Development and evaluation of low-calorie strawberry jam enriched with psyllium husk: A functional ingredient approach
https://doi.org/10.21323/2618-9771-2025-8-4-576-582
Abstract
This study aimed to develop a nutritionally enhanced strawberry jam by partially replacing sugar with psyllium husk, a functional dietary fiber known for its water-binding and gel-forming capabilities. Three reduced-sugar formulations (Trials 1–3) containing 25 % psyllium husk solution and varying sugar concentrations (12 %, 26 %, and 30 %) were compared to a traditional control jam (66 % Brix). The impact of psyllium inclusion on the physical, chemical, microbiological, and sensory properties of the jams was evaluated. Sensory analysis was performed by a trained panel of 20 consumers using a 9-point hedonic scale to assess appearance, flavor, odor, spreadability, and overall acceptability. Results showed that psyllium-enriched formulations had significantly lower Brix, total carbohydrates, ash content, and estimated caloric values, while fiber content increased up to 1.05 g/100 g. The pH of all samples remained below 3.0, ensuring microbial safety, with total plate counts <1.0 log CFU/g across all treatments. Instrumental color analysis indicated improved lightness and redness in fiber-enriched samples. Among the tested samples, Trial 3 (30 % sugar, 25 % psyllium husk solution) achieved the highest sensory scores and reached a final Brix value of 63 %, making it the most acceptable formulation. These findings demonstrate that psyllium husk can successfully replace part of sugar while enhancing nutritional value, texture, and palatability. The optimized formulation shows promising potential for commercial application in producing healthier, low-calorie fruit preserves.
About the Authors
A. A. BaioumyEgypt
Ahmed A. Baioumy, Assistant Professor, Department of Food Science, Faculty of Agriculture
1 Gamaa Street, 12613, Giza
F. A. Abdeldayem
Egypt
Fayrouz A. Abdeldayem, Graduate, Department of Food Science, Faculty of Agriculture
1 Gamaa Street, 12613, Giza
T. T. Abdelfattah
Egypt
Tasneem T. Abdelfattah, Graduate, Department of Food Science, Faculty of Agriculture
1 Gamaa Street, 12613, Giza
M. M. Aziz
Egypt
Maria M. Aziz, Graduate, Department of Food Science, Faculty of Agriculture
1 Gamaa Street, 12613, Giza
R. R. Hamed
Egypt
Rawan R. Hamed, Graduate, Department of Food Science, Faculty of Agriculture
1 Gamaa Street, 12613, Giza
Ya. H. Yousef
Egypt
Yasmine H. Yousef, Graduate, Department of Food Science, Faculty of Agriculture
1 Gamaa Street, 12613, Giza
T. G. Abedelmaksoud
Egypt
Tarek G. Abedelmaksoud, Associate Professor, Department of Food Science, Faculty of Agriculture
1 Gamaa Street, 12613, Giza
References
1. Shojaee, F. M., Kazemi, E. M., Nosrati, H., Kolahi, M., Haghi, M. (2023). Evaluation of phytochemicals and the role of oxidative stress pathways during fruit development in strawberries (Fragaria × ananassa). Turkish Journal of Botany, 47(5), 342–352. https://doi.org/10.55730/1300-008X.2772
2. Charoenwoodhipong, P., Zuelch, M. L., Keen, C. L., Hackman, R. M., Holt, R. R. (2025). Strawberry (Fragaria x Ananassa) intake on human health and disease outcomes: A comprehensive literature review. Critical Reviews in Food Science and Nutrition, 65(25), 4884–4914. https://doi.org/10.1080/10408398.2024.2398634
3. Yuan, H., Yu, H., Huang, T., Shen, X., Xia, J., Pang, F. et al. (2019). The complexity of the Fragaria x ananassa(octoploid) transcriptome by single-molecule longread sequencing. Horticulture Research, 6, Article 46. https://doi.org/10.1038/s41438–019–0145–3 https://doi.org/10.1038/s41438-019-0126-6
4. Hasiów-Jaroszewska, B., Zarzyńska-Nowak, A. (2024). Stralarivirus fragariae (latent ring spot of strawberry). CABI Compendium, 2024. https://doi.org/10.1079/cabicompendium.5220
