Preview

Food systems

Advanced search

Purple sweet potato as a natural stabilizer in dairy products

https://doi.org/10.21323/2618-9771-2025-8-4-555-565

Abstract

Consumer interest in high-quality food is growing, especially in functional products. Milk and dairy products are high-nutrient sources that are often enriched with additives to enhance their bioactivity. However, dairy products such as yogurt can be prone to defects, including syneresis. The main components of yogurt, including protein (casein and whey), carbohydrates (lactose), milk fat, calcium, and lactic acid, play a crucial role in the formation and stability of the gel structure. Processing factors, such as heat treatment, temperature, and duration of storage, also affect the physical stability of the product. Generally, additives are used to maintain quality and sensory characteristics, but overconsumption of food with synthetic additives can negatively affect health. Therefore, the use of natural ingredients needs to be developed. Purple sweet potato flour is a natural ingredient that can serve as a stabilizer due to its high starch content. Starch has been widely used as a thickener, stabilizer, and gel former. In addition to starch, purple sweet potato flour contains anthocyanins that can increase the added value of the final product. This article aims to examine the potential use of the purple sweet potato as a nutrient-rich natural stabilizer.

About the Authors

A. Juliana
Hasanuddin University
Indonesia

Andi Juliana, Student, Animal Science and Technology Study Program, Faculty of Animal Science

Jl.Perintis Kemerdekaan Km 10. Makassar, 90245



F. Maruddin
Hasanuddin University
Indonesia

Fatma Maruddin, Lecturer, Faculty of Animal Science

Jl.Perintis Kemerdekaan Km 10. Makassar, 90245



W. Hatta
Hasanuddin University
Indonesia

Wahniyathi Hatta, Lecturer, Faculty of Animal Science

Jl.Perintis Kemerdekaan Km 10. Makassar, 90245



References

1. Waszkiewicz, M., Sokół-Łętowska, A., Pałczyńska, A., Kucharska, A. Z. (2023). Fruit smoothies enriched in a honeysuckle berry extract — An Innovative product with health-promoting properties. Foods, 12(19), Article 3667. https://doi.org/10.3390/foods12193667

2. D’Amico, A., Buzzanca, C., Pistorio, E., Melilli, M. G., Di Stefano, V. (2024). Fruit juices as alternative to dairy products for probiotics’ intake. Beverages, 10(4), Article 100. https://doi.org/10.3390/beverages10040100

3. Oliveira, P. H. D. A., Oliveira, A. K. D., Coêlho, E. D. S., Silva, V. N. E., Lopes, W. D. A., Santos, G. L. D. et al. (2023). Chemical quality and bioactive compounds of sweet potatoes under phosphate fertilization. Revista Brasileira de Engenharia Agrícola e Ambiental, 28(1), Article e274451. https://doi.org/10.1590/1807-1929/agriambi.v28n1e274451

4. Maqsood, S., Basher, N. S., Arshad, M. T., Ikram, A., Kalman, D. S., Hossain, M. S. et al. (2025). Anthocyanins from sweet potatoes (Ipomoea batatas): Bioavailability, mechanisms of action, and therapeutic potential in diabetes and metabolic disorders. Food Science and Nutrition, 13(9), Article e70895. https://doi.org/10.1002/fsn3.70895

5. Liu, Y., Shen, W., Jin, W., Li, F., Chen, X., Jia, X. et al. (2024). Physicochemical characterization of a composite flour: Blending purple sweet potato and rice flours. Food Chemistry: X, 22, Article 101493. https://doi.org/10.1016/j.fochx.2024.101493

6. Widaningrum, Misgiyarta, Darniadi, S., Purwani, E. Y. (June 20–21, 2023). Potential of new varieties of sweet potato released by Indonesian Legumes and Tuber Crops Research Institute (ILETRI): A preliminary study. IOP Conference Series: Earth and Environmental Science, 1172(1), Article 012052. https://doi.org/10.1088/1755–1315/1172/1/012052

7. Górska-Warsewicz, H., Rejman, K., Laskowski, W., Czeczotko, M. (2019). Milk and dairy products and their nutritional contribution to the average polish diet. Nutrients, 11(8), Article 1771. https://doi.org/10.3390/nu11081771

8. El-attar, A., Ahmed, N. E., El-Soda, M., Zaki, S. M. (2022). The impact of sweet potato flour supplementation on functional and sensorial properties of yoghurt. Food and Nutrition Sciences, 13(4), 404–423. https://doi.org/10.4236/fns.2022.134030

