Preview

Food systems

Advanced search

Potential for the application of DNA technologies in the brewing industry

https://doi.org/10.21323/2618-9771-2021-4-1-19-25

Abstract

The article presents an analysis of the literature data on research related to the use of DNA technologies in the brewing industry. Significant relevance among them is the work on combating widespread falsification of food products, including alcohol. Classical methods of assessing the quality and safety of beer do not allow us to identify the substitution of raw materials declared by the manufacturer — one of the large-scale areas of falsification. Therefore, the question of applying new approaches to the assessment of the authenticity of brewing products is relevant. In particular, the most complete identification of falsifications in the alcohol industry is made by molecular genetic analysis methods. This article discusses the methods of extraction of nucleic acids, as well as markers used as genetic targets in the DNA authentication of alcoholic beverages. The analyzed material indicates the possibility of using molecular genetic methods based on the polymerase chain reaction as modern laboratory tools for determining the authenticity of manufactured goods. In addition, the potential of using DNA technologies in the fight against contamination of industrial enterprises has been identified.

About the Authors

E. G. Lazareva
V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences
Russian Federation

Ekaterina G. Lazareva — Junior research scientist, Laboratory of Molecular Biology and Bioinformatics.

109316, Moscow, Talalikhina str., 26 Tel.: +7-499-245-61-18



Kh. Kh. Gilmanov
V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences
Russian Federation

Khamid Kh. Gilmanov — Candidate of biological sciences, Staff Scientist, Laboratory of Molecular Biology and Bioinformatics.

109316, Moscow, Talalikhina str., 26. Tel.: +7-499-245-61-18



A. V. Bigaeva
V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences
Russian Federation

Alana V. Bigaeva — Staff Scientist, Laboratory of Molecular Biology and Bioinformatics.

109316, Moscow, Talalikhina str., 26 Tel.: +7-499-245-61-18



S. V. Tuylkin
V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences
Russian Federation

Sergey V. Tyulkin — Doctor of Biological Sciences, Leading Scientist, Laboratory of Molecular Biology and Bioinformatics.

109316, Moscow, Talalikhina str., 26 Tel.: +7-499-245-61-18



R. R. Vafin
All-Russian Scientific Research Institute of the Brewing, Non-Alcoholic and Wine Industry — Branch of the V.M. Gorbatov Federal Research Center for Food Systems, RAS
Russian Federation

Ramil R. Vafin — Doctor of Biological Sciences, Professor of RAS, Leading  scientists, Interdisciplinary scientific and technical center of food quality  monitoring.

119021, Moscow, Rossolimo str., 7  Теl:+7-499-245-61-18



References

1. Clements, K. W., Lan, Y., Liu, H. (2020). Understanding alcohol consumption across countries. Applied Economics, 52(40), 4421-4439. https://doi.org/10.1080/00036846.2020.1735621

2. Anderson, K., Meloni, G., Swinnen, J. (2018). Global alcohol markets: Evolving consumption patterns, regulations, and industrial organizations. Annual Review of Resource Economics, 10, 105-132. https://doi.org/10.1146/annurev-resource-100517-023331

3. Overview of the Russian market of alcoholic beverages. Retrieved from https://ac.gov.ru/uploads/2-Publications/alcogol/al%D1%81o.2020.4.pdf Accessed February 06, 2021 (In Rissian)

4. De Keukeleirc, D. (2000). Fundamentals of beer and hop chemistry. Quimica Nova, 23(1), 108-112. https://doi.org/10.1590/s0100-40422000000l00019

5. Bokulich, N. A., Bamforth, C. W. (2013). The microbiology of malting and brewing. Microbiology and Molecular Biology Reviews, 77(2), 157-172. . https://doi.org/10.1128/MMBR.00060-12

6. Lachenmeier, D.W., Rehm, J. (2012). Is there a relationship between alcohol quality and health? Alcohol and Alcoholism, 48(1), 127-129. https://doi.org/10.1093/alcalc/ags101

7. Oganesyants, L.A., Khurshudyan, S.A., Galstyan, A.G. (2018). Food quality monitoring as the basic strategic element. Production Quality Control, 4, 56-59. (In Russian)

8. Lachenmeier, D. W., Frank, W., Humpfer, E., Schafer, H., Keller, S., Mortter, M., Spraul, M. (2005). Quality control of beer using high-resolution nuclear magnetic resonance spectroscopy and multivariate analysis. European Food Research and Technology, 220(2), 215-221. https://doi.org/10.1007/s00217-004-1070-7

9. Pokrivcak, J., Supekova, S. C., Lancaric, D., Savov, R., Toth, M., Vasina, R. (2019). Development of beer industry and craft beer expansion. Journal of Food and Nutrition Research, 58(1), 63-74.

