doi.org/10.1016/j.rcradv.2025.200246

11. Cannavacciuolo, C., Pagliari, S., Celano, R., Campone, L., Rastrelli, L. (2024). Critical analysis of green extraction techniques used for botanicals: Trends, priorities, and optimization strategies-A review. TrAC Trends in Analytical Chemistry, 173, Article 117627. https://doi.org/10.1016/j.trac.2024.117627

12. Bastos, K. V. L. da S., de Souza, A. B., Tomé, A. C., Souza, F. de M. (2025). New strategies for the extraction of antioxidants from fruits and their by-products: A systematic review. Plants, 14(5), Article 755. https://doi.org/10.3390/plants14050755

13. Samanta, S., Banerjee, J., Ahmed, R., Dash, S. K. (2023). Potential benefits of bioactive functional components of citrus fruits for health promotion and disease prevention. Chapter in a book: Recent Advances in Citrus Fruits. Springer, Cham, 2023. https://doi.org/10.1007/978-3-031-37534-7_15

14. Barreca, D., Gattuso, G., Bellocco, E., Calderaro, A., Trombetta, D., Smeriglio, A. et al. (2017). Flavanones: Citrus phytochemical with health-promoting properties. BioFactors, 43(4), 495–506. https://doi.org/10.1002/biof.1363

15. Naseer, B., Srivastava, G., Qadri, O. S., Faridi, S. A., Islam, R. U., Younis, K. (2018). Importance and health hazards of nanoparticles used in the food industry. Nanotechnology Reviews, 7(6), 623–641. https://doi.org/10.1515/ntrev2018-0076

16. Sharma, P., Vishvakarma, R., Gautam, K., Vimal, A., Kumar Gaur, V., Farooqui, A. et al. (2022). Valorization of citrus peel waste for the sustainable production of value-added products. Bioresource Technology, 351, Article 127064. https://doi.org/10.1016/j.biortech.2022.127064

17. Kanaze, F. I., Termentzi, A., Gabrieli, C., Niopas, I., Georgarakis, M., Kokkalou, E. (2008). The phytochemical analysis and antioxidant activity assessment of orange peel (Citrus sinensis) cultivated in Greece — Crete indicates a new commercial source of hesperidin. Biomedical Chromatography, 23(3), 239–249. https://doi.org/10.1002/bmc.1090

18. Ellouze, I. (2022). Citrus bio-wastes: A source of bioactive, functional products and non-food uses. Chapter in a book: Mediterranean Fruits Bio-wastes. Springer, Cham, 2022. https://doi.org/10.1007/978-3-030-84436-3_9

19. Pop, C., Suharoschi, R., Pop, O. L. (2021). Dietary fiber and prebiotic compounds in fruits and vegetables food waste. Sustainability, 13(13), Article 7219. https://doi.org/10.3390/su13137219

20. Silva, T. R. D., Silva, A. J. R. D. (2023). Chemical profile of persian lime seeds (Citrus Limettioides T.): Focus on limonoids and polyphenols. Anais Da Academia Brasileira de Ciências, 95(suppl 2), Article e20230322. https://doi.org/10.1590/0001-3765202320230322

21. Manzur, M., Luciardi, M. C., Blázquez, M. A., Alberto, M. R., Cartagena, E., Arena, M. E. (2023). Citrus sinensis essential oils an innovative antioxidant and antipathogenic dual strategy in food preservation against spoliage bacteria. Antioxidants, 12(2), Article 246. https://doi.org/10.3390/antiox12020246

22. Kumar, S., Konwar, J., Purkayastha, M. D., Kalita, S., Mukherjee, A., Dutta, J. (2023). Current progress in valorization of food processing waste and by-products for pectin extraction. International Journal of Biological Macromolecules, 239, Article 124332. https://doi.org/10.1016/j.ijbiomac.2023.124332

23. Granone, L. I., Hegel, P. E., Pereda, S. (2022). Citrus fruit processing by pressure intensified technologies: A review. The Journal of Supercritical Fluids, 188, Article 105646. https://doi.org/10.1016/j.supflu.2022.105646

