Фиолетовый батат в качестве натурального стабилизатора в молочных продуктах
https://doi.org/10.21323/2618-9771-2025-8-4-555-565
Аннотация
Интерес потребителей к высококачественным продуктам питания, в особенности к функциональным, продолжает возрастать. Молоко и молочные продукты являются богатыми источниками питательных веществ, которые часто обогащают добавками для повышения их биологической активности. Однако молочные продукты, такие как йогурт, могут быть подвержены возникновению пороков, в том числе синерезису. Основные компоненты йогурта, включая белок (казеин и сывороточные белки), углеводы (лактозу), молочный жир, кальций, и молочную кислоту, играют важную роль в формировании стабильности гелевой структуры. Технологические факторы, такие как режимы тепловой обработки, температура и продолжительность хранения, также влияют на стабильность физических параметров продукта. Как правило, для сохранения показателей качества и органолептических свойств используются добавки, но чрезмерное употребление продуктов с синтетическими добавками может негативно повлиять на здоровье. В связи с этим, необходимым является расширение ассортимента натуральных ингредиентов. Мука из фиолетового батата является натуральным ингредиентом, который может использоваться в качестве стабилизатора благодаря высокому содержанию крахмала. Крахмал широко используется в качестве загустителя, стабилизатора и гелеобразователя. Помимо крахмала, мука из фиолетового батата содержит антоцианы, что позволит характеризовать готовый продукт с ее содержанием, как продукт с добавленной пользой. Цель данной статьи — изучить перспективы применения фиолетового батата в качестве натурального стабилизатора.
Об авторах
А. ДжулианаИндонезия
Джулиана А. — студент, учебная программа по зоотехнии и технологиям, факультет зоотехнии
90245, Южный Сулавеси, Макассар,Тамаланреа, ул. Перинис Кемердекаан, 10 км
Ф. Маруддин
Индонезия
Маруддин Ф. — преподаватель, факультет зоотехнии
90245, Южный Сулавеси, Макассар,Тамаланреа, ул. Перинис Кемердекаан, 10 км
В. Хатта
Индонезия
Хатта В. — преподаватель, факультет зоотехнии
90245, Южный Сулавеси, Макассар,Тамаланреа, ул. Перинис Кемердекаан, 10 км
Список литературы
1. Waszkiewicz, M., Sokół-Łętowska, A., Pałczyńska, A., Kucharska, A. Z. (2023). Fruit smoothies enriched in a honeysuckle berry extract — An Innovative product with health-promoting properties. Foods, 12(19), Article 3667. https://doi.org/10.3390/foods12193667
2. D’Amico, A., Buzzanca, C., Pistorio, E., Melilli, M. G., Di Stefano, V. (2024). Fruit juices as alternative to dairy products for probiotics’ intake. Beverages, 10(4), Article 100. https://doi.org/10.3390/beverages10040100
3. Oliveira, P. H. D. A., Oliveira, A. K. D., Coêlho, E. D. S., Silva, V. N. E., Lopes, W. D. A., Santos, G. L. D. et al. (2023). Chemical quality and bioactive compounds of sweet potatoes under phosphate fertilization. Revista Brasileira de Engenharia Agrícola e Ambiental, 28(1), Article e274451. https://doi.org/10.1590/1807-1929/agriambi.v28n1e274451
4. Maqsood, S., Basher, N. S., Arshad, M. T., Ikram, A., Kalman, D. S., Hossain, M. S. et al. (2025). Anthocyanins from sweet potatoes (Ipomoea batatas): Bioavailability, mechanisms of action, and therapeutic potential in diabetes and metabolic disorders. Food Science and Nutrition, 13(9), Article e70895. https://doi.org/10.1002/fsn3.70895
5. Liu, Y., Shen, W., Jin, W., Li, F., Chen, X., Jia, X. et al. (2024). Physicochemical characterization of a composite flour: Blending purple sweet potato and rice flours. Food Chemistry: X, 22, Article 101493. https://doi.org/10.1016/j.fochx.2024.101493
6. Widaningrum, Misgiyarta, Darniadi, S., Purwani, E. Y. (June 20–21, 2023). Potential of new varieties of sweet potato released by Indonesian Legumes and Tuber Crops Research Institute (ILETRI): A preliminary study. IOP Conference Series: Earth and Environmental Science, 1172(1), Article 012052. https://doi.org/10.1088/1755–1315/1172/1/012052