9. Sezer, E., Ayar, A., Yılmaz, S. Ö. (2022). Fermentation of dietary fibre-added milk with yoghurt bacteria and L. rhamnosus and use in ice cream production. Fermentation, 9(1), Article 3. https://doi.org/10.3390/fermentation9010003

10. Adinepour, F., Pouramin, S., Rashidinejad, A., Jafari, S. M. (2022). Fortification/ enrichment of milk and dairy products by encapsulated bioactive ingredients. Food Research International, 157, Article 111212. https://doi.org/10.1016/j.foodres.2022.111212

11. Prestes, A. A., Vargas, M. O., Helm, C. V., Esmerino, E. A., Silva, R., Prudencio, E. S. (2021). How to improve the functionality, nutritional value and health properties of fermented milks added of fruits bioactive compounds: A review. Food Science and Technology, 42, Article e17721. https://doi.org/10.1590/fst.17721

12. Wróblewska, B., Kuliga, A., Wnorowska, K. (2023). Bioactive dairy-fermented products and phenolic compounds: Together or apart. Molecules, 28(24), Article 8081. https://doi.org/10.3390/molecules28248081

13. Tajidan, T., Fernandez, E., Nursan, M., Effendy. (2025). A Product diversification to increase marketing value: Learning from E commerce pasarmandalika.com. Proceedings of the 6th International Conference on Education and Social Science (ICESS 2024), Atlantis Press, 2025. https://doi.org/10.2991/978-2-38476-392-4_3

14. Yuliana, N., Zuidar, A. S., Arpani, A.P., (2023). The effect of fermented sweet potato flour supplementation on the characteristics of ambon banana yoghurt. MOJ Food Processing and Technology, 11(2), 106–109. https://doi.org/10.15406/mojfpt.2023.11.00287

15. Mousavi, S. M. E., Mousavi, M., Kiani, H. (2020). Characterization and identification of sediment forming agents in barberry juice. Food Chemistry, 312, Article 126056. https://doi.org/10.1016/j.foodchem.2019.126056

16. Mesías, F. J., Martín, A., Hernández, A. (2021). Consumers’ growing appetite for natural foods: Perceptions towards the use of natural preservatives in fresh fruit. Food Research International, 150 (Part A), Article 110749. https://doi.org/10.1016/j.foodres.2021.110749

17. Antunes, I. C., Bexiga, R., Pinto, C., Roseiro, L. C., Quaresma, M. A. G. (2022). Cow’s milk in human nutrition and the emergence of plant-based milk alternatives. Foods, 12(1), Article 99. https://doi.org/10.3390/foods12010099

18. Xu, M., Li, J., Yin, J., Wu, M., Zhou, W., Yang, X. et al. (2024). Color and nutritional analysis of ten different purple sweet potato varieties cultivated in China via principal component analysis and cluster analysis. Foods, 13(6), Article 904. https://doi.org/10.3390/foods13060904

19. Stocco, G., Summer, A., Malacarne, M., Cecchinato, A., Bittante, G. (2019). Detailed macro- and micromineral profile of milk: Effects of herd productivity, parity, and stage of lactation of cows of 6 dairy and dual-purpose breeds. Journal of Dairy Science, 102(11), 9727–9739. https://doi.org/10.3168/jds.2019-16834

20. Cimmino, F., Catapano, A., Petrella, L., Villano, I., Tudisco, R., Cavaliere, G. (2023). Role of milk micronutrients in human health. Frontiers in BioscienceLandmark, 28(2). Article 41. https://doi.org/10.31083/j.fbl2802041

21. Aydogdu, T., O’Mahony, J. A., McCarthy, N. A. (2023). pH, the fundamentals for milk and dairy processing: A review. Dairy, 4(3), 395–409. https://doi.org/10.3390/dairy4030026

22. Formaggioni, P., Franceschi, P. (2024). New insights into milk and dairy products: Quality and sustainability. Foods, 13(13), Article 1969. https://doi.org/10.3390/foods13131969

23. Sanjulián, L., Fernández-Rico, S., González-Rodríguez, N., Cepeda, A., Miranda, J. M., Fente, C. et al. (2025). The role of dairy in human nutrition: Myths and realities. Nutrients, 17(4), Article 646. https://doi.org/10.3390/nu17040646