24. Chaves, J. O., Sanches, V. L., Viganó, J., de Souza Mesquita, L. M., de Souza, M. C., da Silva, L. C. et al. (2022). Integration of pressurized liquid extraction and inline solid-phase extraction to simultaneously extract and concentrate phenolic compounds from lemon peel (Citrus limon L.). Food Research International, 157, Article 111252. https://doi.org/10.1016/j.foodres.2022.111252

25. Plaza, M., Marina, M. L. (2025). Natural deep eutectic solvents and ultrasoundassisted extraction for the recovery of antioxidant phenolic compounds from orange pomace. Microchemical Journal, 212, Article 113366. https://doi.org/10.1016/j.microc.2025.113366

26. Kaur, S., Panesar, P. S., Chopra, H. K. (2023). Extraction of dietary fiber from kinnow (Citrus reticulata) peels using sequential ultrasonic and enzymatic treatments and its application in development of cookies. Food Bioscience, 54, Article 102891. https://doi.org/10.1016/j.fbio.2023.102891

27. Saeed, R., Ahmed, D., Mushtaq, M. (2022). Ultrasound-aided enzyme-assisted efficient extraction of bioactive compounds from Gymnema sylvestre and optimization as per response surface methodology. Sustainable Chemistry and Pharmacy, 29, Article 100818. https://doi.org/10.1016/j.scp.2022.100818

28. Tizón Alba, A., Aliaño-González, M. J., Palma, M., Fernández Barbero, G., Carrera, C. (2023). Enhancing efficiency of enzymatic-assisted extraction method for evaluating bioactive compound analysis in mulberry: An optimization approach. Agronomy, 13(10), Article 2548. https://doi.org/10.3390/agronomy13102548

29. Thiruvalluvan, M., Gupta, R., Kaur, B. P. (2025). Optimization of ultrasound — assisted extraction conditions for the recovery of phenolic compounds from sweet lime peel waste. Biomass Conversion and Biorefinery, 15(5), 6781–6803. https://doi.org/10.1007/s13399-024-05752-6

30. García-Martín, J. F., Feng, C.-H., Domínguez-Fernández, N.-M., Álvarez-Mateos, P. (2023). Microwave-assisted extraction of polyphenols from bitter orange industrial waste and identification of the main compounds. Life, 13(9), Article 1864. https://doi.org/10.3390/life13091864

31. Romano, R., De Luca, L., Aiello, A., Rossi, D., Pizzolongo, F., Masi, P. (2022). Bioactive compounds extracted by liquid and supercritical carbon dioxide from citrus peels. International Journal of Food Science and Technology, 57(6), 3826–3837. https://doi.org/10.1111/ijfs.15712

32. Sanches, V. L., Strieder, M. M., Breitkreitz, M. C., Bezerra, R. M. N., O. Chaves, J., Lopes de Oliveira, I. et al. (2024). Pressurized liquid extraction assisted by highintensity ultrasound to obtain hesperidin from lime waste: Integration of in-line purification and on-line chromatographic analysis. Food Research International, 182, Article 114134. https://doi.org/10.1016/j.foodres.2024.114134

33. Panić, M., Andlar, M., Tišma, M., Rezić, T., Šibalić, D., Cvjetko Bubalo, M. et al. (2021). Natural deep eutectic solvent as a unique solvent for valorisation of orange peel waste by the integrated biorefinery approach. Waste Management, 120, 340–350. https://doi.org/10.1016/j.wasman.2020.11.052

34. Multari, S., Licciardello, C., Caruso, M., Anesi, A., Martens, S. (2021). Flavedo and albedo of five citrus fruits from Southern Italy: Physicochemical characteristics and enzyme — assisted extraction of phenolic compounds. Journal of Food Measurement and Characterization, 15(2), 1754–1762. https://doi.org/10.1007/s11694-020-00787-5

35. Ramesh, M. M., Shankar, N. S., Venkatappa, A. H. (2024). Driving/critical factors considered during extraction to obtain bioactive enriched extracts. Pharmacognosy Reviews, 18(35), 68–81. https://doi.org/10.5530/phrev.2024.18.7

36. Alshammari, O. A. O., Almulgabsagher, G. A. A., Ryder, K. S., Abbott, A. P. (2021). Effect of solute polarity on extraction efficiency using deep eutectic solvents. Green Chemistry, 23(14), 5097–5105. https://doi.org/10.1039/d1gc01747k