5. Milosavljević, D., Maksimović, V., Milivojević, J., Djekić, I., Wolf, B., Zuber, J. et al. (2023). Sugars and organic acids in 25 strawberry cultivars: Qualitative and quantitative study. Plants, 12(12), Article 2238. https://doi.org/10.3390/plants12122238
6. Newerli-Guz, J., Śmiechowska, M., Drzewiecka, A., Tylingo, R. (2023). Bioactive ingredients with health-promoting properties of strawberry fruit (Fragaria × ananassa Duchesne). Molecules, 28(6), Article 2711. https://doi.org/10.3390/molecules28062711
7. Giampieri, F., Forbes-Hernandez, T. Y., Gasparrini, M., Afrin, S., Cianciosi, D., Reboredo-Rodriguez, P. et al. (2017). The healthy effects of strawberry bioactive compounds on molecular pathways related to chronic diseases. Annals of the New York Academy of Sciences, 1398(1), 62–71. https://doi.org/10.1111/nyas.13373
8. Priyadarshi, R., Jayakumar, A., de Souza, C. K., Rhim, J. W., Kim, J. T. (2024). Advances in strawberry postharvest preservation and packaging: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 23(4), Article e13417. https://doi.org/10.1111/1541-4337.13417
9. Shahat, M., Ibrahim, M.I., Osheba, A.S., Taha, I.M. (2020). Improving the quality and shelf-life of strawberries as coated with nano-edible films during storage. Al-Azhar Journal of Agricultural Research, 45(2), 1–14. https://doi.org/10.21608/ajar.2020.149403
10. Awulachew, M. T. (2021). Fruit jam production. International Journal of Food Science, Nutrition and Dietetics, 10(4), 532–537. https://doi.org/10.19070/2326-3350-2100092
11. WHO (2025). WHO Sugar Recommendations. Retrieved from https://www.ages.at/en/human/nutrition-food/nutrition-recommendations/who-sugar-recommendations Accessed October 8, 2025.
12. WHO (2015). WHO calls on countries to reduce sugars intake among adults and children. Retrieved from https://www.who.int/news/item/04–03–2015-whocalls-on-countries-to-reduce-sugars-intake-among-adults-and-children Accessed October 8, 2025.
13. Huang, Y., Chen, Z., Chen, B., Li, J., Yuan, X., Li, J. et al. (2023). Dietary sugar consumption and health: Umbrella review. BMJ, 381, Article e071609. https://doi.org/10.1136/bmj 2022-071609
14. WHO. e-Library of Evidence for Nutrition Actions (eLENA). (2023). Reducing free sugars intake in adults to reduce the risk of noncommunicable diseases. Retrieved from https://www.who.int/tools/elena/interventions/free-sugarsadults-ncds Accessed October 8, 2025
15. Beikzadeh, S., Peighambardoust, S. H., Beikzadeh, M., Javar-Abadi, M. A., Homayouni-Rad, A. (2016). Effect of psyllium husk on physical, nutritional, sensory, and staling properties of dietary prebiotic sponge cake. Czech Journal of Food Sciences, 34(6), 534–540. https://doi.org/10.17221/551/2015-CJFS
16. Chen, X., Gao, X., Chen, J., Liu, Y., Song, C., Liu, W. et al. (2022). Application of psyllium husk as a friendly filtrate reducer for high-temperature waterbased drilling fluids. ACS Omega, 7(32), 27787–27797. https://doi.org/10.1021/acsomega.1c04999
17. Belorio, M., Gómez, M. (2021). Psyllium: A useful functional ingredient in food systems. Critical Reviews in Food Science and Nutrition, 62(2), 527–538. https://doi.org/10.1080/10408398.2020.1822276
18. Gordon, D. (2020). FDA approval of added fiber as dietary fiber. Current Developments in Nutrition, 4(Suppl_2), 632–632. https://doi.org/10.1093/cdn/nzaa049_025
19. Brody, T. (2016). Food and dietary supplement package labeling — Guidance from FDA’s warning letters and title 21 of the Code of Federal Regulations. Comprehensive Reviews in Food Science and Food Safety, 15(1), 92–129. https://doi.org/10.1111/1541-4337.12172
20. Rodrigues, L. M., de Souza, D. F., da Silva, E. A., de Oliveira, T. O., de Lima, J. P. (2017). Physical and chemical characterization and quantification of bioactive compounds in berries and berry jams. Semina: Ciências Agrárias, 38(4), 1853– 1864. https://doi.org/10.5433/1679-0359.2017v38n4p1853