24. Ścibisz, I., Ziarno, M. (2023). Effect of yogurt addition on the stability of anthocyanin during cold storage of strawberry, raspberry, and blueberry smoothies. Foods, 12(20), Article 3858. https://doi.org/10.3390/foods12203858

25. Aslam, H., Marx, W., Rocks, T., Loughman, A., Chandrasekaran, V., Ruusunen, A. et al. (2020). The effects of dairy and dairy derivatives on the gut microbiota: A systematic literature review. Gut Microbes, 12(1), Article 1799533. https://doi.org/10.1080/19490976.2020.1799533

26. Lv, M., Liu, X., Chen, K., Aihaiti, A., Maimaitiyiming, R., Xing, J. et al. (2023). Effects of adding milk to fermented black mulberry (Morus nigra L.) juice on its antioxidant activity in C2C12 cells and changes in volatile flavor compounds during storage. Food Chemistry: X, 20, Article 101029. https://doi.org/10.1016/j.fochx.2023.101029

27. Turkmen, N., Akal, C., Özer, B. (2019). Probiotic dairy-based beverages: A review. Journal of Functional Foods, 53, 62–75. https://doi.org/10.1016/j.jff.2018.12.004

28. Sarıtaş, S., Mondragon Portocarrero, A. D. C., Miranda, J. M., Witkowska, A. M., Karav, S. (2024). Functional yogurt: Types and health benefits. Applied Sciences, 14(24), Article 11798. https://doi.org/10.3390/app142411798

29. Alam, M. K., Prete, R., Faieta, M., Rannou, C., Prost, C., Lethuaut, L. et al. (2025). Yogurt volatile compounds as affected by processing and compositional factors: A review. Trends in Food Science and Technology, Article 104921. https://doi.org/10.1016/j.tifs.2025.104921

30. Arab, M., Yousefi, M., Khanniri, E., Azari, M., Ghasemzadeh-Mohammadi, V., Mollakhalili-Meybodi, N. (2023). A comprehensive review on yogurt syneresis: Effect of processing conditions and added additives. Journal of Food Science and Technology, 60(6), 1656–1665. https://doi.org/10.1007/s13197-022-05403-6

31. Campos, L., Tuma, P., Silva, T., Gomes, D., Pereira, C. D., Henriques, M. H. F. (2024). Low-fat yoghurts are produced with different protein levels and alternative natural sweeteners. Foods, 13(2), Article 250. https://doi.org/10.3390/foods13020250

32. El Bouchikhi, S., Pagès, P., El Alaoui, Y., Ibrahimi, A., Bensouda, Y. (2019). Syneresis investigations of lacto-fermented sodium caseinate in a mixed model system. BMC Biotechnology, 19(1), Article 57. https://doi.org/10.1186/s12896-019-0539-1

33. Anuyahong, T., Chusak, C., Adisakwattana, S. (2020). Incorporation of anthocyanin-rich riceberry rice in yogurts: Effect on physicochemical properties, antioxidant activity and in vitro gastrointestinal digestion. LWT, 129, Article 109571. https://doi.org/10.1016/j.lwt.2020.109571

34. Gilbert, A., Rioux, L.-E., St-Gelais, D., Turgeon, S. L. (2020). Characterization of syneresis phenomena in stirred acid milk gel using low frequency nuclear magnetic resonance on hydrogen and image analyses. Food Hydrocolloids, 106, Article 105907. https://doi.org/10.1016/j.foodhyd.2020.105907

35. Sadiq, U., Gill, H., Chandrapala, J. (2021). Casein micelles as an emerging delivery system for bioactive food components. Foods, 10(8), Article 1965. https://doi.org/10.3390/foods10081965

36. Nieuwenhuijse, H., Huppertz, T. (2022). Heat-induced changes in milk salts: A review. International Dairy Journal, 126, Article 105220. https://doi.org/10.1016/j.idairyj.2021.105220

37. Wang, Y., Xiao, R., Liu, S., Wang, P., Zhu, Y., Niu, T. et al. (2024). The impact of thermal treatment intensity on proteins, fatty acids, macro/micro-nutrients, flavor, and heating markers of milk — A comprehensive review. International Journal of Molecular Sciences, 25(16), Article 8670. https://doi.org/10.3390/ijms25168670