7. Górska-Warsewicz, H., Rejman, K., Laskowski, W., Czeczotko, M. (2019). Milk and dairy products and their nutritional contribution to the average polish diet. Nutrients, 11(8), Article 1771. https://doi.org/10.3390/nu11081771
8. El-attar, A., Ahmed, N. E., El-Soda, M., Zaki, S. M. (2022). The impact of sweet potato flour supplementation on functional and sensorial properties of yoghurt. Food and Nutrition Sciences, 13(4), 404–423. https://doi.org/10.4236/fns.2022.134030
9. Sezer, E., Ayar, A., Yılmaz, S. Ö. (2022). Fermentation of dietary fibre-added milk with yoghurt bacteria and L. rhamnosus and use in ice cream production. Fermentation, 9(1), Article 3. https://doi.org/10.3390/fermentation9010003
10. Adinepour, F., Pouramin, S., Rashidinejad, A., Jafari, S. M. (2022). Fortification/ enrichment of milk and dairy products by encapsulated bioactive ingredients. Food Research International, 157, Article 111212. https://doi.org/10.1016/j.foodres.2022.111212
11. Prestes, A. A., Vargas, M. O., Helm, C. V., Esmerino, E. A., Silva, R., Prudencio, E. S. (2021). How to improve the functionality, nutritional value and health properties of fermented milks added of fruits bioactive compounds: A review. Food Science and Technology, 42, Article e17721. https://doi.org/10.1590/fst.17721
12. Wróblewska, B., Kuliga, A., Wnorowska, K. (2023). Bioactive dairy-fermented products and phenolic compounds: Together or apart. Molecules, 28(24), Article 8081. https://doi.org/10.3390/molecules28248081
13. Tajidan, T., Fernandez, E., Nursan, M., Effendy. (2025). A Product diversification to increase marketing value: Learning from E commerce pasarmandalika.com. Proceedings of the 6th International Conference on Education and Social Science (ICESS 2024), Atlantis Press, 2025. https://doi.org/10.2991/978-2-38476-392-4_3
14. Yuliana, N., Zuidar, A. S., Arpani, A.P., (2023). The effect of fermented sweet potato flour supplementation on the characteristics of ambon banana yoghurt. MOJ Food Processing and Technology, 11(2), 106–109. https://doi.org/10.15406/mojfpt.2023.11.00287
15. Mousavi, S. M. E., Mousavi, M., Kiani, H. (2020). Characterization and identification of sediment forming agents in barberry juice. Food Chemistry, 312, Article 126056. https://doi.org/10.1016/j.foodchem.2019.126056
16. Mesías, F. J., Martín, A., Hernández, A. (2021). Consumers’ growing appetite for natural foods: Perceptions towards the use of natural preservatives in fresh fruit. Food Research International, 150 (Part A), Article 110749. https://doi.org/10.1016/j.foodres.2021.110749
17. Antunes, I. C., Bexiga, R., Pinto, C., Roseiro, L. C., Quaresma, M. A. G. (2022). Cow’s milk in human nutrition and the emergence of plant-based milk alternatives. Foods, 12(1), Article 99. https://doi.org/10.3390/foods12010099
18. Xu, M., Li, J., Yin, J., Wu, M., Zhou, W., Yang, X. et al. (2024). Color and nutritional analysis of ten different purple sweet potato varieties cultivated in China via principal component analysis and cluster analysis. Foods, 13(6), Article 904. https://doi.org/10.3390/foods13060904
19. Stocco, G., Summer, A., Malacarne, M., Cecchinato, A., Bittante, G. (2019). Detailed macro- and micromineral profile of milk: Effects of herd productivity, parity, and stage of lactation of cows of 6 dairy and dual-purpose breeds. Journal of Dairy Science, 102(11), 9727–9739. https://doi.org/10.3168/jds.2019-16834
20. Cimmino, F., Catapano, A., Petrella, L., Villano, I., Tudisco, R., Cavaliere, G. (2023). Role of milk micronutrients in human health. Frontiers in BioscienceLandmark, 28(2). Article 41. https://doi.org/10.31083/j.fbl2802041
21. Aydogdu, T., O’Mahony, J. A., McCarthy, N. A. (2023). pH, the fundamentals for milk and dairy processing: A review. Dairy, 4(3), 395–409. https://doi.org/10.3390/dairy4030026
22. Formaggioni, P., Franceschi, P. (2024). New insights into milk and dairy products: Quality and sustainability. Foods, 13(13), Article 1969. https://doi.org/10.3390/foods13131969
