Preview

Food systems

Advanced search

Food-contact surfaces coated with antimicrobial polymeric materials

https://doi.org/10.21323/2618-9771-2025-8-4-595-606

Abstract

The growing demand for improved food safety has fueled significant interest in antimicrobial polymeric coatings for food contact surfaces. This review offers a thorough examination of various antimicrobial coatings, including natural biopolymerbased, synthetic, and hybrid composites, spotlighting their modes of action and effectiveness in combating microbial contamination. It explores key antimicrobial agents such as metal-based compounds, natural antimicrobials, and synthetic chemicals, discussing their unique properties and potential applications. Equally, the review evaluates different testing methods for antimicrobial efficacy and identifies critical performance factors, including environmental conditions, surface properties, and the type of microbial contaminants. The hurdles and limitations of these coatings are also addressed, including concerns about durability, health and environmental impacts, and economic viability. Through detailed case studies, this review synthesizes current knowledge and offers insights into future research, with a particular focus on biodegradable polymers and innovative natural antimicrobials. The findings emphasize the potential of antimicrobial coatings to enhance food safety and inform the development of sustainable food packaging technologies, supporting advancements in health-conscious and environmentally friendly industrial applications.

About the Authors

G. I. Edo
Delta State University of Science and Technology; Al-Nahrain University
Nigeria

Great I. Edo, PhD, Lecturer, Department of Chemistry, Faculty of Science, Delta State University of Science and Technology; Department of Chemistry, College of Sciences, Al-Nahrain University

P. M. B. 05, Ozoro-Kwale Road, Ozoro, Delta State



G. N. Mafe
Taraba State University Jalingo
Nigeria

Alice N. Mafe, Lecturer, Department of Biological Sciences, Faculty of Science

ATC, 660213, Jalingo, Taraba State

 



T. S. Gaaz
Al-Mustaqbal University
Iraq

Tayser S. Gaaz, PhD, Lecturer, Department of Prosthetics and Orthotics Engineering, College of Engineering and Technologies

Hilla, Babylon Governorate

 



I. Iwanegbe
University of Benin
Nigeria

Izuwa Iwanegbe, PhD, Lecturer, Department of Food Science and Nutrition, Faculty of Agriculture

P.M.B. 1154, Ugbowo, Benin City, Edo State

 



A. N. Jikah
Near East University
Cyprus

Agatha N. Jikah, PhD, Lecturer, Department of Pharmacy, Faculty of Pharmacy

Near East Boulevard, 99138, Nicosia



K. Emumejaye
Delta State University of Science and Technology
Nigeria

Kugbere Emumejaye, PhD, Senior Lecturer, Department of Physics, Faculty of Science

P. M. B. 05, Ozoro-Kwale Road, Ozoro, Delta State



E. Yousif
Al-Nahrain University
Iraq

Emad Yousif, PhD, Professor, Department of Chemistry, College of Sciences

Al Jadriyah Bridge, 64074, Baghdad



Jo. O. Owheruo
Delta State University of Science and Technology
Nigeria

Joseph O. Owheruo, PhD, Lecturer, Department of Food Science and Technology, Faculty of Science

P. M. B. 05, Ozoro-Kwale Road, Ozoro, Delta State

 



U. A. Igbuku
Delta State University of Science and Technology
Nigeria

Ufuoma A. Igbuku, PhD, Lecturer, Department of Chemistry, Faculty of Science

P. M. B. 05, Ozoro-Kwale Road, Ozoro, Delta State



E. E.A. Oghroro
Delta State University of Science and Technology
Nigeria

Ephraim E. A. Oghroro, Lecturer, Department of Petroleum Chemistry, Faculty of Science

P. M. B. 05, Ozoro-Kwale Road, Ozoro, Delta State



R. S. Makia
Al-Nahrain University
Iraq

Raghda S. Makia, PhD, Lecturer, Department of Plant Biotechnology, College of Biotechnology

Al Jadriyah Bridge, 64074, Baghdad



A. E.A. Essaghah
Delta State University of Science and Technology
Nigeria

Arthur E. A. Essaghah, PhD, Professor, Department of Urban and Regional Planning, Faculty of Environmental Sciences

P. M. B. 05, Ozoro-Kwale Road, Ozoro, Delta State

 



D. S. Ahmed
Polytechnic College of Engineering Specializations — Baghdad, Middle Technical University
Iraq

Dina S. Ahmed, PhD, Lecturer, Department of Chemical and Petroleum Industries Engineering Techniques

10074, Baghdad

 



H. Umar
Operational Research Center in Healthcare, Near East University
Cyprus

Huzaifa Umar, PhD, Senior Scientist

Near East Boulevard, 99138, Nicosia



References

1. Sukhareva, K., Chernetsov, V., Burmistrov, I. (2024). A review of antimicrobial polymer coatings on steel for the food processing industry. Polymers, 16(6), Article 809. https://doi.org/10.3390/polym16060809

2. Abang, S., Wong, F., Sarbatly, R., Sariau, J., Baini, R., Besar, N. A. (2023). Bioplastic classifications and innovations in antibacterial, antifungal, and antioxidant applications. Journal of Bioresources and Bioproducts, 8(4), 361–387. https://doi.org/10.1016/j.jobab.2023.06.005

3. Mohammad, Z. H., Ahmad, F. (2024). Nanocoating and its application as antimicrobials in the food industry: A review. International Journal of Biological Macromolecules, 254, Article 127906. https://doi.org/10.1016/j.ijbiomac.2023.127906

4. Al-Maharma, A., Al-Huniti, N. (2019). Critical review of the parameters affecting the effectiveness of moisture absorption treatments used for natural composites. Journal of Composites Science, 3(1), Article 27. https://doi.org/10.3390/jcs3010027

5. Alkarri, S., Bin Saad, H., Soliman, M. (2024). On antimicrobial polymers: Development, mechanism of action, international testing procedures, and applications. Polymers, 16, Article 771. https://doi.org/10.3390/polym16060771

6. Michel, M., Eldridge, A. L., Hartmann, C., Klassen, P., Ingram, J., Meijer, G. W. (2024). Benefits and challenges of food processing in the context of food systems, value chains and sustainable development goals. Trends in Food Science and Technology, 153, Article 104703. https://doi.org/10.1016/j.tifs.2024.104703

7. Alirezalu, K., Yaghoubi, M., Poorsharif, L., Aminnia, S., Kahve, H. I., Pateiro, M. et al. (2021). Antimicrobial polyamide-alginate casing incorporated with nisin and ε-polylysine nanoparticles combined with plant extract for inactivation of selected bacteria in nitrite-free Frankfurter-type sausage. Foods, 10(5), Article 1003. https://doi.org/10.3390/foods10051003

8. Amrhar, R., Singh, J., Eesaee, M., Carrière, P., Saidi, A., Nguyen-Tri, P. (2025). Polymeric nanocomposites-based advanced coatings for antimicrobial and antiviral applications: A comprehensive overview. Results in Surfaces and Interfaces, 19, Article 100497. https://doi.org/10.1016/j.rsurfi.2025.100497

9. Visan, A. I., Negut, I. (2024). Coatings based on essential oils for combating antibiotic resistance. Antibiotics, 13(7), Article 625. https://doi.org/10.3390/antibiotics13070625

10. Olawore, O., Ogunmola, M., Desai, S. (2024). Engineered nanomaterial coatings for food packaging: Design, manufacturing, regulatory, and sustainability implications. Micromachines, 15(2), Article 245. https://doi.org/10.3390/mi15020245

11. Pakdel, M., Olsen, A., Bar, E. M. S. (2023). A review of food contaminants and their pathways within food processing facilities using open food processing equipment. Journal of Food Protection, 86(12), Article 100184. https://doi.org/10.1016/j.jfp.2023.100184

12. Yang, X., Narvaez-Bravo, C., Zhang, P. (2024). Driving forces shaping the microbial ecology in meat packing plants. Frontiers in Microbiology, 14, Article 1333696. https://doi.org/10.3389/fmicb.2023.1333696

13. Azamatov, B., Dzhes, A., Borisov, A., Kaliyev, D., Maratuly, B., Sagidugumar, A. et al. (2025). Antibacterial properties of copper-tantalum thin films: The impact of copper content and thermal treatment on implant coatings. Heliyon, 11(1), Article e41130. https://doi.org/10.1016/j.heliyon.2024.e41130