38. Lykkegaard, T., Corredig, M. (2023). Novel details on the dissociation of casein micelle suspensions as a function of pH and temperature. Journal of Dairy Science, 106(12), 8368–8374. https://doi.org/10.3168/jds.2023-23456

39. Runthala, A., Mbye, M., Ayyash, M., Xu, Y., Kamal-Eldin, A. (2023). Caseins: Versatility of their micellar organization in relation to the functional and nutritional properties of milk. Molecules, 28(5), Article 2023. https://doi.org/10.3390/molecules28052023

40. Sharma, S., Singh, R. K. (2023). Effect of atmospheric cold plasma treatment on acid gelation properties of skim milk: Rheology and textural studies. Food Research International, 172, Article 113212. https://doi.org/10.1016/j.foodres.2023.113212

41. Lin, L., Wong, M., Deeth, H. C., Oh, H. E. (2020). Calcium-induced skim milk gels: Impact of holding temperature and ionic strength. International Dairy Journal, 104, Article 104657. https://doi.org/10.1016/j.idairyj.2020.104657

42. Wijegunawardhana, D., Wijesekara, I., Liyanage, R., Truong, T., Silva, M., Chandrapala, J. (2024). Process-induced molecular-level protein–carbohydrate–polyphenol interactions in milk-tea blends: A review. Foods, 13(16), Article 2489. https://doi.org/10.3390/foods13162489

43. Xiang, J., Liu, F., Wang, B., Chen, L., Liu, W., Tan, S. (2021). A literature review on maillard reaction based on milk proteins and carbohydrates in food and pharmaceutical products: advantages, disadvantages, and avoidance strategies. Foods, 10(9), Article 1998. https://doi.org/10.3390/foods10091998

44. Ono, W., Ando, H., Hayashi, M., Onuma, K., Oka, D., Noguchi, T. (2025). Effect of powdering process of low-heat skim milk powder on rennet-induced gelation and syneresis behaviour. International Dairy Journal, 169, Article 106345. https://doi.org/10.1016/j.idairyj.2025.106345

45. Scott, G., Awika, J. M. (2023). Effect of protein–starch interactions on starch retrogradation and implications for food product quality. Comprehensive Reviews in Food Science and Food Safety, 22(3), 2081–2111. https://doi.org/10.1111/1541-4337.13141

46. Verfaillie, D., Li, J., Janssen, F., Blontrock, E., Van Royen, G., Wouters, A. G. B. (2024). Relating the protein denaturation degree and solubility of soy protein isolates to the structure of high moisture extrudates. Food Hydrocolloids, 155, Article 110211. https://doi.org/10.1016/j.foodhyd.2024.110211

47. Mahomud, M. S., Haque, M. A., Akhter, N., Asaduzzaman, M. (2021). Effect of milk pH at heating on protein complex formation and ultimate gel properties of free-fat yoghurt. Journal of Food Science and Technology, 58(5), 1969–1978. https://doi.org/10.1007/s13197-020-04708-8

48. Kowalik, J., Tarapata, J., Lobacz, A., Zulewska, J. (2024). Properties of rennet gels from retentate produced by cold microfiltration of heat-treated and microfiltered skim milk. Foods, 13(20), Article 3296. https://doi.org/10.3390/foods13203296

49. Nagaraj, V., Upadhyay, N., Nath, B. S., Singh, A. K. (2018). Advances in fractionation and analysis of milk carbohydrates. Chapter in a book: Technological approaches for novel applications in dairy processing. Intech, 2018. https://doi.org/10.5772/intechopen.76312

50. Wu, J., Li, H., A’yun, Q., Sedaghat Doost, A., De Meulenaer, B. et al. (2021). Conjugation of milk proteins and reducing sugars and their potential application in the improvement of the heat stability of (recombined) evaporated milk. Trends in Food Science and Technology, 108, 287–296. https://doi.org/10.1016/j.tifs.2021.01.019

51. Yu, Y., Fu, R., Jin, C., Gao, H., Han, L., Fu, B. et al. (2024). Regulation of milk fat synthesis: key genes and microbial functions. Microorganisms, 12(11), Article 2302. https://doi.org/10.3390/microorganisms12112302

52. Maity, S., Bhat, A. H., Giri, K., Ambatipudi, K. (2020). BoMiProt: A database of bovine milk proteins. Journal of Proteomics, 215, Article 103648. https://doi.org/10.1016/j.jprot.2020.103648