10. Duarte, I., Barros, A., Belton, P. S., Righelato, R., Spraul, M., Humpfer, E., & Gil, A. M. (2002). High-resolution nuclear magnetic resonance spectroscopy and multivariate analysis for the characterization of beer. Journal of Agricultural and Food Chemistry, 50(9), 2475-2481. https://doi.org/10.1021/jf011345j

11. Fernandez, M. E., Figueiras, A. M., & Benito, C. (2002). The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin. Theoretical and Applied Genetics, 104(5), 845-851. https://doi.org/10.1007/s00122-001-0848-2

12. Rapacz, M., St^pien, A., Skorupa, K. (2012). Internal standards for quantitative RT-PCR studies of gene expression under drought treatment in barley (hordeum vulgare L.): The effects of developmental stage and leaf age. Acta Physiologiae Plantarum, 34(5), 1723-1733. https://doi.org/10.1007/s11738-012-0967-1

13. Oganesyants, L. A., Vafin, R. R., Galstyan, A. G., Semipyatniy, V. K., Khurshudyan, S. A., Ryabova, A. E. (2018). Prospects for DNA authentication in wine production monitoring. Foods and Raw Materials, 6(2), 438-448. https://doi.org/10.21603/2308-4057-2018-2-438-448

14. Nakamura, S., Tsushima, R., Ohtsubo, K. (2013). A novel method for the preparation of template DNA for PCR from beer to detect materials and to develop DNA markers to evaluate the quality of beer. Bioscience, Biotechnology and Biochemistry, 77(4), 820-831. https://doi.org/10.1271/bbb.120969

15. Nakamura, S., Haraguchi, K., Mitani, N., Ohtsubo, K. (2007). Novel preparation method of template DNAs from wine for PCR to differentiate grape (vitis vinifera L.) cultivar. Journal of Agricultural and Food Chemistry, 55(25), 10388-10395. https://doi.org/10.1021/jf072407u

16. Baxter, E. D., Hughes, P. S. (2001). An overview of the malting and brewing processes. Chapter in a book: Beer Quality, Safety and Nutritional Aspects. RSC: Cambridge, U.K., 2001. 1-13.

17. Bamforth, C.W. (2006). Scientific Principles of Malting and Brewing. American Society of Brewing Chemists: MN, USA, 2006.

18. Abdulina, I. R., Vafin, R. R., Zainullin, L. I., Alimova, F. K. (2012). Identification of the allelic variant of the Wx-A1G Waxy gene in the genotypes of spring wheat of domestic selection. Uchenye zapiski Kazanskogo Univer-siteta. Seriya estestvennye nauki, 154, (4), 158-163. (In Russian)

19. Abdulina I. R., Vafin R. R., Rzhanova I. V., Garaeva A. L., Askhadullin D. F., Askhadullin D. F. at al. (2013). Molecular identification of spring wheat genotypes by allelic variants of Waxy genes. Basic research, 2013, 1-1, 13-17. (In Russian)

20. Yamaguchi, O., Baba, T., Furusho, M. (1998). Relationship between genotype of hordein and malting quality in japanese barley. Breeding Science, 48(3), 309-314. https://doi.org/10.1270/jsbbs1951.48.30

21. Pulido, A., Bakos, F., Devic, M., Barnabas, B., Olmedilla, A. (2009). HvPG1 and ECA1: Two genes activated transcriptionally in the transition of barley microspores from the gametophytic to the embryogenic pathway. Plant Cell Reports, 28(4), 551-559. https://doi.org/10.1007/s00299-008-0662-2

22. Pomortsev, A.A., Lialina, E.V., Martynov, S.P. (2008). Polymorphism of hordei-coding loci in near eastern local populations of cultivated barley (Hordeum vulgare L.). Russian journal of genetics, 44(6), 709-721. https://doi.org/10.1134/S1022795408060112

23. Lyalina, E.V., Boldyrev, S.V., Pomortsev, A.A. (2016). Current state of the genetic polymorphism in spring barley (Hordeum vulgare L.) from Russia assessed by the alleles of hordein-coding loci. Russian journal of genetics, 52(6), 565-577. https://doi.org/10.1134/S1022795416060077

24. Washington, J.M., Box, A., Barr, A.R. (2000, 22-27 October). Developing waxy barley cultivars for food, feed and malt. International Barley Genetics. Volume: VIII. Adelaide, Australia.