21. Ogunlade, A. O., Oluwafemi, G. I. (2021). Production and evaluation of jam produced from plum and African Star apple blends. Food Research, 5(4), 93–98. https://doi.org/10.26656/fr.2017.5(4).031
22. Agrawal, R. (2021). Psyllium: A source of dietary fiber. Chapter in a book: Dietary Fibers. IntechOpen, 2021. https://10.5772/intechopen.99372
23. Fu, Q. -q., Liu, R., Zhou, L., Zhang, J. -w., Zhang, W. -g., Wang, R. -r. (2022). Effects of psyllium husk powder on the emulsifying stability, rheological properties, microstructure, and oxidative stability of oil-in-water emulsions. Food Control, 134, Article 108716. https://doi.org/10.1016/j.foodcont.2021.108716
24. Vukoja, J., Pichler, A., Kopjar, M. (2019). Stability of anthocyanins, phenolics and color of tart cherry jams. Foods, 8(7), Article 255. https://doi.org/10.3390/foods8070255
25. Codex Standard for Jams (Fruit Preserves) And Jellies (Codex Stan 79–1981). Retrieved from https://www.fao.org/input/download/standards/11254/CXS_296e.pdf Accessed October 8, 2025
26. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.
27. AOAC. (2005). Association of Official Analytical Chemists-Official methods of analysis (18th ed.). Washington, DC: AOAC, 2005.
28. Ali, M. A., Hashish, M. H., Fekry, M. M. (2023). Microbiological quality of some packed and unpacked bread products in Alexandria, Egypt. Journal of the Egyptian Public Health Association, 98(1), Article 16. https://doi.org/10.1186/s42506-023-00141-9
29. Wichchukit, S., O’Mahony, M. (2015). The 9-point hedonic scale and hedonic ranking in food science: Some reappraisals and alternatives. Journal of the Science of Food and Agriculture, 95(11), 2167–2178. https://doi.org/10.1002/jsfa.6993
30. Mishra, P., Singh, U., Pandey, C. M., Mishra, P., Pandey, G. (2019). Application of Student’s t-test, analysis of variance, and covariance. Annals of Cardiac Anaesthesia, 22(4), 407–411. https://doi.org/10.4103/aca.ACA_94_19
31. Noman, A. H., Mahin, M. I., Rashid, M. H. A. (2024). Development and consumer acceptance of date jam enriched with apple and orange. Malaysian Journal of Halal Research, 7(2), 36–41. http://doi.org/10.26480/mjhr.02.2024.36.41
32. Figueroa, L. E., Genovese, D. B. (2020). Structural and sensory analysis of compositionally optimized apple jellies enriched with dietary fibre compared to commercial apple jams. Journal of Food Science and Technology, 57(5), 1661–1670. https://doi.org/10.1007/s13197-019-04199-2
33. Kassa, M.G., Teferi, D.A., Asemu, A. M., Belachew, M. T., Satheesh, N., Abera, B. D. et al. (2024). Review on psyllium husk: Nutritional, functional, health benefits, food industry applications, waste treatment, and potential negative effects. CyTA-Journal of Food, 22(1), Article 2409174. https://doi.org/10.1080/19476337.2024.2409174
34. Figueroa, L. E., Genovese, D. B. (2019). Fruit jellies enriched with dietary fibre: Development and characterization of a novel functional food product. LWT, 111, 423–428. https://doi.org/10.1016/j.lwt.2019.05.031
35. Abutair, A. S., Naser, I. A., Hamed, A. T. (2016). Soluble fibers from psyllium improve glycemic response and body weight among diabetes type 2 patients (randomized control trial). Nutrition Journal, 15(1), Article 86. https://doi.org/10.1186/s12937-016-0207-4
36. Ho, L. -H., Yasmira, I., Norlia, M. (2020). Proximate composition, physicochemical characteristics and sensory evaluation of reduced-calorie belimbi fruit (Averrhoa belimbi) jam with maltitol. Food Research, 4(5), 1545–1553. https://doi.org/10.26656/fr.2017.4(5).090
37. Yadav, M., Hossain, S. A., Bharti, B.K., Jaiswal, M. (2018). Comparative study of physico-chemical property in different brands of jam, honey and jelly. Journal of Pharmacognosy and Phytochemistry, 7(5), 2186–2191.