53. Le Ba, T., Dam, M. S., Nguyen, L. L. P., Baranyai, L., Kaszab, T. (2025). A review of processing techniques and rheological properties of yogurts. Journal of Texture Studies, 56(1), Article e70006. https://doi.org/10.1111/jtxs.70006

54. Barone, G., O’Regan, J., Kelly, A. L., O’Mahony, J. A. (2021). Calcium fortification of a model infant milk formula system using soluble and insoluble calcium salts. International Dairy Journal, 117, Article 104951. https://doi.org/10.1016/j.idairyj.2020.104951

55. Corredig, M., Nair, P. K., Li, Y., Eshpari, H., Zhao, Z. (2019). Invited review: Understanding the behavior of caseins in milk concentrates. Journal of Dairy Science, 102(6), 4772–4782. https://doi.org/10.3168/jds.2018-15943

56. Dumpler, J., Huppertz, T., Kulozik, U. (2020). Invited review: Heat stability of milk and concentrated milk: Past, present, and future research objectives. Journal of Dairy Science, 103(12), 10986–11007. https://doi.org/10.3168/jds.2020-18605

57. Santos, C., Raymundo, A., Moreira, J. B., Prista, C. (2025). Exploring the potential of lactic acid bacteria fermentation as a clean label alternative for use in yogurt production. Applied Sciences, 15(5), Article 2686. https://doi.org/10.3390/app15052686

58. Akshit, F. N. U., Mao, T., Poojary, S., Chelikani, V., Mohan, M. S. (2025). Evaluating a novel hydrocolloid alternative for yogurt production: Rheological, microstructural, and sensory properties. Foods, 14(13), Article 2252. https://doi.org/10.3390/foods14132252

59. Altemimi, A. (2018). Extraction and optimization of potato starch and its application as a stabilizer in yogurt manufacturing. Foods, 7(2), Article 14. https://doi.org/10.3390/foods7020014

60. Zhu, Y., Koutchma, T., Warriner, K., Zhou, T. (2014). Reduction of patulin in apple juice products by UV light of different wavelengths in the UVC range. Journal of Food Protection, 77(6), 963–971. https://doi.org/10.4315/0362-028X.JFP-13-429

61. Javed, F., Tehseen, S., Ashfaq, F., Sameen, A., Khalid, W., Batool, R. et al. (2024). Stabilization of Ficus carica L. drink by utilizing varying levels of ultrasoundassisted moringa extract as a natural preservative. Ultrasonics Sonochemistry, 111, Article 107133. https://doi.org/10.1016/j.ultsonch.2024.107133

62. Chen, S.-Y., Xu, C.-Y., Mazhar, M. S., Naiker, M. (2024). Nutritional value and therapeutic benefits of dragon fruit: A comprehensive review with implications for establishing australian industry standards. Molecules, 29(23), Article 5676. https://doi.org/10.3390/molecules29235676

63. Hossein Maleki, M., Daneshniya, M., Latifi, Z., Pirouz Zarrin, Y., Behzadinia, M., Morakabati, N. (2022). Evaluating the potential of phytochemicals as natural substitute for synthetic antioxidant: A review. Asian Journal of Research in Biochemistry, 10(1), 36–62. https://doi.org/10.9734/ajrb/2022/v10i130214

64. Baran, A., Sulukan, E., Türkoğlu, M., Ghosigharehagaji, A., Yildirim, S., Kankaynar, M. et al. (2020). Is sodium carboxymethyl cellulose (CMC) really completely innocent? It may be triggering obesity. International Journal of Biological Macromolecules, 163, 2465–2473. https://doi.org/10.1016/j.ijbiomac.2020.09.169

65. Dereje, B., Girma, A., Mamo, D., Chalchisa, T. (2020). Functional properties of sweet potato flour and its role in product development: A review. International Journal of Food Properties, 23(1), 1639–1662. https://doi.org/10.1080/10942912.2020.1818776

66. Histifarina, D., Purnamasari, N. R., Rahmat, R. (February 15–16, 2023). Potential development and utilization of sweet potato flour as a raw material for the food industry. IOP Conference Series: Earth and Environmental Science, 1230(1), Article 012006. https://doi.org/10.1088/1755-1315/1230/1/012006