23. Sanjulián, L., Fernández-Rico, S., González-Rodríguez, N., Cepeda, A., Miranda, J. M., Fente, C. et al. (2025). The role of dairy in human nutrition: Myths and realities. Nutrients, 17(4), Article 646. https://doi.org/10.3390/nu17040646
24. Ścibisz, I., Ziarno, M. (2023). Effect of yogurt addition on the stability of anthocyanin during cold storage of strawberry, raspberry, and blueberry smoothies. Foods, 12(20), Article 3858. https://doi.org/10.3390/foods12203858
25. Aslam, H., Marx, W., Rocks, T., Loughman, A., Chandrasekaran, V., Ruusunen, A. et al. (2020). The effects of dairy and dairy derivatives on the gut microbiota: A systematic literature review. Gut Microbes, 12(1), Article 1799533. https://doi.org/10.1080/19490976.2020.1799533
26. Lv, M., Liu, X., Chen, K., Aihaiti, A., Maimaitiyiming, R., Xing, J. et al. (2023). Effects of adding milk to fermented black mulberry (Morus nigra L.) juice on its antioxidant activity in C2C12 cells and changes in volatile flavor compounds during storage. Food Chemistry: X, 20, Article 101029. https://doi.org/10.1016/j.fochx.2023.101029
27. Turkmen, N., Akal, C., Özer, B. (2019). Probiotic dairy-based beverages: A review. Journal of Functional Foods, 53, 62–75. https://doi.org/10.1016/j.jff.2018.12.004
28. Sarıtaş, S., Mondragon Portocarrero, A. D. C., Miranda, J. M., Witkowska, A. M., Karav, S. (2024). Functional yogurt: Types and health benefits. Applied Sciences, 14(24), Article 11798. https://doi.org/10.3390/app142411798
29. Alam, M. K., Prete, R., Faieta, M., Rannou, C., Prost, C., Lethuaut, L. et al. (2025). Yogurt volatile compounds as affected by processing and compositional factors: A review. Trends in Food Science and Technology, Article 104921. https://doi.org/10.1016/j.tifs.2025.104921
30. Arab, M., Yousefi, M., Khanniri, E., Azari, M., Ghasemzadeh-Mohammadi, V., Mollakhalili-Meybodi, N. (2023). A comprehensive review on yogurt syneresis: Effect of processing conditions and added additives. Journal of Food Science and Technology, 60(6), 1656–1665. https://doi.org/10.1007/s13197-022-05403-6
31. Campos, L., Tuma, P., Silva, T., Gomes, D., Pereira, C. D., Henriques, M. H. F. (2024). Low-fat yoghurts are produced with different protein levels and alternative natural sweeteners. Foods, 13(2), Article 250. https://doi.org/10.3390/foods13020250
32. El Bouchikhi, S., Pagès, P., El Alaoui, Y., Ibrahimi, A., Bensouda, Y. (2019). Syneresis investigations of lacto-fermented sodium caseinate in a mixed model system. BMC Biotechnology, 19(1), Article 57. https://doi.org/10.1186/s12896-019-0539-1
33. Anuyahong, T., Chusak, C., Adisakwattana, S. (2020). Incorporation of anthocyanin-rich riceberry rice in yogurts: Effect on physicochemical properties, antioxidant activity and in vitro gastrointestinal digestion. LWT, 129, Article 109571. https://doi.org/10.1016/j.lwt.2020.109571
34. Gilbert, A., Rioux, L.-E., St-Gelais, D., Turgeon, S. L. (2020). Characterization of syneresis phenomena in stirred acid milk gel using low frequency nuclear magnetic resonance on hydrogen and image analyses. Food Hydrocolloids, 106, Article 105907. https://doi.org/10.1016/j.foodhyd.2020.105907
35. Sadiq, U., Gill, H., Chandrapala, J. (2021). Casein micelles as an emerging delivery system for bioactive food components. Foods, 10(8), Article 1965. https://doi.org/10.3390/foods10081965
36. Nieuwenhuijse, H., Huppertz, T. (2022). Heat-induced changes in milk salts: A review. International Dairy Journal, 126, Article 105220. https://doi.org/10.1016/j.idairyj.2021.105220
37. Wang, Y., Xiao, R., Liu, S., Wang, P., Zhu, Y., Niu, T. et al. (2024). The impact of thermal treatment intensity on proteins, fatty acids, macro/micro-nutrients, flavor, and heating markers of milk — A comprehensive review. International Journal of Molecular Sciences, 25(16), Article 8670. https://doi.org/10.3390/ijms25168670