37. da Silva, R. F., Carneiro, C. N., do C. de Sousa, C. B., J. V. Gomez, F., Espino, M., Boiteux, J. et al. (2022). Sustainable extraction bioactive compounds procedures in medicinal plants based on the principles of green analytical chemistry: A review. Microchemical Journal, 175, Article 107184. https://doi.org/10.1016/j.microc.2022.107184

38. Li, H., Li, Z., Wang, P., Liu, Z., An, L., Zhang, X. et al. (2024). Evaluation of citrus pectin extraction methods: Synergistic enhancement of pectin’ s antioxidant capacity and gel properties through combined use of organic acids, ultrasonication, and microwaves. International Journal of Biological Macromolecules, 266, Article 131164. https://doi.org/10.1016/j.ijbiomac.2024.131164

39. Hobbi, P., Okoro, O. V., Delporte, C., Alimoradi, H., Podstawczyk, D. et al. (2021). Kinetic modelling of the solid — liquid extraction process of polyphenolic compounds from apple pomace: Influence of solvent composition and temperature. Bioresources and Bioprocessing, 8(1), Article 114. https://doi.org/10.1186/s40643-021-00465-4

40. More, P. R., Jambrak, A. R., Arya, S. S. (2022). Green, environment-friendly and sustainable techniques for extraction of food bioactive compounds and waste valorization. Trends in Food Science and Technology, 128, 296–315. https://doi.org/10.1016/j.tifs.2022.08.016

41. Sandhu, H. K., Sinha, P., Emanuel, N., Kumar, N., Sami, R., Khojah, E. et al. (2021). Effect of ultrasound-assisted pretreatment on extraction efficiency of essential oil and bioactive compounds from citrus waste by-products. Separations, 8(12), Article 244. https://doi.org/10.3390/separations8120244

42. Ramírez-Sucre, M. O., Avilés-Betanzos, K. A., López-Martínez, A., RodríguezBuenfil, I. M. (2024). Evaluation of polyphenol profile from citrus peel obtained by natural deep eutectic solvent/ultrasound extraction. Processes, 12(10), Article 2072. https://doi.org/10.3390/pr12102072

43. Sharma, P., Osama, K., Varjani, S. (2023). Microwave — assisted valorization and characterization of Citrus limetta peel waste into pectin as a perspective food additive. Journal of Food Science and Technology, 60(4), 1284–1293. https://doi.org/10.1007/s13197-023-05672-9

44. Medina-Torres, N., Espinosa-Andrews, H., Trombotto, S., Ayora-Talavera, T., Patrón-Vázquez, J., González-Flores, T. et al. (2019). Ultrasound-assisted extraction optimization of phenolic compounds from citrus latifolia waste for chitosan bioactive nanoparticles development. Molecules, 24(19), Article 3541. https://doi.org/10.3390/molecules24193541

45. Anastasopoulou, E., Graikou, K., Ziogas, V., Ganos, C., Calapai, F., Chinou, I. (2024). Chemical profiles and antimicrobial properties of essential oils from orange, pummelo, and tangelo cultivated in greece. Horticulturae, 10(8), Article 792. https://doi.org/10.3390/horticulturae10080792

46. Zhou, L., Luo, J., Xie, Q., Huang, L., Shen, D., Li, G. (2023). Dietary fiber from navel orange peel prepared by enzymatic and ultrasound-assisted deep eutectic solvents: Physicochemical and prebiotic properties. Foods, 12(10), Article 2007. https://doi.org/10.3390/foods12102007

47. Qin, S., Lv, C., Wang, Q., Zheng, Z., Sun, X., Tang, M. et al. (2018). Extraction, identification, and antioxidant property evaluation of limonin from pummelo seeds. Animal Nutrition, 4(3), 281–287. https://doi.org/10.1016/j.aninu.2018.05.005

48. Alexandri, M., Kachrimanidou, V., Papapostolou, H., Papadaki, A., Kopsahelis, N. (2022). Sustainable food systems: The case of functional compounds towards the development of clean label food products. Foods, 11(18), Article 2796. https://doi.org/10.3390/foods11182796

49. Picot-Allain, C., Mahomoodally, M. F., Ak, G., Zengin, G. (2021). Conventional versus green extraction techniques — a comparative perspective. Current Opinion in Food Science, 40, 144–156. https://doi.org/10.1016/j.cofs.2021.02.009