67. Ivane, N. M. A., Wang, W., Ma, Q., Wang, J., Sun, J. (2024). Harnessing the health benefits of purple and yellow-fleshed sweet potatoes: Phytochemical composition, stabilization methods, and industrial utilization- A review. Food Chemistry: X, 23, Article 101462. https://doi.org/10.1016/j.fochx.2024.101462

68. Nurdjanah, S., Nurdin, S. U., Astuti, S., Manik, V. E. (2022). Chemical components, antioxidant activity, and glycemic response values of purple sweet potato products. International Journal of Food Science, 2022(2), Article 7708172. https://doi.org/10.1155/2022/7708172

69. Ngoma, K., Mashau, M. E., Silungwe, H. (2019). Physicochemical and functional properties of chemically pretreated ndou sweet potato flour. International Journal of Food Science, 2019, Article 4158213. https://doi.org/10.1155/2019/4158213

70. Hu, H., Zhou, X.-Y., Wang, Y.-S., Zhang, Y.x., Zhou, W.-H., Zhang, L. (2023). Effects of particle size on the structure, cooking quality and anthocyanin diffusion of purple sweet potato noodles. Food Chemistry: X, 18, Article 100672. https://doi.org/10.1016/j.fochx.2023.100672

71. Jia, S., Zhao, H., Tao, H., Yu, B., Liu, P., Cui, B. (2022). Influence of corn resistant starches type III on the rheology, structure, and viable counts of set yogurt. International Journal of Biological Macromolecules, 203, 10–18. https://doi.org/10.1016/j.ijbiomac.2022.01.027

72. Shrivastava, A., Gupta, R. K., Srivastav, P. P. (2024). Exploring novel frontiers of advancements in purple yam (Dioscorea alata L.) starch extraction, modification, characterization, applications in food and other industries. Measurement: Food, 15, Article 100196. https://doi.org/10.1016/j.meafoo.2024.100196

73. Sudheesh, C., Varsha, L., Sunooj, K. V., Pillai, S. (2024). Influence of crystalline properties on starch functionalization from the perspective of various physical modifications: A review. International Journal of Biological Macromolecules, 280(Part 4), Article 136059. https://doi.org/10.1016/j.ijbiomac.2024.136059

74. Dobson, S., Laredo, T., Marangoni, A. G. (2022). Particle filled protein-starch composites as the basis for plant-based meat analogues. Current Research in Food Science, 5, 892–903. https://doi.org/10.1016/j.crfs.2022.05.006

75. Yan, X., McClements, D. J., Luo, S., Liu, C., Ye, J. (2024). Recent advances in the impact of gelatinization degree on starch: Structure, properties and applications. Carbohydrate Polymers, 340(4), Article 122273. https://doi.org/10.1016/j.carbpol.2024.122273

76. Yang, S., Hu, W., Qiao, S., Song, W., Tan, W. (2025). Advances in processing techniques and determinants of sweet potato starch gelatinization. Foods, 14(4), Article 545. https://doi.org/10.3390/foods14040545

77. Tolve, R., Zanoni, M., Ferrentino, G., Gonzalez-Ortega, R., Sportiello, L., Scampicchio, M. et al. (2024). Dietary fibers effects on physical, thermal, and sensory properties of low-fat ice cream. LWT, 199, Article 116094. https://doi.org/10.1016/j.lwt.2024.116094

78. Akal, C. (2023). Using dietary fiber as stabilizer in dairy products: β-glucan and inulin-type fructans. Journal of Food Science and Technology, 60(12), 2945–2954. https://doi.org/10.1007/s13197-022-05651-6

79. Tang, C., Han, J., Chen, D., Zong, S., Liu, J., Kan, J. et al (2023). Recent advances on the biological activities of purple sweet potato anthocyanins. Food Bioscience, 53, Article 102670. https://doi.org/10.1016/j.fbio.2023.102670

80. Azeem, M., Mu, T.-H., Zhang, M. (2020). Effects of high hydrostatic pressure and soaking solution on proximate composition, polyphenols, anthocyanins, β-carotene, and antioxidant activity of white, orange, and purple fleshed sweet potato flour. Food Science and Technology International, 26(5), 388–402. https://doi.org/10.1177/1082013219892716

81. da Cunha Júnior, P. C., Pinto, C.A.C., Saraiva, J.M.A., da Rocha Ferreira, E. H. (2025). Effects of purple-fleshed sweet potato lyophilized powder on the physicochemical properties, lactic acid bacteria viability, microstructure, and textural properties of stirred yogurt. Foods, 14(2), Article 257. https://doi.org/10.3390/foods14020257