38. Lykkegaard, T., Corredig, M. (2023). Novel details on the dissociation of casein micelle suspensions as a function of pH and temperature. Journal of Dairy Science, 106(12), 8368–8374. https://doi.org/10.3168/jds.2023-23456
39. Runthala, A., Mbye, M., Ayyash, M., Xu, Y., Kamal-Eldin, A. (2023). Caseins: Versatility of their micellar organization in relation to the functional and nutritional properties of milk. Molecules, 28(5), Article 2023. https://doi.org/10.3390/molecules28052023
40. Sharma, S., Singh, R. K. (2023). Effect of atmospheric cold plasma treatment on acid gelation properties of skim milk: Rheology and textural studies. Food Research International, 172, Article 113212. https://doi.org/10.1016/j.foodres.2023.113212
41. Lin, L., Wong, M., Deeth, H. C., Oh, H. E. (2020). Calcium-induced skim milk gels: Impact of holding temperature and ionic strength. International Dairy Journal, 104, Article 104657. https://doi.org/10.1016/j.idairyj.2020.104657
42. Wijegunawardhana, D., Wijesekara, I., Liyanage, R., Truong, T., Silva, M., Chandrapala, J. (2024). Process-induced molecular-level protein–carbohydrate–polyphenol interactions in milk-tea blends: A review. Foods, 13(16), Article 2489. https://doi.org/10.3390/foods13162489
43. Xiang, J., Liu, F., Wang, B., Chen, L., Liu, W., Tan, S. (2021). A literature review on maillard reaction based on milk proteins and carbohydrates in food and pharmaceutical products: advantages, disadvantages, and avoidance strategies. Foods, 10(9), Article 1998. https://doi.org/10.3390/foods10091998
44. Ono, W., Ando, H., Hayashi, M., Onuma, K., Oka, D., Noguchi, T. (2025). Effect of powdering process of low-heat skim milk powder on rennet-induced gelation and syneresis behaviour. International Dairy Journal, 169, Article 106345. https://doi.org/10.1016/j.idairyj.2025.106345
45. Scott, G., Awika, J. M. (2023). Effect of protein–starch interactions on starch retrogradation and implications for food product quality. Comprehensive Reviews in Food Science and Food Safety, 22(3), 2081–2111. https://doi.org/10.1111/1541-4337.13141
46. Verfaillie, D., Li, J., Janssen, F., Blontrock, E., Van Royen, G., Wouters, A. G. B. (2024). Relating the protein denaturation degree and solubility of soy protein isolates to the structure of high moisture extrudates. Food Hydrocolloids, 155, Article 110211. https://doi.org/10.1016/j.foodhyd.2024.110211
47. Mahomud, M. S., Haque, M. A., Akhter, N., Asaduzzaman, M. (2021). Effect of milk pH at heating on protein complex formation and ultimate gel properties of free-fat yoghurt. Journal of Food Science and Technology, 58(5), 1969–1978. https://doi.org/10.1007/s13197-020-04708-8
48. Kowalik, J., Tarapata, J., Lobacz, A., Zulewska, J. (2024). Properties of rennet gels from retentate produced by cold microfiltration of heat-treated and microfiltered skim milk. Foods, 13(20), Article 3296. https://doi.org/10.3390/foods13203296
49. Nagaraj, V., Upadhyay, N., Nath, B. S., Singh, A. K. (2018). Advances in fractionation and analysis of milk carbohydrates. Chapter in a book: Technological approaches for novel applications in dairy processing. Intech, 2018. https://doi.org/10.5772/intechopen.76312
50. Wu, J., Li, H., A’yun, Q., Sedaghat Doost, A., De Meulenaer, B. et al. (2021). Conjugation of milk proteins and reducing sugars and their potential application in the improvement of the heat stability of (recombined) evaporated milk. Trends in Food Science and Technology, 108, 287–296. https://doi.org/10.1016/j.tifs.2021.01.019
51. Yu, Y., Fu, R., Jin, C., Gao, H., Han, L., Fu, B. et al. (2024). Regulation of milk fat synthesis: key genes and microbial functions. Microorganisms, 12(11), Article 2302. https://doi.org/10.3390/microorganisms12112302
52. Maity, S., Bhat, A. H., Giri, K., Ambatipudi, K. (2020). BoMiProt: A database of bovine milk proteins. Journal of Proteomics, 215, Article 103648. https://doi.org/10.1016/j.jprot.2020.103648