14. Onyeaka, H., Ghosh, S., Obileke, K., Miri, T., Odeyemi, O. A., Nwaiwu, O. et al. (2024). Preventing chemical contaminants in food: Challenges and prospects for safe and sustainable food production. Food Control, 155, Article 110040. https://doi.org/10.1016/j.foodcont.2023.110040

15. Tohonon, A. C., Ouétchéhou, R., Hounsou, M., Zannou, O., Dabadé, D. S. (2025). Food hygiene in Sub-Saharan Africa: A focus on catering services. Food Control, 168, Article 110938. https://doi.org/10.1016/j.foodcont.2024.110938

16. Babaei-Ghazvini, A., Acharya, B., Korber, D. R. (2021). Antimicrobial biodegradable food packaging based on chitosan and metal/metal-oxide bio-nanocomposites: A review. Polymers, 13(16), Article 2790. https://doi.org/10.3390/polym13162790

17. Barik, M., BhagyaRaj, G. V. S., Dash, K. K., Shams, R. (2024). A thorough evaluation of chitosan-based packaging film and coating for food product shelf-life extension. Journal of Agriculture and Food Research, 16, Article 101164. https://doi.org/10.1016/j.jafr.2024.101164

18. Liu, X., Yao, H., Zhao, X., Ge, C. (2023). Biofilm formation and control of foodborne pathogenic bacteria. Molecules, 28(6), Article 2432. https://doi.org/10.3390/molecules28062432

19. Birkett, M., Dover, L., Cherian Lukose, C., Wasy Zia, A., Tambuwala, M. M., Serrano-Aroca, Á. (2022). Recent advances in metal-based antimicrobial coatings for high-touch surfaces. International Journal of Molecular Sciences, 23(3), Article 1162. https://doi.org/10.3390/ijms23031162

20. Negut, I., Albu, C., Bita, B. (2024). Advances in antimicrobial coatings for preventing infections of head-related implantable medical devices. Coatings, 14(3), Article 256. https://doi.org/10.3390/coatings14030256

21. Dey, S., Nagababu, B. H. (2022). Applications of food color and bio-preservatives in the food and its effect on the human health. Food Chemistry Advances, 1, Article 100019. https://doi.org/10.1016/j.focha.2022.100019

22. Barshutina, M., Yakubovsky, D., Arsenin, A., Volkov, V., Barshutin, S., Vladimirova, A. et al. (2025). Biomimetic silicone surfaces for antibacterial applications. Polymers, 17(2), Article 213. https://doi.org/10.3390/polym17020213

23. Kalajahi, S. T., Misra, A., Koerdt, A. (2024). Nanotechnology to mitigate microbiologically influenced corrosion (MIC). Frontiers in Nanotechnology, 6, Article 1340352. https://doi.org/10.3389/fnano.2024.1340352

24. de Carvalho, T.B., Barbosa, J. B., Teixeira, P. (2023). Effectiveness and durability of a quaternary ammonium compounds-based surface coating to reduce surface contamination. Biology, 12(5), Article 669. https://doi.org/10.3390/biology12050669

25. Bizymis, A.-P., Kalantzi, S., Mamma, D., Tzia, C. (2023). Addition of silver nanoparticles to composite edible films and coatings to enhance their antimicrobial activity and application to cherry preservation. Foods, 12(23), Article 4295. https://doi.org/10.3390/foods12234295

26. Bromberg, L., Magariños, B., Concheiro, A., Hatton, T. A., Alvarez-Lorenzo, C. (2024). Nonleaching biocidal N-Halamine-Functionalized polyamine-, guanidine-, and hydantoin-based coatings. Industrial and Engineering Chemistry Research, 63(14), 6268–6278. https://doi.org/10.1021/acs.iecr.4c00320

27. da Cruz Nizer, W. S., Adams, M. E., Allison, K. N., Montgomery, M. C., Mosher, H., Cassol, E. et al. (2024). Oxidative stress responses in biofilms. Biofilm, 7, Article 100203. https://doi.org/10.1016/j.bioflm.2024.100203

28. Song, Q., Xiao, Z., Gao, H., Chen, X., Wang, K., Zhao, R. et al. (2024). Antimicrobial polymeric coatings synthesized by solvent-free initiated Chemical Vapor Deposition: A review. Chemical Engineering Journal, 494, Article 152287. https://doi.org/10.1016/j.cej.2024.152287

29. Zarrintaj, P., Seidi, F., Youssefi Azarfam, M., Khodadadi Yazdi, M., Erfani, A., Barani, M. et al. (2023). Biopolymer-based composites for tissue engineering applications: A basis for future opportunities. Composites Part B: Engineering, 258, Article 110701. https://doi.org/10.1016/j.compositesb.2023.110701

30. Ueda, J. M., Morales, P., Fernández-Ruiz, V., Ferreira, A., Barros, L., Carocho, M. et al. (2023). Powdered foods: Structure, processing, and challenges: A review. Applied Sciences, 13(22), Article 12496. https://doi.org/10.3390/app132212496

31. Duda-Chodak, A., Tarko, At., Petka-Poniatowska, K. (2023). Antimicrobial Compounds in Food Packaging. International Journal of Molecular Sciences, 24(3), Article 2457. https://doi.org/10.3390/ijms24032457

32. Satchanska, G., Davidova, S., Petrov, P. D. (2024). Natural and synthetic polymers for biomedical and environmental applications. Polymers, 16(8), Article 1159. https://doi.org/10.3390/polym16081159

33. Kalpana Manivannan, R., Sharma, N., Kumar, V., Jayaraj, I., Vimal, S., Umesh, M. (2024). A comprehensive review on natural macromolecular biopolymers for biomedical applications: Recent advancements, current challenges, and future outlooks. Carbohydrate Polymer Technologies and Applications, 8, Article 100536. https://doi.org/10.1016/j.carpta.2024.100536

34. Jahangiri, F., Mohanty, A. K., Misra, M. (2024). Sustainable biodegradable coatings for food packaging: Challenges and opportunities. Green Chemistry, 26(9), 4934–4974. https://doi.org/10.1039/D3GC02647G

35. Nasaj, M., Chehelgerdi, M., Asghari, B., Ahmadieh-Yazdi, A., Asgari, M., KabiriSamani, S. et al. (2024). Factors influencing the antimicrobial mechanism of chitosan action and its derivatives: A review. International Journal of Biological Macromolecules, 277, Article 134321. https://doi.org/10.1016/j.ijbiomac.2024.134321

36. Bucataru, C., Ciobanasu, C. (2024). Antimicrobial peptides: Opportunities and challenges in overcoming resistance. Microbiological Research, 286, Article 127822. https://doi.org/10.1016/j.micres.2024.127822

37. Elashnikov, R., Ulbrich, P., Vokatá, B., Pavlíčková, V. S., Švorčík, V., Lyutakov, O. et al. (2021). Physically switchable antimicrobial surfaces and coatings: General concept and recent achievements. Nanomaterials, 11(11), Article 3083. https://doi.org/10.3390/nano11113083

38. Yan, X., Meng, F., Wigati, L. P., Van, T. T., Phuong, N. T. H., Koga, A. et al. (2024). Improvement of cross-linked films based on chitosan/diepoxy-poly (ethylene glycol) incorporating trans-cinnamaldehyde essential oil: Preparation, properties, and application in banana storage. International Journal of Biological Macromolecules, 263, Article 130299. https://doi.org/10.1016/j.ijbiomac.2024.130299

39. Mostolizadeh, S. (2024). Alginate, Polymer Purified from Seaweed. Chapter in a book: Alginate — Applications and Future Perspectives. IntechOpen, 2024. https://doi.org/10.5772/intechopen.112666

40. Wathoni, N., Suhandi, C., Ghassani Purnama, M., Mutmainnah, A., Nurbaniyah, N., Syafra, D. et al. (2024). Alginate and chitosan-based hydrogel enhance antibacterial agent activity on topical application. Infection and Drug Resistance, 17, 791–805. https://doi.org/10.2147/IDR.S456403

