Preview

Food systems

Advanced search

The use of alternative protein sources in quail diets: A review

https://doi.org/10.21323/2618-9771-2024-7-3-336-344

Abstract

The growth of the Earth’s population and people’s striving for healthy life style lead to an increase in the global demand for protein food. Quails are a valuable source of protein, which is thought to reduce the risk of obesity and cardiovascular diseases. Inclusion of alternative protein sources into the composition of feeds for quails is an answer to ecological problems associated with the use of traditional protein sources. Plants, insects, algae and mushrooms are among alternative protein sources that are mentioned most frequently in scientific studies. The aim of this review is analysis of scientific literature dedicated to the use of plants, insects, algae and mushrooms as alternative protein sources in feedstuff for quails. Plant sources of protein, such as soya and maize, are successfully used in feedstuff production. However, studies have shown that addition of other sources, including by-products of crop husbandry, will allow increasing sustainability and reducing the dependence of the industry on traditional raw materials. Flour from black soldier fly (Hermetia illucens) larvae is the promising and most widely studied source of protein among insects and can positively affect productivity and health of quails. Among algae, it is necessary to mention spirulina (Spirulina platensis and Arthrospira platensis). Upon addition of 4% of the spirullina powder, productivity parameters in poultry increased. Mushrooms are described as a promising protein source in feedstuff that is also capable of ensuring an increase in productivity and quality of poultry meat. Today, however, there are few studies on this subject. It is recommended to focus further studies of the application of alternative protein sources in quail diets on questions of safety of their use and more detailed analysis of economic feasibility.

About the Authors

M. A. Polubesova
All-Russia Research Institute for Food Additives
Russian Federation

Mariia A.  Polubesova - Marketer

55, Liteiny pr., 190000, St. Petersburg

Tel.: +7–812–273–75–24



E. V. Mechtaeva
All-Russia Research Institute for Food Additives
Russian Federation

Elizaveta V.  Mechtaeva - Junior Researcher, Laboratory of Industrial Biotechnological Innovations

55, Liteiny pr., 190000, St. Petersburg

Tel.: +7–812–273–75–24



A. D. Chernov
Federal Centre for Animal Health
Russian Federation

Aleksandr D. Chernov - Deputy Director 

15, Moskovskoe shosse, 196158, St. Petersburg

Tel.: +7–812–630–20–69



V. Yu. Sitnov
All-Russia Research Institute for Food Additives
Russian Federation

Veniamin Yu. Sitnov - Director

55, Liteiny pr., 190000, St. Petersburg

Tel.: +7–812–273–75–24



A. Z. Zhuravleva
All-Russia Research Institute for Food Additives
Russian Federation

Aigul Z.  Zhuravleva - Candidate of Veterinary Sciences, Deputy Director 

55, Liteiny pr., 190000, St. Petersburg

Tel.: +7 (812) 273–75–24



References

1. Marangoni, F., Corsello, G., Cricelli, C., Ferrara, N., Ghiselli, A., Lucchin, L. et al. (2015). Role of poultry meat in a balanced diet aimed at maintaining health and wellbeing: An Italian consensus document. Food and Nutrition Research, 59(1), Article 27606. https://doi.org/10.3402/fnr.v59.27606

2. OECD Agriculture Statistics. Retrieved from https://www.oecd-ilibrary.org/agriculture-and-food/data/oecd-agriculture-statistics_agr-data-en Accessed March 1, 2024

3. Cheng, K. M., Bennett, D. C., Mills, A. D. (2010). The Japanese quail. Chapter in a book: The UFAW handbook on the care and management of laboratory and other research animals. Wiley-Blackwell, 2010. https://doi.org/10.1002/9781444318777.ch42

4. Elahi, U., Xu, C., Wang, J., Lin, J., Wu, S., Zhang, H. et al. (2022). Insect meal as a feed ingredient for poultry. Animal Bioscience, 35(2), 332–346. https://doi.org/10.5713/ab.21.0435

5. Boiago, M. M., Dilkin, J. D., Kolm, M. A., Barreta, M., Souza, C. F., Baldissera, M. D. et al. (2019). Spirulina platensis in Japanese quail feeding alters fatty acid profiles and improves egg quality: Benefits to consumers. Journal of Food Biochemistry, 43(7), Article e12860. https://doi.org/10.1111/jfbc.12860