53. Le Ba, T., Dam, M. S., Nguyen, L. L. P., Baranyai, L., Kaszab, T. (2025). A review of processing techniques and rheological properties of yogurts. Journal of Texture Studies, 56(1), Article e70006. https://doi.org/10.1111/jtxs.70006
54. Barone, G., O’Regan, J., Kelly, A. L., O’Mahony, J. A. (2021). Calcium fortification of a model infant milk formula system using soluble and insoluble calcium salts. International Dairy Journal, 117, Article 104951. https://doi.org/10.1016/j.idairyj.2020.104951
55. Corredig, M., Nair, P. K., Li, Y., Eshpari, H., Zhao, Z. (2019). Invited review: Understanding the behavior of caseins in milk concentrates. Journal of Dairy Science, 102(6), 4772–4782. https://doi.org/10.3168/jds.2018-15943
56. Dumpler, J., Huppertz, T., Kulozik, U. (2020). Invited review: Heat stability of milk and concentrated milk: Past, present, and future research objectives. Journal of Dairy Science, 103(12), 10986–11007. https://doi.org/10.3168/jds.2020-18605
57. Santos, C., Raymundo, A., Moreira, J. B., Prista, C. (2025). Exploring the potential of lactic acid bacteria fermentation as a clean label alternative for use in yogurt production. Applied Sciences, 15(5), Article 2686. https://doi.org/10.3390/app15052686
58. Akshit, F. N. U., Mao, T., Poojary, S., Chelikani, V., Mohan, M. S. (2025). Evaluating a novel hydrocolloid alternative for yogurt production: Rheological, microstructural, and sensory properties. Foods, 14(13), Article 2252. https://doi.org/10.3390/foods14132252
59. Altemimi, A. (2018). Extraction and optimization of potato starch and its application as a stabilizer in yogurt manufacturing. Foods, 7(2), Article 14. https://doi.org/10.3390/foods7020014
60. Zhu, Y., Koutchma, T., Warriner, K., Zhou, T. (2014). Reduction of patulin in apple juice products by UV light of different wavelengths in the UVC range. Journal of Food Protection, 77(6), 963–971. https://doi.org/10.4315/0362-028X.JFP-13-429
61. Javed, F., Tehseen, S., Ashfaq, F., Sameen, A., Khalid, W., Batool, R. et al. (2024). Stabilization of Ficus carica L. drink by utilizing varying levels of ultrasoundassisted moringa extract as a natural preservative. Ultrasonics Sonochemistry, 111, Article 107133. https://doi.org/10.1016/j.ultsonch.2024.107133
62. Chen, S.-Y., Xu, C.-Y., Mazhar, M. S., Naiker, M. (2024). Nutritional value and therapeutic benefits of dragon fruit: A comprehensive review with implications for establishing australian industry standards. Molecules, 29(23), Article 5676. https://doi.org/10.3390/molecules29235676
63. Hossein Maleki, M., Daneshniya, M., Latifi, Z., Pirouz Zarrin, Y., Behzadinia, M., Morakabati, N. (2022). Evaluating the potential of phytochemicals as natural substitute for synthetic antioxidant: A review. Asian Journal of Research in Biochemistry, 10(1), 36–62. https://doi.org/10.9734/ajrb/2022/v10i130214
64. Baran, A., Sulukan, E., Türkoğlu, M., Ghosigharehagaji, A., Yildirim, S., Kankaynar, M. et al. (2020). Is sodium carboxymethyl cellulose (CMC) really completely innocent? It may be triggering obesity. International Journal of Biological Macromolecules, 163, 2465–2473. https://doi.org/10.1016/j.ijbiomac.2020.09.169
65. Dereje, B., Girma, A., Mamo, D., Chalchisa, T. (2020). Functional properties of sweet potato flour and its role in product development: A review. International Journal of Food Properties, 23(1), 1639–1662. https://doi.org/10.1080/10942912.2020.1818776
66. Histifarina, D., Purnamasari, N. R., Rahmat, R. (February 15–16, 2023). Potential development and utilization of sweet potato flour as a raw material for the food industry. IOP Conference Series: Earth and Environmental Science, 1230(1), Article 012006. https://doi.org/10.1088/1755-1315/1230/1/012006
67. Ivane, N. M. A., Wang, W., Ma, Q., Wang, J., Sun, J. (2024). Harnessing the health benefits of purple and yellow-fleshed sweet potatoes: Phytochemical composition, stabilization methods, and industrial utilization- A review. Food Chemistry: X, 23, Article 101462. https://doi.org/10.1016/j.fochx.2024.101462