41. Fadiji, T., Rashvand, M., Daramola, M. O., Iwarere, S. A. (2023). A review on Antimicrobial packaging for extending the shelf life of food. Processes, 11(2), Article 590. https://doi.org/10.3390/pr11020590

42. Andriani, V., Abyor Handayani, N. (2023). Recent technology of edible coating production: A review. Materials Today: Proceedings, 87, 200–206. https://doi.org/10.1016/j.matpr.2023.02.397

43. Lai, J., Azad, A. K., Sulaiman, W. M. A. W., Kumarasamy, V., Subramaniyan, V., Alshehade, S. A. (2024). Alginate-based encapsulation fabrication technique for drug delivery: An updated review of particle type, formulation technique, pharmaceutical ingredient, and targeted delivery system. Pharmaceutics, 16(3), Article 370. https://doi.org/10.3390/pharmaceutics16030370

44. Cen, S., Fang, Q., Tong, L., Yang, W., Zhang, J., Lou, Q. et al. (2021). Effects of chitosan-sodium alginate-nisin preservatives on the quality and spoilage microbiota of Penaeus vannamei shrimp during cold storage. International Journal of Food Microbiology, 349, Article 109227. https://doi.org/10.1016/j.ijfoodmicro.2021.109227

45. Ahmad, M. I., Li, Y., Pan, J., Liu, F., Dai, H., Fu, Y. et al. (2024). Collagen and gelatin: Structure, properties, and applications in food industry. International Journal of Biological Macromolecules, 254, Article 128037. https://doi.org/10.1016/j.ijbiomac.2023.128037

46. El-Sayed, S. M., Youssef, A. M. (2024). Emergence of cheese packaging by edible coatings for enhancing its shelf-life. Journal of Food Measurement and Characterization, 18(7), 5265–5280. https://doi.org/10.1007/s11694-024-02564-0

47. Rather, J. A., Kaur, G., Shah, I. A., Majid, D., Makroo, H. A., Dar, B. N. (2024). Sustainable gelatin-based packaging with nanoemulsified chilli seed oil for enhancing poultry meat preservation: An eco-friendly approach. Food Chemistry Advances, 5, Article 100761. https://doi.org/10.1016/j.focha.2024.100761

48. Gabrić, D., Kurek, M., Ščetar, M., Brnčić, M., Galić, K. (2022). Effect of nonthermal food processing techniques on selected packaging materials. Polymers, 14(23), Article 5069. https://doi.org/10.3390/polym14235069

49. Szadkowski, B., Śliwka-Kaszyńska, M., Marzec, A. (2024). Bioactive and biodegradable cotton fabrics produced via synergic effect of plant extracts and essential oils in chitosan coating system. Scientific Reports, 14, Article 8530. https://doi.org/10.1038/s41598-024-59105-4

50. Vanaraj, R., Suresh Kumar, S. M., Mayakrishnan, G., Rathinam, B., Kim, S. C. (2024). A current trend in efficient biopolymer coatings for edible fruits to enhance shelf life. Polymers, 16(18), Article 2639. https://doi.org/10.3390/polym16182639

51. Fernández-Cancelo, P., Giné-Bordonaba, J., Pérez-Gago, M. B., Palou, L., Torres, R., Echeverria, G. et al. (2024). A hydroxypropyl methylcellulose (HPMC)-based coating inhibits ethylene-dependent quality changes and reduces superficial scald incidence and blue mould severity during postharvest handling of two apple varieties. Postharvest Biology and Technology, 207, Article 112610. https://doi.org/10.1016/j.postharvbio.2023.112610

52. Hahn, S., Hennecke, D. (2023). What can we learn from biodegradation of natural polymers for regulation? Environmental Sciences Europe, 35(1), Article 50. https://doi.org/10.1186/s12302-023-00755-y

53. Schneider, G., Steinbach, A., Putics, Á., Solti-Hodován, Á., Palkovics, T. (2023). Potential of essential oils in the control of listeria monocytogenes. Microorganisms, 11(6), Article 1364. https://doi.org/10.3390/microorganisms11061364

54. Rob, Md. M., Pappu, Md. M. H., Arifin, Md. S., Era, T. N., Akhi, M. Z., Bhattacharjya, D. K. et al. (2024). Application and evaluation of plant-based edible active coatings to enhance the shelf-life and quality attributes of Jara lebu (Citrus medica). Discover Food, 4, Article 26. https://doi.org/10.1007/s44187-024-00094-8

55. Kumar, A., Yadav, S., Pramanik, J., Sivamaruthi, B. S., Jayeoye, T. J., Prajapati, B. G. et al. (2023). Chitosan-based composites: Development and perspective in food preservation and biomedical applications. Polymers, 15(15), Article 3150. https://doi.org/10.3390/polym15153150

56. Metha, C., Pawar, S., Suvarna, V. (2024). Recent advancements in alginate-based films for active food packaging applications. Sustainable Food Technology, 2(5), 1246–1265. https://doi.org/10.1039/D3FB00216K

57. Gaidau, C., Râpă, M., Stanca, M., Tanase, M.-L., Olariu, L., Constantinescu, R. R. et al. (2023). Fish scale gelatin nanofibers with helichrysum italicum and lavandula latifolia essential oils for bioactive wound-healing dressings. Pharmaceutics, 15(12), Article 2692. https://doi.org/10.3390/pharmaceutics15122692

58. Vermelho, A. B., Moreira, J. V., Junior, A. N., da Silva, C. R., Cardoso, V. da S., Akamine, I. T. (2024). Microbial preservation and contamination control in the baking industry. Fermentation, 10(5), Article 231. https://doi.org/10.3390/fermentation10050231

59. Upadhyay, P., Zubair, M., Roopesh, M. S., Ullah, A. (2024). An overview of advanced antimicrobial food packaging: Emphasizing antimicrobial agents and polymerbased films. Polymers, 16(14), Article 2007. https://doi.org/10.3390/polym16142007

60. Cheng, C., Chen, S., Su, J., Zhu, M., Zhou, M., Chen, T. et al. (2022). Recent advances in carrageenan-based films for food packaging applications. Frontiers in Nutrition, 9, Article 1004588. https://doi.org/10.3389/fnut.2022.1004588

61. Fukala, I., Kučera, I. (2024). Natural polyhydroxyalkanoates — An overview of bacterial production methods. Molecules, 29(10), Article 2293. https://doi.org/10.3390/molecules29102293

62. Vadalà, R., De Maria, L., De Pasquale, R., Di Salvo, E., Lo Vecchio, G., Di Bella, G. et al. (2024). Development of a chitosan-based film from shellfish waste for the preservation of various cheese types during storage. Foods, 13(13), Article 2055. https://doi.org/10.3390/foods13132055

63. Santativongchai, P., Tulayakul, P., Jeon, B. (2023). Enhancement of the antibiofilm activity of nisin against listeria monocytogenes using food plant extracts. Pathogens, 12(3), Article 444. https://doi.org/10.3390/pathogens12030444

64. Shankar, S., Mohanty, A. K., DeEll, J. R., Carter, K., Lenz, R., Misra, M. et al. (2024). Advances in antimicrobial techniques to reduce postharvest loss of fresh fruit by microbial reduction. Npj Sustainable Agriculture, 2(1), Article 25. https://doi.org/10.1038/s44264-024-00029-x

65. Liñán-Atero, R., Aghababaei, F., García, S. R., Hasiri, Z., Ziogkas, D., Moreno, A. et al. (2024). Clove essential oil: Chemical profile, biological activities, encapsulation strategies, and food applications. Antioxidants, 13(4), Article 488. https://doi.org/10.3390/antiox13040488

66. Bento de Carvalho, T., Silva, B. N., Tomé, E., Teixeira, P. (2024). Preventing fungal spoilage from raw materials to final product: Innovative preservation techniques for fruit fillings. Foods, 13(17), Article 2669. https://doi.org/10.3390/foods13172669

67. Kurek, M., Pišonić, P., Ščetar, M., Janči, T., Čanak, I., Vidaček Filipec, S. et al. (2024). Edible coatings for fish preservation: Literature data on storage temperature, product requirements, antioxidant activity, and coating performance — A review. Antioxidants, 13(11), Article 1417. https://doi.org/10.3390/antiox13111417