6. Thrane, M., Paulsen, P. V., Orcutt, M. W., Krieger, T. M. (2017). Soy Protein: Impacts, Production, and Applications. Sustainable Protein Sources. Academic Press, 2017. https://doi.org/10.1016/b978-0-12-802778-3.00002-0

7. Obregón, J. F., Bell, C., Elenes, I., Estrada, A., Portillo, J. J., Ríos, F. G. (2012). Effect of discarded chickpea (Cicer arietinum L.) cooking on the productive response and carcass yield of Japanese quail (Coturnix coturnix japonica) at the fattening stage. Cuban Journal of Agricultural Science, 46(2), 169–173.

8. Grasso, N., Lynch, N. L., Arendt, E. K., O'Mahony, J. A. (2022). Chickpea protein ingredients: A review of composition, functionality, and applications. Comprehensive Reviews in Food Science and Food Safety, 21(1), 435–452. https://doi.org/10.1111/1541-4337.12878

9. Variath, M. T., Janila, P. (2017). Economic and academic importance of peanut. Chapter in a book: The Peanut Genome. Springer, 2017. https://doi.org/10.1007/978-3-319-63935-2_2

10. Bittencourt, T. M., D’Ávila Lima, H. J., Valentim, J. K., Martins, A. C. D. S., Moraleco, D. D., Vaccaro, B. C. (2019). Distillers dried grains with solubles from corn in diet of japanese quails. Acta Scientiarum. Animal Sciences, 41(1), Article 42759. https://doi.org/10.4025/actascianimsci.v41i1.42759

11. Freitas, E. R., Raquel, D. L., Nascimento, A. J. N., Watanabe, P. H., Lopes, I. R. V. (2014). Complete replacement of corn by white or red sorghum in japanese quail feeds. Brazilian Journal of Poultry Science, 16(3), 333–336. https://doi.org/10.1590/1516-635x1603333-336

12. Rahman, M. M., Suniza Anis, B. M. S., Jennlelyn, A. J. (2019). Growth performance and carcass characteristics of Japanese quail fed rations with inclusion of different levels of broken rice. Malaysian Journal of Animal Science, 22(2), 27–33.

13. Moraes, P. D. O., Gopinger, E., Catalan, A. A., Castro, M. L. S. de, Elias, M. C., Xavier, E. G. (2015). Effect of feeding canola meal to laying Japanese quails. Acta Scientiarum. Animal Sciences, 37(3), 295–299. https://doi.org/10.4025/actascianimsci.v37i3.26437

14. Silva Júnior, P. A., Lana, S. R. V., Lana, G. R. Q., Silva, L. C. L., Torres, E. C., Ferreira, T. S. (2017). Cassava foliage in quail feeding. Acta Veterinária Brasilica, 11(3), 150–156. https://doi.org/10.21708/avb.2017.11.0.6921

15. Diarra, S. S., Devi, A. (2015). Feeding value of some cassava by-products meal for poultry: A review. Pakistan Journal of Nutrition, 14(10), 735–741. https://doi.org/10.3923/pjn.2015.735.741

16. Kumar, M., Tomar, M., Punia, S., Grasso, S., Arrutia, F., Choudhary, J. et al. (2021). Cottonseed: A sustainable contributor to global protein requirements. Trends in Food Science and Technology, 111, 100–113. https://doi.org/10.1016/j.tifs.2021.02.058

17. Kamel, E. R., Mohammed, L. S., Abdelfattah, F. A. (2020). Effect of a diet containing date pits on growth performance, diet digestibility, and economic evaluation of Japanese quail (Coturnix coturnix japonica). Tropical Animal Health and Production, 52(1), 339–346. https://doi.org/10.1007/s11250-019-02021-x

18. Dahouda, M., Adjolohoun, S., Montchowui, E. H., Senou, M., Hounsou, N. M. D., Amoussa, S. et al. (2013). Growth performance of quails (Coturnix coturnix) fed on diets containing either animal or vegetable protein sources. International Journal of Poultry Science, 12(7), 396–400. https://doi.org/10.3923/ijps.2013.396.400