82. Julianti, E., Karo-Karo, T., Nabilah, L. (July 25–26, 2024). Functional and rheological characteristics of flour from 3 varieties of orange sweet potato. IOP Conference Series: Earth and Environmental Science, 1413(1), Article 012065. https://doi.org/10.1088/1755-1315/1413/1/012065

83. Bodjrenou, D. M., Li, X., Chen, W., Zhang, Y., Zheng, B., Zeng, H. (2022). Effect of pullulanase debranching time combined with autoclaving on the structural, physicochemical properties, and in vitro digestibility of purple sweet potato starch. Foods, 11(23), Article 3779. https://doi.org/10.3390/foods11233779

84. Marta, H., Cahyana, Y., Bintang, S., Soeherman, G. P., Djali, M. (2022). Physicochemical and pasting properties of corn starch as affected by hydrothermal modification by various methods. International Journal of Food Properties, 25(1), 792–812. https://doi.org/10.1080/10942912.2022.2064490

85. Sudjatinah, S.-, Wibowo, C. H., Putri, A. S. (2020). A Study on the utilization of purple sweet potato (Ipomea batatas L) for ice cream as antioxidants. Journal of Applied Food Technology, 7(1), 01–04. https://doi.org/10.17728/jaft.6098

86. da Cunha Júnior, P. C., de Carvalho Silva, M. T., Barbosa, M. I. M. J., da Rocha Ferreira, E. H. (2024). Application of lyophilized purple-fleshed sweet potato powder as a multifunctional ingredient in Greek yogurt. Ciência Rural, 54(03), Article e20220688. https://doi.org/10.1590/0103-8478cr20220688

87. KIlinç, M., Akarca, G., Denizkara, A. J. (2025). Effect of lyophilised sweet potato on the quality and nutritional characteristics of set yogurt. Food Science and Nutrition, 13(3), Article e70111. https://doi.org/10.1002/fsn3.70111

88. Ketaren, N. B., Hasanah, U., Agustien, A. (September 26–27, 2024). Physical quality of goat milk yogurt with the addition of pineapple and purple sweet potato. IOP Conference Series: Earth and Environmental Science, 1302(1), Article 012102. https://doi.org/10.1088/1755-1315/1302/1/012102

89. Saleh, A., Mohamed, A. A., Alamri, M. S., Hussain, S., Qasem, A. A., Ibraheem, M. A. (2020). Effect of different starches on the rheological, sensory and storage attributes of non-fat set yogurt. Foods, 9(1), Article 61. https://doi.org/10.3390/foods9010061

90. Wijaya, H., Slay, A., Abdullah, N. (October 29–30, 2021). Ice cream products made from processed purple sweet potatoes: A product organoleptic study. IOP Conference Series: Earth and Environmental Science, 807(4), Article 042074. https://doi.org/10.1088/1755-1315/807/4/042074

91. Warncke, M., Kieferle, I., Nguyen, T. M., Kulozik, U. (2022). Impact of heat treatment, casein/whey protein ratio and protein concentration on rheological properties of milk protein concentrates used for cheese production. Journal of Food Engineering, 312, Article 110745. https://doi.org/10.1016/j.jfoodeng.2021.110745

92. Żulewska, J., Baranowska, M., Bielecka, M. M., Dąbrowska, A. Z., Tarapata, J., Kiełczewska, K. et al. (2025). Effect of fortification with high-milk-protein preparations on yogurt quality. Foods, 14(1), Article 80. https://doi.org/10.3390/foods14010080

93. Ahmed, S., Noor, A., Tariq, M., Zaidi, A. (2023). Functional improvement of synbiotic yogurt enriched with Lacticaseibacillus rhamnosus and Aloe vera gel using the response surface method. Food Production, Processing and Nutrition, 5(1), Article 38. https://doi.org/10.1186/s43014-023-00153-0

94. Lesme, H., Rannou, C., Famelart, M.-H., Bouhallab, S., Prost, C. (2020). Yogurts enriched with milk proteins: Texture properties, aroma release and sensory perception. Trends in Food Science and Technology, 98, 140–149. https://doi.org/10.1016/j.tifs.2020.02.006