68. Hakeem, M. J., Lu, X. (2021). Survival and control of campylobacter in poultry production environment. Frontiers in Cellular and Infection Microbiology, 10, Article 615049. https://doi.org/10.3389/fcimb.2020.615049

69. Husak, Y., Ma, J., Wala-Kapica, M., Leśniak, K., Babilas, D., Blacha-Grzechnik, A. et al. (2024). Antibacterial coatings on magnesium formed via plasma electrolytic oxidation in CuO suspension. Materials Chemistry and Physics, 323, Article 129627. https://doi.org/10.1016/j.matchemphys.2024.129627

70. Riolo, M., Villena, A. M., Calpe, J., Luz, C., Meca, G., Tuccitto, N. et al. (2024). A circular economy approach: A new formulation based on a lemon peel medium activated with lactobacilli for sustainable control of post-harvest fungal rots in fresh citrus fruit. Biological Control, 189, Article 105443. https://doi.org/10.1016/j.biocontrol.2024.105443

71. Edo, G. I., Mafe, A. N., Ali, A. B. M., Akpoghelie, P. O., Yousif, E., Apameio, J. I. et al. (2025). Chitosan and its derivatives: A novel approach to gut microbiota modulation and immune system enhancement. International Journal of Biological Macromolecules, 289, Article 138633. https://doi.org/10.1016/j.ijbiomac.2024.138633

72. Kaur, R., Pathak, L., Vyas, P. (2024). Biobased polymers of plant and microbial origin and their applications — A review. Biotechnology for Sustainable Materials, 1(1), Article 13. https://doi.org/10.1186/s44316-024-00014-x

73. Jogaiah, S., Mujtaba, A. G., Mujtaba, M., Archana, De Britto, S., Geetha, N. et al. (2025). Chitosan-metal and metal oxide nanocomposites for active and intelligent food Packaging: A comprehensive review of emerging trends and associated challenges. Carbohydrate Polymers, 357, Article 123459. https://doi.org/10.1016/j.carbpol.2025.123459

74. Kocić-Tanackov, S., Pavlović, H. (2023). Natural antimicrobial agents utilized in food preservation. Foods, 12(18), Article 3484. https://doi.org/10.3390/foods12183484

75. Karnwal, A., Kumar, G., Singh, R., Selvaraj, M., Malik, T., Al Tawaha, A. R. M. (2025). Natural biopolymers in edible coatings: Applications in food preservation. Food Chemistry: X, 25, Article 102171. https://doi.org/10.1016/j.fochx.2025.102171

76. Gabrić, D., Kurek, M., Ščetar, M., Brnčić, M., Galić, K. (2023). Characterization of synthetic polymer coated with biopolymer layer with natural orange peel extract aimed for food packaging. Polymers, 15(11), Article 2569. https://doi.org/10.3390/polym15112569

77. Perez-Vazquez, A., Barciela, P., Carpena, M., Prieto, M. (2023). Edible coatings as a natural packaging system to improve fruit and vegetable shelf life and quality. Foods, 12(19), Article 3570. https://doi.org/10.3390/foods12193570

78. Mohanan, N., Montazer, Z., Sharma, P. K., Levin, D. B. (2020). Microbial and enzymatic degradation of synthetic plastics. Frontiers in Microbiology, 11, Article 580709. https://doi.org/10.3389/fmicb.2020.580709

79. Burelo, M., Hernández-Varela, J. D., Medina, D. I., Treviño-Quintanilla, C. D. (2023). Recent developments in bio-based polyethylene: Degradation studies, waste management and recycling. Heliyon, 9(11), Article e21374. https://doi.org/10.1016/j.heliyon.2023.e21374

80. Tan, C., Han, F., Zhang, S., Li, P., Shang, N. (2021). Novel bio-based materials and applications in antimicrobial food packaging: Recent advances and future trends. International Journal of Molecular Sciences, 22(18), Article 9663. https://doi.org/10.3390/ijms22189663

81. Kim, D.-Y., Patel, S. K. S., Rasool, K., Lone, N., Bhatia, S. K., Seth, C. S. et al. (2024). Bioinspired silver nanoparticle-based nanocomposites for effective control of plant pathogens: A review. Science of The Total Environment, 908, Article 168318. https://doi.org/10.1016/j.scitotenv.2023.168318

82. Barretto, R., Qi, G., Jones, C., Li, Y., Sun, X. S., Wang, D. (2024). Bio-based disposable containers for food services. Advances in Polymer Technology, 2024, 1–20. https://doi.org/10.1155/2024/5536535

83. González-López, M. E., Calva-Estrada, S. de J., Gradilla-Hernández, M. S., Barajas-Álvarez, P. (2023). Current trends in biopolymers for food packaging: A review. Frontiers in Sustainable Food Systems, 7, Article 1225371. https://doi.org/10.3389/fsufs.2023.1225371

84. Gil, M., Rudy, M. (2023). Innovations in the packaging of meat and meat products– a review. Coatings, 13(2), Article 333. https://doi.org/10.3390/coatings13020333

85. Fadiji, T., Rashvand, M., Daramola, M. O., Iwarere, S. A. (2023). A review on antimicrobial packaging for extending the shelf life of food. Processes, 11(2), Article 590. https://doi.org/10.3390/pr11020590

86. Yang, W., Li, J., Yao, Z., Li, M. (2024). A review on the alternatives to antibiotics and the treatment of antibiotic pollution: Current development and future prospects. Science of The Total Environment, 926, Article 171757. https://doi.org/10.1016/j.scitotenv.2024.171757

87. Muñoz-Tebar, N., Pérez-Álvarez, J. A., Fernández-López, J., Viuda-Martos, M. (2023). Chitosan edible films and coatings with added bioactive compounds: Antibacterial and antioxidant properties and their application to food products: A review. Polymers, 15, Article 396. https://doi.org/10.3390/polym15020396

88. Tan, L. F., Yap, V. L., Rajagopal, M., Wiart, C., Selvaraja, M., Leong, M. Y. et al. (2022). Plant as an alternative source of antifungals against aspergillus infections: A review. Plants, 11, Article 3009. https://doi.org/10.3390/plants11223009

89. Kocira, A., Kozłowicz, K., Panasiewicz, K., Staniak, M., Szpunar-Krok, E., Hortyńska, P. (2021). Polysaccharides as edible films and coatings: Characteristics and influence on fruit and vegetable quality — A review. Agronomy, 11(5), Article 813. https://doi.org/10.3390/agronomy11050813

90. Kumari, S., Debbarma, R., Nasrin, N., Khan, T., Taj, S., Bhuyan, T. (2024). Recent advances in packaging materials for food products. Food Bioengineering, 3(2), 236–249. https://doi.org/10.1002/fbe2.12096

91. Pinto, L., Bonifacio, M. A., De Giglio, E., Santovito, E., Cometa, S., Bevilacqua, A. et al. (2021). Biopolymer hybrid materials: Development, characterization, and food packaging applications. Food Packaging and Shelf Life, 28, Article 100676. https://doi.org/10.1016/j.fpsl.2021.100676

92. Barik, M., BhagyaRaj, G. V. S., Dash, K. K., Shams, R. (2024). A thorough evaluation of chitosan-based packaging film and coating for food product shelf-life extension. Journal of Agriculture and Food Research, 16, Article 101164. https://doi.org/10.1016/j.jafr.2024.101164

93. Lewandowski, K., Skórczewska, K. (2022). A brief review of Poly(Vinyl Chloride) (PVC) recycling. Polymers, 14(15), Article 3035. https://doi.org/10.3390/polym14153035

94. Saberi Riseh, R., Vatankhah, M., Hassanisaadi, M., Kennedy, J. F. (2023). Chitosan-based nanocomposites as coatings and packaging materials for the postharvest improvement of agricultural product: A review. Carbohydrate Polymers, 309, Article 120666. https://doi.org/10.1016/j.carbpol.2023.120666

95. Liu, Y., Xu, W. Z., Charpentier, P. A. (2020). Synthesis of VO2/Poly(MMA ¬codMEMUABr) antimicrobial/thermochromic dual-functional coatings. Progress in Organic Coatings, 142, Article 105589. https://doi.org/10.1016/j.porgcoat.2020.105589