19. Chah, C. C., Nelson, R. A., Carlson, C. W., Semeniuk, G., Palmer, I. S., Hesseltine, C. W. (1976). Fungus-fermented soybeans benefit the life cycle of Japanese quail (Coturnix coturnix japonica). Poultry Science, 55(3), 975–981. https://doi.org/10.3382/ps.0550975

20. Odunsi, A. A., Rotimi, A. A., Amao, E. A. (2007). Effect of different vegetable protein sources on growth and laying performance of Japanese quails (Coturnix coturnix japonica) in a derived savannah zone of Nigeria. World Applied Sciences Journal, 3(5), 567–571.

21. Kaur, R., Prasad, K. (2021). Nutritional characteristics and value-added products of Chickpea (Cicer arietinum) — A review. Journal of Postharvest Technology, 9(2), 1–13.

22. Şengül A. Y., Çalışlar S. (2020). Effect of partial replacement of soybean and corn with dietary chickpea (raw, autoclaved, or microwaved) on production performance of laying quails and egg quality. Food Science of Animal Resources, 40(3), 323–337. https://doi.org/10.5851/kosfa.2019.e98

23. Berto, D. A., Garcia, E. A., Móri, C., Faitarone, A. B. G., Pelícia, K., Molino, A. B. (2007). Performance of Japanese quails fed feeds containing different corn and limestone particle sizes. Brazilian Journal of Poultry Science, 9(3), 167–171. https://doi.org/10.1590/S1516-635X2007000300005

24. Hadi, J., Brightwell, G. (2021). Safety of alternative proteins: Technological, environmental and regulatory aspects of cultured meat, plant-based meat, insect protein and single-cell protein. Foods, 10(6), Article 1226. https://doi.org/10.3390/foods10061226

25. Widjastuti, T., Wiradimadja, R., Rusmana, D. (2014). The effect of substitution of fish meal by Black Soldier Fly (Hermetia illucens) maggot meal in the diet on production performance of quail (Coturnix coturnix japonica). Scientific Papers. Series D. Animal Science, 57(2), 125–129.

26. Sarica, S., Kanoglu, B., Yildirim, U. (2020). Defatted yellow mealworm larvae (Tenebrio molitor) meal as possible alternative to fish meal in quail diets. South African Journal of Animal Science, 50(3), 481–491. https://doi.org/10.4314/sajas.v50i3.15

27. Dalle Zotte, A., Singh, Y., Squartini, A., Stevanato, P., Cappellozza, S., Kovitvadhi, A. et al. (2021). Effect of a dietary inclusion of full-fat or defatted silkworm pupa meal on the nutrient digestibility and faecal microbiome of fattening quails. Animal, 15(2), Article 100112. https://doi.org/10.1016/j.animal.2020.100112

28. Permatahati, D., Mutia, R., Astuti, D. A. (2019). Effect of cricket meal (Gryllus bimaculatus) on production and physical quality of Japanese quail egg. Tropical Animal Science Journal, 42(1), 53–58. https://doi.org/10.5398/tasj.2019.42.1.53

29. Hatab, M. H., Ibrahim, N. S., Sayed, W. A., Sabic, E. M. (2020). Potential value of using insect meal as an alternative protein source for Japanese quail diet. Brazilian Journal of Poultry Science, 22(1), 1–9. https://doi.org/10.1590/1806-9061-2017-0700

30. Das, M., Mandal, S. K. (2014). Oxya hyla hyla (Orthoptera: Acrididae) as an alternative protein source for Japanese quail. International Scholarly Research Notices, 3–4, Article 269810. https://doi.org/10.1155/2014/269810

31. de Freitas Soares, P. D., de Jesus, C. A., Ferreira, F., de Oliveira, L. B., Ecco, R., de Oliveira Paes Leme, F. et al. (2022). Hematological and histopathological evaluation of meat-type quails fed Madagascar cockroach meal. Tropical Animal Health and Production, 54(2), Article 128. https://doi.org/10.1007/s11250-022-03118-6