50. Pereira, A. G., Cruz, L., Cassani, L., Chamorro, F., Lourenço-lopes, C., Freitas, V. et al. (May 17–31, 2023). Comparative study of microwave-assisted extraction and ultrasound-assisted extraction techniques (MAE vs. UAE) for the optimized production of enriched extracts in phenolic compounds of Camellia japonica var Eugenia de Montijo’. The 2nd International Electronic Conference on Processes: Process Engineering — Current State and Future Trends. MDPI, 2023. https://doi.org/10.3390/ecp2023-14615

51. Dashtian, K., Kamalabadi, M., Ghoorchian, A., Ganjali, M. R., Rahimi-Nasrabadi, M. (2024). Integrated supercritical fluid extraction of essential oils. Journal of Chromatography A, 1733, Article 465240. https://doi.org/10.1016/j.chroma.2024.465240

52. Aduloju, E. I., Yahaya, N., Zain, N. M., Kamaruddin, M. A., Abd Hamid, M. A. (2023). An overview on the use of DEEP eutectic solvents for green extraction of some selected bioactive compounds from natural matrices. Advanced Journal of Chemistry-Section A, 6(3), 253–300.

53. Madhumita, M., Deol, P., Singh, T., K. Prabhakar, P. (2024). Emerging technologies for extraction of functional components. Chapter in a book: Adding Value to Fruit Wastes, Academic Press, 2024. https://doi.org/10.1016/B978-0-443-13842-3.00002-2

54. Dean, J. R. (2009). Extraction Techniques in Analytical Sciences. Blackwell Publishing, 2009. 55. Lebovka, N., Vorobiev, E., Chemat, F. (2016). Enhancing Extraction Processes in the Food Industry. CRC Press, 2016. https://doi.org/10.1201/b1124

55. Jibhkate, Y. J., Awachat, A. P., Lohiya, R. T., Umekar, M. J., Hemke, A. T., Gupta, K. R. (2023). Extraction: An important tool in the pharmaceutical field. International Journal of Science and Research Archive, 10(1), 555–568. https://doi.org/10.30574/ijsra.2023.10.1.0768

56. Kislik, V. S. (2011). Solvent Extraction: Classical and Novel Approaches. Elsevier, 2011.

57. Venkataraman, S., Rajendran, D. S., Kumar, P. S., Rangasamy, G., Vaidyanathan, V. K. (2024). A comprehensive review on the refinery of citrus peel towards the production of bioenergy, biochemical and biobased value-added products: Present insights and futuristic challenges. Waste and Biomass Valorization, 15(11), 6491–6512. https://doi.org/10.1007/s12649-024-02557-6

58. Wedamulla, N. E., Fan, M., Choi, Y.-J., Kim, E.-K. (2022). Citrus peel as a renewable bioresource: Transforming waste to food additives. Journal of Functional Foods, 95, Article 105163. https://doi.org/10.1016/j.jff.2022.105163

59. Petcu, C. D., Tăpăloagă, D., Mihai, O. D., Gheorghe-Irimia, R.-A., Negoiță, C., Georgescu, I. M. et al. (2023). Harnessing natural antioxidants for enhancing food shelf life: Exploring sources and applications in the food industry. Foods, 12(17), Article 3176. https://doi.org/10.3390/foods12173176

60. Roy, T. (2022). Characterization of pectin extracted from pomegranate peel (Punica granatum L.) and its application in jelly preparation. Doctoral dissertation. Chattogram Veterinary and Animal Sciences University. Chittagong, Bangladesh, 2022.