96. Naser, A. Z., Deiab, I., Defersha, F., Yang, S. (2021). Expanding poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs) applications: A review on modifications and effects. Polymers, 13(23), Article 4271. https://doi.org/10.3390/polym13234271

97. Shiva, K., Soleimani, A., Morshedian, J., Farahmandghavi, F., Shokrolahi, F. et al. (2024). Improving the antibacterial properties of polyethylene food packaging films with Ajwain essential oil adsorbed on chitosan particles. Scientific Reports, 14(1), Article 28802. https://doi.org/10.1038/s41598-024-80349-7

98. Zeng, L., Fan, A., Yang, G., Nong, Y., Lu, Y., Yang, R. et al. (2024). Nisin and ε-polylysine combined treatment enhances quality of fresh-cut jackfruit at refrigerated storage. Frontiers in Nutrition, 11, Article 1299810. https://doi.org/10.3389/fnut.2024.1299810

99. Said, N. S., Sarbon, N. M. (2022). Physical and mechanical characteristics of gelatin-based films as a potential food packaging material: A review. Membranes, 12(5), Article 442. https://doi.org/10.3390/membranes12050442

100. Hussain, S., Akhter, R., Maktedar, S. S. (2024). Advancements in sustainable food packaging: From eco-friendly materials to innovative technologies. Sustainable Food Technology, 2(5), 1297–1364. https://doi.org/10.1039/D4FB00084F

101. Mohammed, M., Jawad, A. J. M., Mohammed, A. M., Oleiwi, J. K., Adam, T., Osman, A. F. et al. (2023). Challenges and advancement in water absorption of natural fiber-reinforced polymer composites. Polymer Testing, 124, Article 108083. https://doi.org/10.1016/j.polymertesting.2023.108083

102. Rezić, I., Somogyi Škoc, M. (2024). Computational methodologies in synthesis, preparation and application of antimicrobial polymers, biomolecules, and nanocomposites. Polymers, 16(16), Article 2320. https://doi.org/10.3390/polym16162320

103. Mukherjee, C., Varghese, D., Krishna, J. S., Boominathan, T., Rakeshkumar, R., Dineshkumar, S. et al. (2023). Recent advances in biodegradable polymers — properties, applications and future prospects. European Polymer Journal, 192, Article 112068. https://doi.org/10.1016/j.eurpolymj.2023.112068

104. Jha, S., Akula, B., Enyioma, H., Novak, M., Amin, V., Liang, H. (2024). Biodegradable biobased polymers: A Review of the state of the art, challenges, and future directions. Polymers, 16(16), Article 2262. https://doi.org/10.3390/polym16162262

105. Lieu, M. D., Dang, T. K. T., Nguyen, T. H. (2024). Green synthesized silver nanoparticles, a sustainable approach for fruit and vegetable preservation: An overview. Food Chemistry: X, 23, Article 101664. https://doi.org/10.1016/j.fochx.2024.101664

106. Sateriale, D., Forgione, G., De Cristofaro, G. A., Pagliuca, C., Colicchio, R., Salvatore, P. et al. (2023). Antibacterial and antibiofilm efficacy of thyme (Thymus vulgaris L.) essential oil against foodborne illness pathogens, Salmonella enterica subsp. enterica Serovar Typhimurium and Bacillus cereus. Antibiotics, 12(3), Article 485. https://doi.org/10.3390/antibiotics12030485

107. Ozuna-Valencia, K. H., Moreno-Vásquez, M. J., Graciano-Verdugo, A. Z., Rodríguez-Félix, F., Robles-García, M. Á., Barreras-Urbina, C. G. et al. (2024). The application of organic and inorganic nanoparticles incorporated in edible coatings and their effect on the physicochemical and microbiological properties of seafood. Processes, 12(9), Article 1889. https://doi.org/10.3390/pr12091889

108. Li, S., Jiang, Y., Wang, M., Li, R., Dai, J., Yan, J. et al. (2022). 3D printing of essential oil/β-cyclodextrin/popping candy modified atmosphere packaging for strawberry preservation. Carbohydrate Polymers, 297, Article 120037. https://doi.org/10.1016/j.carbpol.2022.120037

109. Dai, J., Sameen, D. E., Zeng, Y., Li, S., Qin, W., Liu, Y. et al. (2022). An overview of tea polyphenols as bioactive agents for food packaging applications. LWT, 167, Article 113845. https://doi.org/10.1016/j.lwt.2022.113845

110. Khalid, S., Hassan, S. A., Javaid, H., Zahid, M., Naeem, M., Bhat, Z. F. et al. (2024). Factors responsible for spoilage, drawbacks of conventional packaging, and advanced packaging systems for tomatoes. Journal of Agriculture and Food Research, 15, Article 100962. https://doi.org/10.1016/j.jafr.2023.100962

111. Isopencu, G., Deleanu, I., Busuioc, C., Oprea, O., Surdu, V.-A., Bacalum, M. et al. (2023). Bacterial cellulose–carboxymethylcellulose composite loaded with turmeric extract for antimicrobial wound dressing applications. International Journal of Molecular Sciences, 24(2), Article 1719. https://doi.org/10.3390/ijms24021719

112. Chaudhari, A. K., Das, S., Dwivedi, A., Dubey, N. K. (2023). Application of chitosan and other biopolymers based edible coatings containing essential oils as green and innovative strategy for preservation of perishable food products: A review. International Journal of Biological Macromolecules, 253, Article 127688. https://doi.org/10.1016/j.ijbiomac.2023.127688

113. da Silva, D. J., Gramcianinov, G. B., Jorge, P. Z., Malaquias, V. B., Mori, A. A., Hirata, M. H. et al. (2023). PVC containing silver nanoparticles with antimicrobial properties effective against SARS-CoV 2. Frontiers in Chemistry, 11, Article 1083399. https://doi.org/10.3389/fchem.2023.1083399

114. Ikkene, D., Eggenberger, O. M., Schoenenberger, C.-A., Palivan, C. G. (2023). Engineering antimicrobial surfaces by harnessing polymeric nanoassemblies. Current Opinion in Colloid and Interface Science, 66, Article 101706. https://doi.org/10.1016/j.cocis.2023.101706

115. Miranda, M., Bai, J., Pilon, L., Torres, R., Casals, C., Solsona, C. et al. (2024). Fundamentals of edible coatings and combination with biocontrol agents: A strategy to improve postharvest fruit preservation. Foods, 13(18), Article 2980. https://doi.org/10.3390/foods13182980

116. Li, H., Xu, H. (2024). Mechanisms of bacterial resistance to environmental silver and antimicrobial strategies for silver: A review. Environmental Research, 248, Article 118313. https://doi.org/10.1016/j.envres.2024.118313

117. Monika, P., Krishna, R. H., Hussain, Z., Nandhini, K., Pandurangi, S. J., Malek, T. et al. (2025). Antimicrobial hybrid coatings: A review on applications of nano ZnO based materials for biomedical applications. Biomaterials Advances, 172, Article 214246. https://doi.org/10.1016/j.bioadv.2025.214246

118. Mikhailova, E. O. (2020). Silver nanoparticles: Mechanism of action and probable bio-application. Journal of Functional Biomaterials, 11(4), Article 84. https://doi.org/10.3390/jfb11040084

119. Mafe, A. N., Büsselberg, D. (2024). Impact of metabolites from foodborne pathogens on cancer. Foods, 13(23), Article 3886. https://doi.org/10.3390/foods13233886

120. Chen, S.-T., Chien, H.-W., Cheng, C.-Y., Huang, H.-M., Song, T.-Y., Chen, Y.-C. et al. (2021). Drug-release dynamics and antibacterial activities of chitosan/cefazolin coatings on Ti implants. Progress in Organic Coatings, 159, Article 106385. https://doi.org/10.1016/j.porgcoat.2021.106385

121. Song, Q., Chan, S. Y., Xiao, Z., Zhao, R., Zhang, Y., Chen, X. et al. (2024). Contactkilling antibacterial mechanisms of polycationic coatings: A review. Progress in Organic Coatings, 188, Article 108214. https://doi.org/10.1016/j.porgcoat.2024.108214