32. Scala, A., Cammack, J. A., Salvia, R., Scieuzo, C., Franco, A., Bufo, S. A. et al. (2020). Rearing substrate impacts growth and macronutrient composition of Hermetia illucens (L.)(Diptera: Stratiomyidae) larvae produced at an industrial scale. Scientific Reports, 10(1), Article 19448. https://doi.org/10.1038/s41598-020-76571-8

33. Pasotto, D., van Emmenes, L., Cullere, M., Giaccone, V., Pieterse, E., Hoffman, L. C. et al. (2020). Inclusion of Hermetia illucens larvae reared on fish offal to the diet of broiler quails: Effect on immunity and caecal microbial populations. Czech Journal of Animal Science, 65(6), 213–223. https://doi.org/10.17221/60/2020-CJAS

34. Dalle Zotte, A., Singh, Y., Michiels, J., Cullere, M. (2019). Black soldier fly (Hermetia illucens) as dietary source for laying quails: Live performance, and egg physico-chemical quality, sensory profile and storage stability. Animals, 9(3), Article 115. https://doi.org/10.3390/ani9030115

35. Cullere, M., Tasoniero, G., Giaccone, V., Miotti-Scapin, R., Claeys, E., De Smet, S. et al. (2016). Black soldier fly as dietary protein source for broiler quails: Apparent digestibility, excreta microbial load, feed choice, performance, carcass and meat traits. Animal, 10(12), 1923–1930. https://doi.org/10.1017/S1751731116001270

36. Cullere, M., Tasoniero. G., Giaccone. V., Acuti, G., Marangon, A., Dalle Zotte, A. (2018). Black soldier fly as dietary protein source for broiler quails: Meat proximate composition, fatty acid and amino acid profile, oxidative status and sensory traits. Animal, 12(3), 640–647. https://doi.org/10.1017/S1751731117001860

37. Cullere, M., Woods, M. J., van Emmenes, L., Pieterse, E., Hoffman, L. C, Dalle Zotte, A. (2019). Hermetia illucens larvae reared on different substrates in broiler quail diets: Effect on physicochemical and sensory quality of the quail meat. Animals, 9(8), Article 525. https://doi.org/10.3390/ani9080525

38. Zadeh, Z. S., Kheiri, F., Faghani, M. (2019). Use of yellow mealworm (Tenebrio molitor) as a protein source on growth performance, carcass traits, meat quality and intestinal morphology of Japanese quails (Coturnix japonica). Veterinary and Animal Science, 8, Article 100066. https://doi.org/10.1016/j.vas.2019.100066

39. Ait-Kaki, A., Hornick, J.-L., El Otmani, S., Chebli, Y., Moula, N. (2021). Effect of dried mealworms (Tenebrio molitor), larvae and olive leaves (Olea europaea L.) on growth performance, carcass yield and some blood parameters of Japanese quail (Coturnix coturnix japonica). Animals, 11(6), Article 1631. https://doi.org/10.3390/ani11061631

40. Santana, L. da C., Mendonça, M. de O., Silva, V. R. O., Castro, M. das D. A., Costa, P. K. F., Moura, G. de S. et al. (2021). Performance and egg quality of Japanese quail fed diets containing microalgae Schizochytrium sp. Revista Brasileira de Zootecnia, 50, Article e20200161. https://doi.org/10.37496/rbz5020200161

41. Habibi, H., Ghahtan, N., Kohanmoo, M. A. (2019). Evaluation of dietary medicinal plants and algae in laying Japanese quails. Journal of World's Poultry Research, 9(2), 82–88. https://doi.org/10.36380/jwpr.2019.10

42. Oliveira, A. G. de, Furtado, D. A., Ribeiro, N. L., Marques, J. I., Leite, P. G., Mascarenhas, N. M. H. et al. (2023). Marine macroalgae as an alternative in the feeding of broiler quails in an environment of thermal stress. Food Science and Technology, 43, Article e116122. https://doi.org/10.5327/fst.116122

43. Dogan, S. C., Baylan, M., Erdogan, Z., Akpinar, G. C., Kucukgul, A., Duzguner, V. (2016). Performance, egg quality and serum parameters of Japanese quails fed diet supplemented with Spirulina platensis. Fresenius Environmental Bulletin, 25(12a), 5857–5862.