68. Nurdjanah, S., Nurdin, S. U., Astuti, S., Manik, V. E. (2022). Chemical components, antioxidant activity, and glycemic response values of purple sweet potato products. International Journal of Food Science, 2022(2), Article 7708172. https://doi.org/10.1155/2022/7708172
69. Ngoma, K., Mashau, M. E., Silungwe, H. (2019). Physicochemical and functional properties of chemically pretreated ndou sweet potato flour. International Journal of Food Science, 2019, Article 4158213. https://doi.org/10.1155/2019/4158213
70. Hu, H., Zhou, X.-Y., Wang, Y.-S., Zhang, Y.x., Zhou, W.-H., Zhang, L. (2023). Effects of particle size on the structure, cooking quality and anthocyanin diffusion of purple sweet potato noodles. Food Chemistry: X, 18, Article 100672. https://doi.org/10.1016/j.fochx.2023.100672
71. Jia, S., Zhao, H., Tao, H., Yu, B., Liu, P., Cui, B. (2022). Influence of corn resistant starches type III on the rheology, structure, and viable counts of set yogurt. International Journal of Biological Macromolecules, 203, 10–18. https://doi.org/10.1016/j.ijbiomac.2022.01.027
72. Shrivastava, A., Gupta, R. K., Srivastav, P. P. (2024). Exploring novel frontiers of advancements in purple yam (Dioscorea alata L.) starch extraction, modification, characterization, applications in food and other industries. Measurement: Food, 15, Article 100196. https://doi.org/10.1016/j.meafoo.2024.100196
73. Sudheesh, C., Varsha, L., Sunooj, K. V., Pillai, S. (2024). Influence of crystalline properties on starch functionalization from the perspective of various physical modifications: A review. International Journal of Biological Macromolecules, 280(Part 4), Article 136059. https://doi.org/10.1016/j.ijbiomac.2024.136059
74. Dobson, S., Laredo, T., Marangoni, A. G. (2022). Particle filled protein-starch composites as the basis for plant-based meat analogues. Current Research in Food Science, 5, 892–903. https://doi.org/10.1016/j.crfs.2022.05.006
75. Yan, X., McClements, D. J., Luo, S., Liu, C., Ye, J. (2024). Recent advances in the impact of gelatinization degree on starch: Structure, properties and applications. Carbohydrate Polymers, 340(4), Article 122273. https://doi.org/10.1016/j.carbpol.2024.122273
76. Yang, S., Hu, W., Qiao, S., Song, W., Tan, W. (2025). Advances in processing techniques and determinants of sweet potato starch gelatinization. Foods, 14(4), Article 545. https://doi.org/10.3390/foods14040545
77. Tolve, R., Zanoni, M., Ferrentino, G., Gonzalez-Ortega, R., Sportiello, L., Scampicchio, M. et al. (2024). Dietary fibers effects on physical, thermal, and sensory properties of low-fat ice cream. LWT, 199, Article 116094. https://doi.org/10.1016/j.lwt.2024.116094
78. Akal, C. (2023). Using dietary fiber as stabilizer in dairy products: β-glucan and inulin-type fructans. Journal of Food Science and Technology, 60(12), 2945–2954. https://doi.org/10.1007/s13197-022-05651-6
79. Tang, C., Han, J., Chen, D., Zong, S., Liu, J., Kan, J. et al (2023). Recent advances on the biological activities of purple sweet potato anthocyanins. Food Bioscience, 53, Article 102670. https://doi.org/10.1016/j.fbio.2023.102670
80. Azeem, M., Mu, T.-H., Zhang, M. (2020). Effects of high hydrostatic pressure and soaking solution on proximate composition, polyphenols, anthocyanins, β-carotene, and antioxidant activity of white, orange, and purple fleshed sweet potato flour. Food Science and Technology International, 26(5), 388–402. https://doi.org/10.1177/1082013219892716
81. da Cunha Júnior, P. C., Pinto, C.A.C., Saraiva, J.M.A., da Rocha Ferreira, E. H. (2025). Effects of purple-fleshed sweet potato lyophilized powder on the physicochemical properties, lactic acid bacteria viability, microstructure, and textural properties of stirred yogurt. Foods, 14(2), Article 257. https://doi.org/10.3390/foods14020257