122. Georgakopoulos-Soares, I., Papazoglou, E. L., Karmiris-Obratański, P., Karkalos, N. E., Markopoulos, A. P. (2023). Surface antibacterial properties enhanced through engineered textures and surface roughness: A review. Colloids and Surfaces B: Biointerfaces, 231, Article 113584. https://doi.org/10.1016/j.colsurfb.2023.113584

123. Lainioti, G. C., Druvari, D. (2024). Designing antibacterial-based quaternary ammonium coatings (surfaces) or films for biomedical applications: Recent advances. International Journal of Molecular Sciences, 25(22), Article 12264. https://doi.org/10.3390/ijms252212264

124. Edo, G.I., Mafe, A.N., Ali, A.B.M., Akpoghelie, P.O., Yousif, E., Apameio, J.I. et al. (2025). Chitosan and its derivatives: A novel approach to gut microbiota modulation and immune system enhancement. International Journal of Biological Macromolecules, 289, Article 138633. https://doi.org/10.1016/j.ijbiomac.2024.138633

125. Ferreres, G., Ivanova, K., Ivanov, I., Tzanov, T. (2023). Nanomaterials and coatings for managing antibiotic-resistant biofilms. Antibiotics, 12(2), Article 310. https://doi.org/10.3390/antibiotics12020310

126. Wu-Wu, J. W. F., Guadamuz-Mayorga, C., Oviedo-Cerdas, D., Zamora, W. J. (2023). Antibiotic resistance and food safety: Perspectives on new technologies and molecules for microbial control in the food industry. Antibiotics, 12(3), Article 550. https://doi.org/10.3390/antibiotics12030550

127. Ghosh, S., Sarkar, T., Chakraborty, R. (2021). Formation and development of biofilm- an alarming concern in food safety perspectives. Biocatalysis and Agricultural Biotechnology, 38, Article 102210. https://doi.org/10.1016/j.bcab.2021.102210

128. Yin, W., Xu, S., Wang, Y., Zhang, Y., Chou, S.-H., Galperin, M. Y. et al. (2021). Ways to control harmful biofilms: Prevention, inhibition, and eradication. Critical Reviews in Microbiology, 47(1), 57–78. https://doi.org/10.1080/1040841X.2020.1842325

129. Fernández-Gómez, P., Muro-Fraguas, I., Múgica-Vidal, R., Sainz-García, A., Sainz-García, E., González-Raurich, M. et al. (2022). Development and characterization of anti-biofilm coatings applied by Non-Equilibrium Atmospheric Plasma on stainless steel. Food Research International, 152, Article 109891. https://doi.org/10.1016/j.foodres.2020.109891

130. Caykara, T., Fernandes, S., Braga, A., Rodrigues, J., Rodrigues, L. R., Silva, C. J. (2023). Can superhydrophobic PET surfaces prevent bacterial adhesion? Nanomaterials, 13(6), Article 1117. https://doi.org/10.3390/nano13061117

131. Iaconis, A., De Plano, L. M., Caccamo, A., Franco, D., Conoci, S. (2024). Antibiofilm strategies: A focused review on innovative approaches. Microorganisms, 12(4), Article 639. https://doi.org/10.3390/microorganisms12040639

132. Le, P. H., Linklater, D. P., Medina, A. A., MacLaughlin, S., Crawford, R. J., Ivanova, E. P. (2024). Impact of multiscale surface topography characteristics on Candida albicans biofilm formation: From cell repellence to fungicidal activity. Acta Biomaterialia, 177, 20–36. https://doi.org/10.1016/j.actbio.2024.02.006

133. Uzoma, P. C., Etim, I.-I. N., Okonkwo, B. O., Olanrele, O. S., Njoku, D. I., Kolawole, S. K. et al. (2023). Recent design approaches, adhesion mechanisms, and applications of antibacterial surfaces. Chemical Engineering Journal Advances, 16, Article 100563. https://doi.org/10.1016/j.ceja.2023.100563

134. Iñiguez-Moreno, M., Gutiérrez-Lomelí, M., Avila-Novoa, M. G. (2021). Removal of mixed-species biofilms developed on food contact surfaces with a mixture of enzymes and chemical agents. Antibiotics, 10(8), Article 931. https://doi.org/10.3390/antibiotics10080931

135. Alfei, S., Schito, G. C., Schito, A. M., Zuccari, G. (2024). Reactive oxygen species (ROS)-mediated antibacterial oxidative therapies: Available methods to generate ROS and a novel option proposal. International Journal of Molecular Sciences, 25(13), Article 7182. https://doi.org/10.3390/ijms25137182

136. Mitra, A. (2024). Combatting biofilm-mediated infections in clinical settings by targeting quorum sensing. The Cell Surface, 12, Article 100133. https://doi.org/10.1016/j.tcsw.2024.100133

137. Leulmi Pichot, S., Joisten, H., Grant, A. J., Dieny, B., Cowburn, R. P. (2020). Magneto-mechanically actuated microstructures to efficiently prevent bacterial biofilm formation. Scientific Reports, 10(1), Article 15470. https://doi.org/10.1038/s41598-020-72406-8

138. Fontecha-Umaña, F., Ríos-Castillo, A. G., Ripolles-Avila, C., Rodríguez-Jerez, J. J. (2020). Antimicrobial activity and prevention of bacterial biofilm formation of silver and zinc oxide nanoparticle-containing polyester surfaces at various concentrations for use. Foods, 9(4), Article 442. https://doi.org/10.3390/foods9040442

139. Tanasă, F., Nechifor, M., Teacă, C.-A. (2024). Essential oils as alternative green broad-spectrum biocides. Plants, 13(23), Article 3442. https://doi.org/10.3390/plants13233442

140. Jung, J., Wen, J., Sun, Y. (2019). Amphiphilic quaternary ammonium chitosans self-assemble onto bacterial and fungal biofilms and kill adherent microorganisms. Colloids and Surfaces B: Biointerfaces, 174, 1–8. https://doi.org/10.1016/j.colsurfb.2018.10.078

141. Edo, G.I., Mafe, A.N., Ali, A.B.M., Akpoghelie, P.O., Yousif, E., Isoje, E.F. et al. (2025). Green biosynthesis of nanoparticles using plant extracts: Mechanisms, advances, challenges, and applications. BioNanoScience, 15, Article 267. https://doi.org/10.1007/s12668-025-01883-w

142. Edo, G.I., Mafe, A.N., Ali, A.B.M., Akpoghelie, P.O., Yousif, E., Isoje, E.F. et al. (2025). Evaluation of different antimicrobial polymeric coatings for food contact surfaces. Discover Food, 5, Article 179. https://doi.org/10.1007/s44187-025-00487-3

143. Nwachukwu, S. C., Edo, G. I., Jikah, A. N., Emakpor, O. L., Akpoghelie, P. O., Agbo, J. J. et al. (2024). Recent advances in the role of mass spectrometry in the analysis of food: A review. Journal of Food Measurement and Characterization, 18(6), 4272–4287. https://doi.org/10.1007/s11694-024-02492-z

144. Bibi, A., Afza, G., Afzal, Z., Farid, M., Sumrra, S. H., Hanif, M. A. et al. (2024). Synthetic vs. natural antimicrobial agents for safer textiles: A comparative review. RSC Advances, 14(42), 30688–30706. https://doi.org/10.1039/D4RA04519J

145. Jiang, H., Li, L., Li, Z., Chu, X. (2024). Metal-based nanoparticles in antibacterial application in biomedical field: Current development and potential mechanisms. Biomedical Microdevices, 26(1), Article 12. https://doi.org/10.1007/s10544-023-00686-8

146. Reda, A. T., Park, J. Y., Park, Y. T. (2024). Zinc oxide-based nanomaterials for microbiostatic activities: A review. Journal of Functional Biomaterials, 15(4), Article 103. https://doi.org/10.3390/jfb15040103

147. Khaldoun, K., Khizar, S., Saidi-Besbes, S., Zine, N., Errachid, A., Elaissari, A. et al. (2024). Synthesis of silver nanoparticles as an antimicrobial mediator. Journal of Umm Al-Qura University for Applied Sciences, 11(2), 274–293. https://doi.org/10.1007/s43994-024-00159-5

148. Hyla, K., Dusza, I., Skaradzińska, A. (2022). Recent advances in the application of bacteriophages against common foodborne pathogens. Antibiotics, 11(11), Article 1536. https://doi.org/10.3390/antibiotics11111536