44. Cheong, D. S. W., Kasim, A., Sazili, A. Q., Hishamuddin, O. M. A. R., Teoh, J. Y. (2016). Effect of supplementing Spirulina on live performance, carcass composition and meat quality of Japanese quail. Walailak Journal of Science and Technology (WJST), 13(2), 77–84. https://doi.org/10.14456/WJST.2016.8

45. Abbass, M. S., Bandr, L. K., Alkhilani, F. M. H. (2022). Effect of adding different levels of spirulina algae (Spirulina platensis) to the diet of Japanese quail on the productive performance. Research Journal of Science, 3(1), 41–50.

46. Oliveira, M. C. de, Oliveira, M. A. D., Gonçalves, N. R., Ferreira, P. do C., Lima, D. S., Arantes, U. M. (2024). Spirulina in diets of Japanese quail: Productive performance, digestibility, and egg quality. Acta Scientiarum. Animal Sciences, 46, Article e63040. https://doi.org/10.4025/actascianimsci.v46i1.63040

47. Świątkiewicz, S., Arczewska-Włosek, A., Józefiak, D. (2015). Application of microalgae biomass in poultry nutrition. World's Poultry Science Journal, 71(4), 663–672. https://doi.org/10.1017/S0043933915002457

48. Amritha, N., Revathi, K., Babu, M. (February 11–13, 2016). Effect of green algae (Chlorella vulgaris) on the production performance of Japanese quails (Coturnix coturnix japonica). Proceedings of XV AZRA International Conference on “Recent Advances in Life Sciences”. Applied Zoologists Research Association (AZRA), Bhubaneswar, India 2016.

49. Medvedeva, L. N., Zorkina, O. V., Moskovets, M. V. (2022). Use of Chlorella vulgaris as a dietary supplement for quails bred at private farms. RUDN Journal of Agronomy and Animal Industries, 17(4), 499–513. (In Russian) https://doi.org/10.22363/2312-797X-2022-17-4-499-513

50. Anjalai, K., Revathi, K., Vidhya, G. (2020). Effect of dietary supplementation of Chlorella vulgaris (green microalgae) on egg quality characteristics of Japanese quail. Annals of the Romanian Society for Cell Biology, 24(1), 51–55.

51. Simopoulos, A. P. (2002). The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedicine and Pharmacotherapy, 56(8), 365–379. https://doi.org/10.1016/S0753-3322(02)00253-6

52. Asadi-Dizaji, A., Shahryar, H.A., Shaddel-Tili, A., Maheri-Sis, N., Ghiasi-Ghalehkandi, J. (2014). Effect of common mushroom (Agaricus bisporus) levels on growth performance and carcass yields of Japanese quails (Coturnix coturnix Japonica). Bulletin of Environment, Pharmacology and Life Sciences, 3(7), 1–5.

53. Vargas-Sánchez, R. D., Torrescano-Urrutia, G. R., Ibarra-Arias, F. J., PortilloLoera, J. J., Ríos-Rincón, F. G., Sánchez-Escalante, A. (2018). Effect of dietary supplementation with Pleurotus ostreatus on growth performance and meat quality of Japanese quail. Livestock Science, 207, 117–125. https://doi.org/10.1016/j.livsci.2017.11.015

54. Al-Tikriti, S. S., Al-douri, A. H. I. (2019). The effect of the adding Ganoderma lucidum fungus powder in the production performance for the brown Japanese Quail bird. Indian Journal of Public Health Research and Development, 10(7), 695– 679. https://doi.org/10.5958/0976-5506.2019.01652.8

55. Asadi-Dizaji, A., Shahryar, H. A., Maheri-Sis, N. (2017). Effect of levels of oyster mushroom (Pleurotus ostreatus) on performance and blood biochemical characteristics in Japanese quails (Coturnix coturnix). Iranian Journal of Applied Animal Science, 7(4), 687–691.


Review

For citations:


Polubesova M.A., Mechtaeva E.V., Chernov A.D., Sitnov V.Yu., Zhuravleva A.Z. The use of alternative protein sources in quail diets: A review. Food systems. 2024;7(3):336-344. (In Russ.) https://doi.org/10.21323/2618-9771-2024-7-3-336-344

Views: 1626


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)