25. Knox, C. A. P., Sonthayanon, B., Chandra, G. R., Muthukrishnan, S. (1987). Structure and organization of two divergent a-amylase genes from barley. Plant Molecular Biology, 9(1), 3-17. https://doi.org/10.1007/BF00017982

26. Paris, M., Jones, M. G. K., Eglinton, J. K. (2002). Genotyping single nucleotide polymorphisms for selection of barley p-amylase alleles. Plant Molecular Biology Reporter, 20(2), 149-159. https://doi.org/10.1007/BF02799430

27. Rasmussen, S. K., Klausen, J., Hejgaard, J., Svensson, B., Svendsen, I. (1996). Primary structure of the plant serpin BSZ7 having the capacity of chymotrypsin inhibition. Biochimica Et Biophysica Acta — Protein Structure and Molecular Enzymology, 1297(2), 127-130. https://doi.org/10.1016/S0167-4838(96)00115-X

28. Hirota, N., Kaneko, T., Kuroda, H., Kaneda, H., Takashio, M., Ito, K., Takeda, K. (2005). Characterization of lipoxygenase-1 null mutants in barley. Theoretical and Applied Genetics, 111(8), 1580-1584. https://doi.org/10.1007/s00122-005-0088-y

29. Lakhneko O. R., Morgun B. V., Kalendar R. M., Stepanenko, A.I., Troianovska, A.V., Rybalka, O.I. (2016). SSR analysis in the study of genetic diversity and similarity of barley cultivars. Biotechnologia Acta, 9(3)61-68. https://doi.org/10.15407/biotech9.03.061

30. Tomka, M., Urminska, D., Chnapek, M., Galova, Z. (2017). Potential of selected SSR markers for identification of malting barley genotypes. Journal of Microbiology, Biotechnology and Food Sciences, 6(6), 1276-1279. https://doi.org/10.15414/jmbfs.2017.6.6.1276-1279

31. Palumbo, F., Galla, G., Barcaccia, G. (2017). Developing a molecular identification assay of old landraces for the genetic authentication of typical agro-food products: The case study of the barley ‘agordino’. Food Technology and Biotechnology, 55(1), 29-39. https://doi.org/10.17113/ftb.55.01.17.4858

32. Chiapparino, E., Lee, D., Donini, P. (2004). Genotyping single nucleotide polymorphisms in barley by tetra-primer ARMS-PCR. Genome, 47(2), 414-420. https://doi.org/10.1139/g03-130

33. Hayden, M. J., Tabone, T., Mather, D. E. (2009). Development and assessment of simple PCR markers for SNP genotyping in barley. Theoretical and Applied Genetics, 119(5), 939-951. https://doi.org/10.1007/s00122-009-1101-7

34. Kurbakov, K.A., Konorov, E.A., Minaev, M. Yu., Kuznetsova, O.A. (2019). Multiplex real-time PCR with HRM for detection of Lactobacillus sakei and Lactobacillus curvatus in Food Samples. Food Technology and Biotechnology, 57(1), 97-104. https://doi.org/10.17113/ftb.57.01.19.5983

35. Lu, X., Fang, Y., Tian, B., Tong, T., Wang, J., Wang, H. at al. (2019). Genetic variation of HvXYN1 associated with endoxylanase activity and TAX content in barley (Hordeum vulgare L.). BMC Plant Biology, 19(1). https://doi.org/10.1186/s12870-019-1747-5

36. Ohtsubo, K., Nakamura, S., Yoza, K., Shishido, K. (2001). Identification of glutinous rice cultivars using rice cake as samples by the PCR method. Journal of the Japanese Society for Food Science and Technology, 48, 306310. https://doi.org/10.3136/nskkk.48.306

37. Tsukada, Y., Kitamura, K., Harada, K., Kaizuma, N. (1986). Genetic Analysis of Subunits of Two Major Storage Proteins (p-Conglycinin and Gly-cinin) in Soybean Seeds. Japanese Journal of Breeding, 36(4),390-400. https://doi.org/10.1270/jsbbs1951.36.390

38. Silletti, S., Morello, L., Gavazzi, F., Gian'i, S., Braglia, L., Breviario, D. (2019). Untargeted DNA-based methods for the authentication of wheat species and related cereals in food products. Food Chemistry, 271, 410418. https://doi.org/10.1016/j.foodchem.2018.07.178

39. Xu, Z., Xu, R., Soteyome, T., Deng, Y., Chen, L., Liang, Y. at al. (2020). Genomic analysis of a hop-resistance lactobacillus brevis strain responsible for food spoilage and capable of entering into the VBNC state. Microbial Pathogenesis, 145 Article 104186 https://doi.org/10.1016/j.mic-path.2020.104186

40. Schonling, J., Pick, E., Peter, U., Britton, S. (2019). Effect of autolytic byproducts on PCR-detection of beer spoilers in yeast slurry. BrewingScience, 72(9-10), 168-172. https://doi.org/10.23763/BrSc19-18schoenling

41. Schneiderbanger, J., Jacob, F., Hutzler, M. (2019). Genotypic and phenotypic diversity of lactobacillus rossiae isolated from beer. Journal of Applied Microbiology, 126(4), 1187-1198. https://doi.org/10.1111/jam.14202


Review

For citations:


Lazareva E.G., Gilmanov Kh.Kh., Bigaeva A.V., Tuylkin S.V., Vafin R.R. Potential for the application of DNA technologies in the brewing industry. Food systems. 2021;4(1):19-25. (In Russ.) https://doi.org/10.21323/2618-9771-2021-4-1-19-25

Views: 754


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)