149. Mondal, S. K., Chakraborty, S., Manna, S., Mandal, S. M. (2024). Antimicrobial nanoparticles: Current landscape and future challenges. Pharmaceutics, 1(3), 388–402. https://doi.org/10.1039/D4PM00032C

150. Dube, E. (2024). Antimicrobial photodynamic therapy: Self-disinfecting surfaces for controlling microbial infections. Microorganisms, 12(8), Article 1573. https://doi.org/10.3390/microorganisms12081573

151. Huq, Md. A., Apu, Md. A. I., Ashrafudoulla, Md., Rahman, Md. M., Parvez, Md. A. K., Balusamy, S. R. et al. (2023). Bioactive ZnO nanoparticles: Biosynthesis, characterization and potential antimicrobial applications. Pharmaceutics, 15(11), Article 2634. https://doi.org/10.3390/pharmaceutics15112634

152. Abdelshafy, A. M., Neetoo, H., Al-Asmari, F. (2024). Antimicrobial activity of hydrogen peroxide for application in food safety and COVID 19 mitigation: An updated review. Journal of Food Protection, 87(7), Article 100306. https://doi.org/10.1016/j.jfp.2024.100306

153. Salmani-Zarchi, H., Mousavi-Sagharchi, S. M. A., Sepahdoost, N., Ranjbar-Jamalabadi, M., Gross, J. D., Jooya, H. et al. (2024). Antimicrobial feature of nanoparticles in the antibiotic resistance era: From mechanism to application. Advanced Biomedical Research, 13(1), Article 113. https://doi.org/10.4103/abr.abr_92_24

154. Owheruo, J. O., Edo, G. I., Ifesan, B. O., Bolade, M. K., Origbemisoye, B. A., Akpoghelie, P. O. et al. (2023). Evaluation of nutraceutical property of extruded breakfast cereal produced from blends of malted finger millet (Eleusine coracana) and watermelon (Citrullus lanatus) seed flour. Vegetos, 37(6), 2347–2361. https://doi.org/10.1007/s42535-023-00728-9

155. Asiminicesei, D.-M., Fertu, D. I., Gavrilescu, M. (2024). Impact of heavy metal pollution in the environment on the metabolic profile of medicinal plants and their therapeutic potential. Plants, 13(6), Article 913. https://doi.org/10.3390/plants13060913

156. Edo, G. I., Samuel, P. O., Nwachukwu, S. C. (2023). Bioactive compounds and biological activities of tiger nut (Cyperus esculentus L.). Chapter in a book: Bioactive Compounds in the Storage Organs of Plants. Springer, Cham, 2023. https://doi.org/10.1007/978-3-031-29006-0_34-1

157. Edo, G. I., Yousif, E., Al-Mashhadani, M. H. (2024). Chitosan: An overview of biological activities, derivatives, properties, and current advancements in biomedical applications. Carbohydrate Research, 542, Article 109199. https://doi.org/10.1016/j.carres.2024.109199

158. Edo, G. I., Onoharigho, F. O., Jikah, A. N., Agbo, J. J. (2024). The ameliorative effect of methanol extract of Ricinodendron heudelotii (Baill.) leaves on paracetamol-induced hepatotoxicity in Wistar rats. Drug and Chemical Toxicology, 48(1), 98–106. https://doi.org/10.1080/01480545.2024.2362891

159. Moses, R. J., Edo, G. I., Jikah, A. N., Agbo, J. J. (2024). Bioactive compounds and biological activities of garlic. Current Food Science and Technology Reports, 2(2), 111–120. https://doi.org/10.1007/s43555-024-00029-5

160. Edo, G.I., Ndudi, W., Ali, A.B.M., Yousif, E., Jikah, A.N., Isoje, E.F. et al. (2025). Biopolymers: An inclusive review. Hybrid Advances, 9, Article 100418. https://doi.org/10.1016/j.hybadv.2025.100418

161. Ndudi, W., Edo, G. I., Samuel, P. O., Jikah, A. N., Opiti, R. A., Ainyanbhor, I. E. et al. (2024). Traditional fermented foods of Nigeria: Microbiological safety and health benefits. Journal of Food Measurement and Characterization, 18(6), 4246–4271. https://doi.org/10.1007/s11694-024-02490-1

162. Farid, N., Waheed, A., Motwani, S. (2023). Synthetic and natural antimicrobials as a control against food borne pathogens: A review. Heliyon, 9(6), Article e17021. https://doi.org/10.1016/j.heliyon.2023.e17021

163. Quinto, E. J., Caro, I., Villalobos-Delgado, L. H., Mateo, J., De-Mateo-Silleras, B., Redondo-Del-Río, M. P. (2019). Food safety through natural antimicrobials. Antibiotics, 8(4), Article 208. https://doi.org/10.3390/antibiotics8040208

164. Vereshchagin, A. N., Frolov, N. A., Egorova, K. S., Seitkalieva, M. M., Ananikov, V. P. (2021). Quaternary ammonium compounds (QACs) and ionic liquids (ILs) as biocides: From simple antiseptics to tunable antimicrobials. International Journal of Molecular Sciences, 22(13), Article 6793. https://doi.org/10.3390/ijms22136793

165. Akpoghelie, P. O., Edo, G. I., Ali, S. I., Kasar, K. A., Zainulabdeen, K., Mohammed, A. A. et al. (2024). Effect of processing on the microbiological, proximate, antinutritional and mineral profile of selected yellow cassava varieties and sorghum malt as potential raw materials for alcoholic beverage production. Beverage Plant Research, 4(1), 0–0. https://doi.org/10.48130/bpr 0024-0022

166. Ifedinezi, O. V., Nnaji, N. D., Anumudu, C. K., Ekwueme, C. T., Uhegwu, C. C., Ihenetu, F. C. et al. (2024). Environmental antimicrobial resistance: Implications for food safety and public health. Antibiotics, 13(11), Article 1087. https://doi.org/10.3390/antibiotics13111087

167. Crnčević, D., Ramić, A., Kastelic, A. R., Odžak, R., Krce, L., Weber, I. et al. (2024). Naturally derived 3-aminoquinuclidine salts as new promising therapeutic agents. Scientific Reports, 14(1), Article 26211. https://doi.org/10.1038/s41598-024-77647-5

168. Boyce, J. M. (2023). Quaternary ammonium disinfectants and antiseptics: Tolerance, resistance and potential impact on antibiotic resistance. Antimicrobial Resistance and Infection Control, 12(1), Article 32. https://doi.org/10.1186/s13756-023-01241-z

169. Hopf, F. S. M., Roth, C. D., de Souza, E. V., Galina, L., Czeczot, A. M., Machado, P. et al. (2022). Bacterial enoyl-reductases: The ever-growing list of fabs, their mechanisms and inhibition. Frontiers in Microbiology, 13, Article 891610. https://doi.org/10.3389/fmicb.2022.891610

170. Jikah, A. N., Edo, G. I. (2024). Turmeric (Curcuma longa): An insight into its food applications, phytochemistry and pharmacological properties. Vegetos, 38(3), 845–866. https://doi.org/10.1007/s42535-024-01038-4

171. Pozzebon, E. A., Seifert, L. (2023). Emerging environmental health risks associated with the land application of biosolids: A scoping review. Environmental Health, 22(1), Article 57. https://doi.org/10.1186/s12940-023-01008-4

172. Arnold, W. A., Blum, A., Branyan, J., Bruton, T. A., Carignan, C. C., Cortopassi, G. et al. (2023). Quaternary ammonium compounds: A chemical class of emerging concern. Environmental Science and Technology, 57(20), 7645–7665. https://doi.org/10.1021/acs.est.2c08244

173. Edo, G. I., Ndudi, W., Makia, R. S., Ainyanbhor, I. E., Yousif, E., Gaaz, T. S. et al. (2024). Beta-glucan: An overview in biological activities, derivatives, properties, modifications and current advancements in food, health and industrial applications. Process Biochemistry, 147, 347–370. https://doi.org/10.1016/j.procbio.2024.09.011