82. Julianti, E., Karo-Karo, T., Nabilah, L. (July 25–26, 2024). Functional and rheological characteristics of flour from 3 varieties of orange sweet potato. IOP Conference Series: Earth and Environmental Science, 1413(1), Article 012065. https://doi.org/10.1088/1755-1315/1413/1/012065
83. Bodjrenou, D. M., Li, X., Chen, W., Zhang, Y., Zheng, B., Zeng, H. (2022). Effect of pullulanase debranching time combined with autoclaving on the structural, physicochemical properties, and in vitro digestibility of purple sweet potato starch. Foods, 11(23), Article 3779. https://doi.org/10.3390/foods11233779
84. Marta, H., Cahyana, Y., Bintang, S., Soeherman, G. P., Djali, M. (2022). Physicochemical and pasting properties of corn starch as affected by hydrothermal modification by various methods. International Journal of Food Properties, 25(1), 792–812. https://doi.org/10.1080/10942912.2022.2064490
85. Sudjatinah, S.-, Wibowo, C. H., Putri, A. S. (2020). A Study on the utilization of purple sweet potato (Ipomea batatas L) for ice cream as antioxidants. Journal of Applied Food Technology, 7(1), 01–04. https://doi.org/10.17728/jaft.6098
86. da Cunha Júnior, P. C., de Carvalho Silva, M. T., Barbosa, M. I. M. J., da Rocha Ferreira, E. H. (2024). Application of lyophilized purple-fleshed sweet potato powder as a multifunctional ingredient in Greek yogurt. Ciência Rural, 54(03), Article e20220688. https://doi.org/10.1590/0103-8478cr20220688
87. KIlinç, M., Akarca, G., Denizkara, A. J. (2025). Effect of lyophilised sweet potato on the quality and nutritional characteristics of set yogurt. Food Science and Nutrition, 13(3), Article e70111. https://doi.org/10.1002/fsn3.70111
88. Ketaren, N. B., Hasanah, U., Agustien, A. (September 26–27, 2024). Physical quality of goat milk yogurt with the addition of pineapple and purple sweet potato. IOP Conference Series: Earth and Environmental Science, 1302(1), Article 012102. https://doi.org/10.1088/1755-1315/1302/1/012102
89. Saleh, A., Mohamed, A. A., Alamri, M. S., Hussain, S., Qasem, A. A., Ibraheem, M. A. (2020). Effect of different starches on the rheological, sensory and storage attributes of non-fat set yogurt. Foods, 9(1), Article 61. https://doi.org/10.3390/foods9010061
90. Wijaya, H., Slay, A., Abdullah, N. (October 29–30, 2021). Ice cream products made from processed purple sweet potatoes: A product organoleptic study. IOP Conference Series: Earth and Environmental Science, 807(4), Article 042074. https://doi.org/10.1088/1755-1315/807/4/042074
91. Warncke, M., Kieferle, I., Nguyen, T. M., Kulozik, U. (2022). Impact of heat treatment, casein/whey protein ratio and protein concentration on rheological properties of milk protein concentrates used for cheese production. Journal of Food Engineering, 312, Article 110745. https://doi.org/10.1016/j.jfoodeng.2021.110745
92. Żulewska, J., Baranowska, M., Bielecka, M. M., Dąbrowska, A. Z., Tarapata, J., Kiełczewska, K. et al. (2025). Effect of fortification with high-milk-protein preparations on yogurt quality. Foods, 14(1), Article 80. https://doi.org/10.3390/foods14010080
93. Ahmed, S., Noor, A., Tariq, M., Zaidi, A. (2023). Functional improvement of synbiotic yogurt enriched with Lacticaseibacillus rhamnosus and Aloe vera gel using the response surface method. Food Production, Processing and Nutrition, 5(1), Article 38. https://doi.org/10.1186/s43014-023-00153-0
94. Lesme, H., Rannou, C., Famelart, M.-H., Bouhallab, S., Prost, C. (2020). Yogurts enriched with milk proteins: Texture properties, aroma release and sensory perception. Trends in Food Science and Technology, 98, 140–149. https://doi.org/10.1016/j.tifs.2020.02.006
95. Kumthekar, B., Temgire, S. S., Idate, A. B., Gaikwad, V. R. (2021). Effect of Supplementation on the Properties of Yogurt: A Review. International Journal of Current Microbiology and Applied Sciences, 10(4), 19–38. https://doi.org/10.20546/ijcmas.2021.1004.003