61. Kačániová, M., Čmiková, N., Vukovic, N. L., Verešová, A., Bianchi, A., Garzoli, S.et al. (2024). Citrus limon essential oil: Chemical composition and selected biological properties focusing on the antimicrobial (in vitro, in situ), antibiofilm, insecticidal activity and preservative effect against salmonella enterica inoculated in carrot. Plants, 13(4), Article 524. https://doi.org/10.3390/plants13040524

62. Šafranko, S., Šubarić, D., Jerković, I., Jokić, S. (2023). Citrus by-products as a valuable source of biologically active compounds with promising pharmaceutical, biological and biomedical potential. Pharmaceuticals, 16(8), Article 1081. https://doi.org/10.3390/ph16081081

63. Basavegowda, N., Baek, K.-H. (2021). Synergistic antioxidant and antibacterial advantages of essential oils for food packaging applications. Biomolecules, 11(9), Article 1267. https://doi.org/10.3390/biom11091267

64. Chandimala, U., Ajtony, Z., Sik, B. (July 29 — August 1, 2024). Citrus flavonoids (naringin and hesperidin) as functional ingredients in dairy products. The 10th International Conference on Agricultural and Biological Sciences (ABS2024). Gyor, Hungary, 2024. https://doi.org/10.1051/bioconf/202412502004

65. Liu, S., Lou, Y., Li, Y., Zhang, J., Li, P., Yang, B. et al. (2022). Review of phytochemical and nutritional characteristics and food applications of Citrus L. fruits. Frontiers in Nutrition, 9, Article 968604. https://doi.org/10.3389/fnut.2022.968604

66. Saber, F. R., Salehi, H., Khallaf, M. A., Rizwan, K., Gouda, M., Ahmed, S., Zengin, G. et al. (2025). Limonoids: Advances in extraction, characterization, and applications. Food Reviews International, 41(6), 1871–1932. https://doi.org/10.1080/87559129.2025.2456494

67. Roy, S., Priyadarshi, R., Łopusiewicz, Ł., Biswas, D., Chandel, V., Rhim, J.-W. (2023). Recent progress in pectin extraction, characterization, and pectinbased films for active food packaging applications: A review. International Journal of Biological Macromolecules 239, Article 124248. https://doi.org/10.1016/j.ijbiomac.2023.124248

68. Andriotis, E. G., Papi, R. M., Paraskevopoulou, A., Achilias, D. S. (2021). Synthesis of D limonene loaded polymeric nanoparticles with enhanced antimicrobial properties for potential application in food packaging. Nanomaterials, 11(1), Article 191. https://doi.org/10.3390/nano11010191

69. Sebghatollahi, Z., Ghanadian, M., Agarwal, P., Ghaheh, H. S., Mahato, N., Yogesh, R. et al. (2022). Citrus flavonoids: Biological activities, implementation in skin health, and topical applications: A review. ACS Food Science and Technology, 2(9), 1417–1432. https://doi.org/10.1021/acsfoodscitech.2c00165

70. Liu, X., Wang, B., Tang, S., Yue, Y., Xi, W., Tan, X. et al. (2024). Modification, biological activity, applications, and future trends of citrus fiber as a functional component: A comprehensive review. International Journal of Biological Macromolecules, 269(Pt 1), Article 131798. https://doi.org/10.1016/j.ijbiomac.2024.131798

71. Leporini, M., Tundis, R., Sicari, V., Loizzo, M. R. (2021). Citrus species: Modern functional food and nutraceutical-based product ingredient. Italian Journal of Food Science, 33(2), 63–107. https://doi.org/10.15586/ijfs.v33i2.2009

72. Yadav, V., Sarker, A., Yadav, A., Miftah, A. O., Bilal, M., Iqbal, H. M. N. (2022). Integrated biorefinery approach to valorize citrus waste: A sustainable solution for resource recovery and environmental management. Chemosphere, 293, Article 133459. https://doi.org/10.1016/j.chemosphere.2021.133459

73. Radoiu, M., Mello, A. (2022). Technical advances, barriers, and solutions in microwave-assisted technology for industrial processing. Chemical Engineering Research and Design, 181, 331–342. https://doi.org/10.1016/j.cherd.2022.03.029

74. Fu, M., Zhang, H., Bai, J., Cui, M., Liu, Z., Kong, X. et al. (2025). Application of deep eutectic solvents with modern extraction techniques for the recovery of natural products: A review. ACS Food Science and Technology, 5(2), 444–461. https://doi.org/10.1021/acsfoodscitech.4c00973


Review

For citations:


Ammar A.S., Riyad Y.M., Younis M.I., Ali M.R. Valorization of citrus fruit wastes: Sustainable extraction of bioactive compounds for food and health applications. Food systems. 2025;8(3):407-413. https://doi.org/10.21323/2618-9771-2025-8-3-407-413

Views: 191


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)