174. Anand, U., Carpena, M., Kowalska-Góralska, M., Garcia-Perez, P., Sunita, K., Bontempi, E. et al. (2022). Safer plant-based nanoparticles for combating antibiotic resistance in bacteria: A comprehensive review on its potential applications, recent advances, and future perspective. Science of The Total Environment, 821, Article 153472. https://doi.org/10.1016/j.scitotenv.2022.153472

175. Jikah, A. N., Edo, G. I., Makia, R. S., Yousif, E., Gaaz, T. S., Isoje, E. F. et al. (2024). A review of the therapeutic potential of sulfur compounds in Allium sativum. Measurement: Food, 15, Article 100195. https://doi.org/10.1016/j.meafoo.2024.100195

176. Marin-Kuan, M., Pagnotti, V., Patin, A., Moulin, J., Latado, H., Varela, J. et al. (2023). Interlaboratory study to evaluate a testing protocol for the safety of food packaging coatings. Toxics, 11(2), Article 156. https://doi.org/10.3390/toxics11020156

177. Salam, Md. A., Al-Amin, Md. Y., Pawar, J. S., Akhter, N., Lucy, I. B. (2023). Conventional methods and future trends in antimicrobial susceptibility testing. Saudi Journal of Biological Sciences, 30(3), Article 103582. https://doi.org/10.1016/j.sjbs.2023.103582

178. Gangwar, R., Salem, M. M., Maurya, V. K., Bekhit, M. M., Singh, N., Amara, A. A. A. F. et al. (2024). Exploring time-killing and biofilm inhibition potential of bioactive proteins extracted from two varieties of Pleurotus ostreatus. Frontiers in Microbiology, 15, Article 1456358. https://doi.org/10.3389/fmicb.2024.1456358

179. Rios, D. A. da S., Nakamoto, M. M., Braga, A. R. C., da Silva, E. M. C. (2022). Food coating using vegetable sources: Importance and industrial potential, gaps of knowledge, current application, and future trends. Applied Food Research, 2(1), Article 100073. https://doi.org/10.1016/j.afres.2022.100073

180. Zhang, X., Hou, X., Ma, L., Shi, Y., Zhang, D., Qu, K. et al. (2023). Analytical methods for assessing antimicrobial activity of nanomaterials in complex media: Advances, challenges, and perspectives. Journal of Nanobiotechnology, 21(1), Article 97. https://doi.org/10.1186/s12951-023-01851-0

181. Akpoghelie, P. O., Edo, G. I., Kasar, K. A., Zainulabdeen, K., Yousif, E., Mohammed, A. A. et al. (2024). Impact of different nitrogen sources, initial pH and varying inoculum size on the fermentation potential of Saccharomyces cerevisiae on wort obtained from sorghum substrate. Food Materials Research, 4(1), Article e021. https://doi.org/10.48130/fmr 0024-0012

182. Hossain, T. J. (2024). Methods for screening and evaluation of antimicrobial activity: A review of protocols, advantages, and limitations. European Journal of Microbiology and Immunology, 14(2), 97–115. https://doi.org/10.1556/1886.2024.00035

183. Edo, G. I., Ndudi, W., Makia, R. S., Jikah, A. N., Yousif, E., Gaaz, T. S. et al. (2024). Nutritional immunological effects and mechanisms of chemical constituents from the homology of medicine and food. Phytochemistry Reviews, 24(5), 4183– 4217. https://doi.org/10.1007/s11101-024-10034-0

184. Korte, I., Petry, M., Kreyenschmidt, J. (2023). Antimicrobial activity of different coatings for packaging materials containing functional extenders against selected microorganisms typical for food. Food Control, 148, Article 109669. https://doi.org/10.1016/j.foodcont.2023.109669

185. Edo, G. I., Yousif, E., Al-Mashhadani, M. H. (2024). Chitosan: Modification and biodegradability of by-products. Polymer Bulletin, 81(18), 16457–16507. https://doi.org/10.1007/s00289-024-05510-8

186. Owheruo, J. O., Edo, G. I., Makia, R. S., Gaaz, T. S., Okolie, M. C., Nwaogu, M. U. et al. (2024). Nutritional qualities of cookies made from wheat/cashew nut composite flour. Food and Humanity, 3, Article 100452. https://doi.org/10.1016/j.foohum.2024.100452

187. Pramanik, S. K., Bhuiyan, M., Robert, D., Roychand, R., Gao, L., Cole, I. et al. (2024). Bio-corrosion in concrete sewer systems: Mechanisms and mitigation strategies. Science of The Total Environment, 921, Article 171231. https://doi. org/10.1016/j.scitotenv.2024.171231

188. Edo, G. I., Ndudi, W., Ali, A. B. M., Yousif, E., Zainulabdeen, K., Onyibe, P. N. et al. (2024). Poly(vinyl chloride) (PVC): An updated review of its properties, polymerization, modification, recycling, and applications. Journal of Materials Science, 59(47), 21605–21648. https://doi.org/10.1007/s10853-024-10471-4

189. Edo, G. I., Nwachukwu, S. C., Makia, R. S., Jikah, A. N., Yousif, E., Gaaz, T. S. et al. (2024). Unveiling the Chinese or red date (Ziziphus jujuba); its phytochemical, botanical, industrial and pharmacological properties: A review. Phytochemistry Reviews, 24(5), 4237–4270. https://doi.org/10.1007/s11101-024-10037-x

190. Schwibbert, K., Richter, A. M., Krüger, J., Bonse, J. (2023). Laser-textured surfaces: A way to control biofilm formation? Laser and Photonics Reviews, 18(1), Article 2300753. https://doi.org/10.1002/lpor.202300753

191. Mafe, A. N., Büsselberg, D. (2024). Mycotoxins in food: Cancer risks and strategies for control. Foods, 13(21), Article 3502. https://doi.org/10.3390/foods13213502

192. Hussein, A. K., Yousif, E., Rasheed, M. K., Edo, G. I., Bufaroosha, M., Umar, H. (2024). Synthesis, modification, and applications of poly(vinyl chloride) (PVC). Polymer-Plastics Technology and Materials, 64(5), 593–632. https://doi.org/10.1080/25740881.2024.2421436

193. Srinivasan, R., Santhakumari, S., Poonguzhali, P., Geetha, M., Dyavaiah, M., Xiangmin, L. (2021). Bacterial biofilm inhibition: A focused review on recent therapeutic strategies for combating the biofilm mediated infections. Front Microbiol Frontiers in Microbiology, 12, Article 676458. https://doi.org/10.3389/fmicb.2021.676458

194. Bharadishettar, N., Bhat K, U., Bhat Panemangalore, D. (2021). Coating technologies for copper based antimicrobial active surfaces: A perspective review. Metals, 11(5), Article 711. https://doi.org/10.3390/met11050711

195. Anand, U., Reddy, B., Singh, V. K., Singh, A. K., Kesari, K. K., Tripathi, P. et al. (2021). Potential environmental and human health risks caused by antibioticresistant bacteria (ARB), antibiotic resistance genes (ARGs) and emerging contaminants (ECs) from municipal solid waste (MSW) landfill. Antibiotics, 10(4), Article 374. https://doi.org/10.3390/antibiotics10040374

196. Peretz-Andersson, E., Tabares, S., Mikalef, P., Parida, V. (2024). Artificial intelligence implementation in manufacturing SMEs: A resource orchestration approach. International Journal of Information Management, 77, Article 102781. https://doi.org/10.1016/j.ijinfomgt.2024.102781

197. Elahi, M., Afolaranmi, S. O., Martinez Lastra, J. L., Perez Garcia, J. A. (2023). A comprehensive literature review of the applications of AI techniques through the lifecycle of industrial equipment. Discover Artificial Intelligence, 3(1), Article 43. https://doi.org/10.1007/s44163-023-00089-x


Review

For citations:


Edo G.I., Mafe G.N., Gaaz T.S., Iwanegbe I., Jikah A.N., Emumejaye K., Yousif E., Owheruo J.O., Igbuku U.A., Oghroro E.E., Makia R.S., Essaghah A.E., Ahmed D.S., Umar H. Food-contact surfaces coated with antimicrobial polymeric materials. Food systems. 2025;8(4):595-606. https://doi.org/10.21323/2618-9771-2025-8-4-595-606

Views: 10

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)