38. Brandão, T. M., do Carmo, E. L., Elias, H. E. S., de Carvalho, E. E. N., Borges, S. V., Martins, G. A. S. (2018). Physicochemical and microbiological quality of dietetic functional mixed cerrado fruit jam during storage. The Scientific World Journal, 2018(1), Article 2878215. https://doi.org/10.1155/2018/2878215
39. Kayshar, M. S., Saifullah, M., Rahman, A., Uddin, M. B. (2014). An overview of quality status of selected commercial brands of juices and jams based on public perception and laboratory analysis. Journal of the Bangladesh Agricultural University, 12(1), 183–188. https://doi.org/10.3329/jbau.v12i1.21410
40. Abolila, R. M., Barakat, H., El-Tanahy, H. A., El-Mansy, H. A. (2015). Chemical, nutritional and organoleptical characteristics of orange-based formulated low-calorie jams. Food and Nutrition Sciences, 6(13), 1229–1244. https://doi.org/10.4236/fns.2015.613129
41. Banaś, A., Korus, A., Tabaszewska, M. (2018). Quality assessment of low-sugar jams enriched with plant raw materials exhibiting health-promoting properties. Journal of Food Science and Technology, 55(1), 408–417. https://doi.org/10.1007/s13197-017-2952-6
42. Shinwari, K. J., Rao, P. S. (2020). Development of a reduced-calorie high pressure processed sapodilla (Manilkara zapota L.) jam based on rheological, textural, and sensory properties. Journal of Food Science, 85(9), 2699–2710. https://doi.org/10.1111/1750-3841.15364
43. Ogori, A.F., Amove, J., Evi-Parker, P., Sardo, G., Okpala, C.O.R., Bono, G. et al. (2021). Functional and sensory properties of jam with different proportions of pineapple, cucumber, and Jatropha leaf. Foods and Raw Materials, 9(1), 192–200. https://doi.org/10.21603/2308-4057-2021-1-192-200
44. Mohammadi-Moghaddam, T., Firoozzare, A., Daryadar, S., Rahmani, Z. (2020). Black plum peel jam: Physicochemical properties, sensory attributes, and antioxidant capacity. International Journal of Food Properties, 23(1), 1737–1747. https://doi.org/10.1080/10942912.2020.1830798
45. Maimaitiyiming, R., Zhang, H., Wang, J., Wang, L., Zhao, L., Liu, B. et al. (2024). A novel strategy for mixed jam evaluation: Apparent indicator, sensory, metabolomic, and GC–IMS analysis. Foods, 13(7), Article 1104. https://doi.org/10.3390/foods13071104
Review
For citations:
Baioumy A.A., Abdeldayem F.A., Abdelfattah T.T., Aziz M.M., Hamed R.R., Yousef Ya.H., Abedelmaksoud T.G. Development and evaluation of low-calorie strawberry jam enriched with psyllium husk: A functional ingredient approach. Food systems. 2025;8(4):576-582. https://doi.org/10.21323/2618-9771-2025-8-4-576-582
JATS XML
