95. Kumthekar, B., Temgire, S. S., Idate, A. B., Gaikwad, V. R. (2021). Effect of Supplementation on the Properties of Yogurt: A Review. International Journal of Current Microbiology and Applied Sciences, 10(4), 19–38. https://doi.org/10.20546/ijcmas.2021.1004.003

96. Huang, Q., Huang, Q., Wang, Y., Lu, X. (2022). Development of wet media milled purple sweet potato particle-stabilized pickering emulsions: The synergistic role of bioactives, starch and cellulose. LWT, 155, Article 112964. https://doi.org/10.1016/j.lwt.2021.112964

97. Gao, F., Li, D., Li, H., Chen, H., Mao, X., Wang, P. (2023). Influence of postheating treatment on the sensory and textural properties of stirred fermented milk. Foods, 12(16), Article 3042. https://doi.org/10.3390/foods12163042

98. Cota-López, R., Velazquez, G., Méndez-Montealvo, G., Pérez-Ramírez, I. F., Murúa-Pagola, B., Espinoza-Mellado. et al. (2023). Effect of adding high concentrations of retrograded starch with different amylose content on the physicochemical properties and sensory attributes of Greek-style yogurt. International Journal of Biological Macromolecules, 241, Article 124501. https://doi.org/10.1016/j.ijbiomac.2023.124501

99. Deshwal, G. K., Tiwari, S., Kumar, A., Raman, R. K., Kadyan, S. (2021). Review on factors affecting and control of post-acidification in yoghurt and related products. Trends in Food Science and Technology, 109, 499–512. https://doi.org/10.1016/j.tifs.2021.01.057

100. Guénard-Lampron, V., St-Gelais, D., Villeneuve, S., Turgeon, S. L. (2020). Short communication: Effect of stirring operations on changes in physical and rheological properties of nonfat yogurts during storage. Journal of Dairy Science, 103(1), 210–214. https://doi.org/10.3168/jds.2019-16434

101. Anwar, A., Faiz, M. A., Badar, I. H., Jaspal, M. H., Hou, J. (2025). Influence of fermentation time and storage conditions on the physicochemical properties of different yogurt varieties using starter cultures and probiotic Lactobacillus rhamnosus GG. Processes, 13(3), Article 759. https://doi.org/10.3390/pr13030759

102. Sigalingging, D., Sinaga, H., Yusraini, E. (October 8, 2020). Utilization of purple sweet potato as a partial substitute glutinous rice flour in the ombus-ombus cake from North Tapanuli traditional food. IOP Conference Series: Earth and Environmental Science, 782(3), Article 032105. https://doi.org/10.1088/1755-1315/782/3/032105

103. Mu, T.-H., Li, P.-G. (2019). Sweet potato: Origin and production. Chapter in a book: Sweet Potato. Elsevier, 2019. https://doi.org/10.1016/B978-0-12-813637-9.00002-8

104. Aschemann-Witzel, J., Varela, P., Peschel, A. O. (2019). Consumers’ categorization of food ingredients: Do consumers perceive them as ‘clean label’ producers expect? An exploration with projective mapping. Food Quality and Preference, 71, 117–128. https://doi.org/10.1016/j.foodqual.2018.06.003

105. Arsa, I. G. B. A., Mau, Y. S., Ndiwa, A. S. S., Gandut, Y. R. Y., Ishaq, L. F., Mahayasa, I. N. W. (2024). Yield performance and anthocyanin content of several purple-fleshed sweet potato clones grown in two locations in East Nusa Tenggara, Indonesia. Biodiversitas Journal of Biological Diversity, 25(5), 2276–2289. https://doi.org/10.13057/biodiv/d250546

106. Rozi, F., Prasetiaswati, N., Elisabeth, D. A. A. (March 9, 2021). Study on sweet potato market behaviour in supporting food security. IOP Conference Series: Earth and Environmental Science, 756(1), Article 012082. https://doi.org/10.1088/1755-1315/756/1/012082

107. Silvana Arianti, Y., Wahyu Harinta, Y. (November 7–8, 2019). Sweet potatoes: Development and potential as alternative food ingredients in Karanganyar Regency, Indonesia. E3S Web of Conferences, 226, Article 00050. https://doi.org/10.1051/e3sconf/202122600050


Review

For citations:


Juliana A., Maruddin F., Hatta W. Purple sweet potato as a natural stabilizer in dairy products. Food systems. 2025;8(4):555-565. https://doi.org/10.21323/2618-9771-2025-8-4-555-565

Views: 9

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)