96. Huang, Q., Huang, Q., Wang, Y., Lu, X. (2022). Development of wet media milled purple sweet potato particle-stabilized pickering emulsions: The synergistic role of bioactives, starch and cellulose. LWT, 155, Article 112964. https://doi.org/10.1016/j.lwt.2021.112964
97. Gao, F., Li, D., Li, H., Chen, H., Mao, X., Wang, P. (2023). Influence of postheating treatment on the sensory and textural properties of stirred fermented milk. Foods, 12(16), Article 3042. https://doi.org/10.3390/foods12163042
98. Cota-López, R., Velazquez, G., Méndez-Montealvo, G., Pérez-Ramírez, I. F., Murúa-Pagola, B., Espinoza-Mellado. et al. (2023). Effect of adding high concentrations of retrograded starch with different amylose content on the physicochemical properties and sensory attributes of Greek-style yogurt. International Journal of Biological Macromolecules, 241, Article 124501. https://doi.org/10.1016/j.ijbiomac.2023.124501
99. Deshwal, G. K., Tiwari, S., Kumar, A., Raman, R. K., Kadyan, S. (2021). Review on factors affecting and control of post-acidification in yoghurt and related products. Trends in Food Science and Technology, 109, 499–512. https://doi.org/10.1016/j.tifs.2021.01.057
100. Guénard-Lampron, V., St-Gelais, D., Villeneuve, S., Turgeon, S. L. (2020). Short communication: Effect of stirring operations on changes in physical and rheological properties of nonfat yogurts during storage. Journal of Dairy Science, 103(1), 210–214. https://doi.org/10.3168/jds.2019-16434
101. Anwar, A., Faiz, M. A., Badar, I. H., Jaspal, M. H., Hou, J. (2025). Influence of fermentation time and storage conditions on the physicochemical properties of different yogurt varieties using starter cultures and probiotic Lactobacillus rhamnosus GG. Processes, 13(3), Article 759. https://doi.org/10.3390/pr13030759
102. Sigalingging, D., Sinaga, H., Yusraini, E. (October 8, 2020). Utilization of purple sweet potato as a partial substitute glutinous rice flour in the ombus-ombus cake from North Tapanuli traditional food. IOP Conference Series: Earth and Environmental Science, 782(3), Article 032105. https://doi.org/10.1088/1755-1315/782/3/032105
103. Mu, T.-H., Li, P.-G. (2019). Sweet potato: Origin and production. Chapter in a book: Sweet Potato. Elsevier, 2019. https://doi.org/10.1016/B978-0-12-813637-9.00002-8
104. Aschemann-Witzel, J., Varela, P., Peschel, A. O. (2019). Consumers’ categorization of food ingredients: Do consumers perceive them as ‘clean label’ producers expect? An exploration with projective mapping. Food Quality and Preference, 71, 117–128. https://doi.org/10.1016/j.foodqual.2018.06.003
105. Arsa, I. G. B. A., Mau, Y. S., Ndiwa, A. S. S., Gandut, Y. R. Y., Ishaq, L. F., Mahayasa, I. N. W. (2024). Yield performance and anthocyanin content of several purple-fleshed sweet potato clones grown in two locations in East Nusa Tenggara, Indonesia. Biodiversitas Journal of Biological Diversity, 25(5), 2276–2289. https://doi.org/10.13057/biodiv/d250546
106. Rozi, F., Prasetiaswati, N., Elisabeth, D. A. A. (March 9, 2021). Study on sweet potato market behaviour in supporting food security. IOP Conference Series: Earth and Environmental Science, 756(1), Article 012082. https://doi.org/10.1088/1755-1315/756/1/012082
107. Silvana Arianti, Y., Wahyu Harinta, Y. (November 7–8, 2019). Sweet potatoes: Development and potential as alternative food ingredients in Karanganyar Regency, Indonesia. E3S Web of Conferences, 226, Article 00050. https://doi.org/10.1051/e3sconf/202122600050
Рецензия
Для цитирования:
Джулиана А., Маруддин Ф., Хатта В. Фиолетовый батат в качестве натурального стабилизатора в молочных продуктах. Пищевые системы. 2025;8(4):555-565. https://doi.org/10.21323/2618-9771-2025-8-4-555-565
For citation:
Juliana A., Maruddin F., Hatta W. Purple sweet potato as a natural stabilizer in dairy products. Food systems. 2025;8(4):555-565. https://doi.org/10.21323/2618-9771-2025-8-4-555-565
JATS XML
























