Preview

Food systems

Advanced search

Micronutrients and bioactive compounds in neuroprotection: Potential, mechanisms, and dietary sources

https://doi.org/10.21323/2618-9771-2025-8-4-479-487

Abstract

Nutritional support, as a strategy either alternative or complementary to conventional pharmacotherapy, demonstrates significant potential for modulating the pathogenetic mechanisms of neurodegenerative and neuropsychiatric disorders. This review synthesizes current evidence on the role of micronutrients and bioactive compounds in neuroprotection and neuroregulation. It examines the mechanisms of action of vitamins (E, D, K, A, B complex, C), minerals (selenium, zinc, magnesium, iron, copper, iodine, manganese), and polyunsaturated fatty acids in modulating antioxidant defense, synaptic plasticity, neuroinflammation, and neurotransmitter metabolism. Particular emphasis is placed on their capacity to mitigate oxidative stress and excitotoxicity, while concurrently enhancing neurotrophic support (e. g., BDNF, NGF). The significance of nutrient synergy, exemplified by the combination of vitamin B12 and omega-3 fatty acids, for augmenting neuroprotective effects is highlighted. The review discusses the challenges associated with translating findings from preclinical studies into clinical practice, including variability in bioavailability and the necessity for personalized nutritional approaches. Future research should be directed towards developing comprehensive dietary strategies and elucidating the role of gut microbiota in the metabolism of neuroactive compounds.

About the Authors

L. V. Fedulova
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Liliya V. Fedulova, Doctor of Technical Sciences, Professor of RAS, Head of the Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin

26, Talalikhin str., 109316, Moscow



A. A. Kibitkina
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Anastasiya A. Kibitkina, Research Assistant, Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin

26, Talalikhin str., 109316, Moscow



E. R. Vasilevskaya
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Ekaterina R. Vasilevskaya, Candidate of Technical Sciences, Researcher, Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin

26, Talalikhin str., 109316, Moscow



S. Yu. Karabanov
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Sergey Yu. Karabanov, Candidate of Veterinary Sciences, Researcher, Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin

26, Talalikhin str., 109316, Moscow



D. A. Utyanov
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Dmitry A. Utyanov, Candidate of Technical Sciences, Researcher, Laboratory of Scientific and Methodical Work, Biological and Analytical Research

26, Talalikhin str., 109316, Moscow



References

1. Dhahri, M., Alghrably, M., Mohammed, H. A., Badshah, S. L., Noreen, N., Mouffouk, F. et al. (2021). Natural polysaccharides as preventive and therapeutic horizon for neurodegenerative diseases. Pharmaceutics, 14(1), Article 1. https://doi.org/10.3390/pharmaceutics14010001

2. Moreira, J., Machado, M., Dias-Teixeira, M., Ferraz, R., Delerue-Matos, C., Grosso, C. (2023). The neuroprotective effect of traditional Chinese medicinal plants — A critical review. Acta Pharmaceutica Sinica B, 13(8), 3208–3237. https://doi.org/10.1016/j.apsb.2023.06.009

3. Moukham, H., Lambiase, A., Barone, G. D., Tripodi, F., Coccetti, P. (2024). Exploiting natural niches with neuroprotective properties: A comprehensive review. Nutrients, 16(9), Article 1298. https://doi.org/10.3390/nu16091298

4. Businaro, R., Vauzour, D., Sarris, J., Münch, G., Gyengesi, E., Brogelli, L., Zuzarte, P. (2021). Therapeutic opportunities for food supplements in neurodegenerative disease and depression. Frontiers in Nutrition, 8, Article 669846. https://doi.org/10.3389/fnut.2021.669846

5. Passeri, E., Elkhoury, K., Morsink, M., Broersen, K., Linder, M., Tamayol, A. et al. (2022). Alzheimer’s disease: Treatment strategies and their limitations. International Journal of Molecular Sciences, 23(22), Article 13954. https://doi.org/10.3390/ijms232213954

6. Muscaritoli, M. (2021). The impact of nutrients on mental health and well-being: Insights from the literature. Frontiers in Nutrition, 8, Article 656290. https://doi.org/10.3389/fnut.2021.656290

7. Marx, W., Moseley, G., Berk, M., Jacka, F. (December 6–7, 2016). Nutritional psychiatry: The present state of the evidence. Conference on ‘Diet, nutrition and mental health and wellbeing’ Plenary Lecture: Mental health as an emerging public health problem. London, 2017. https://doi.org/10.1017/S0029665117002026

8. Grajek, M., Krupa-Kotara, K., Białek-Dratwa, A., Sobczyk, K., Grot, M., Kowalski, O. et al. (2022). Nutrition and mental health: A review of current knowledge about the impact of diet on mental health. Frontiers in Nutrition, 9, Article 943998. https://doi.org/10.3389/fnut.2022.943998

9. Lahoda Brodska, H., Klempir, J., Zavora, J., Kohout, P. (2023). The role of micronutrients in neurological disorders. Nutrients, 15(19), Article 4129. https://doi.org/10.3390/nu15194129

10. Nogueira-de-Almeida, C. A., Gutiérrez, C. A. C., Ramos, L. R., Katz, M., Gonzalez, M. M., Badillo, B. A. et al. (2025). Role of micronutrient supplementation in promoting cognitive healthy aging in Latin America: Evidence-based consensus statement. Nutrients, 17(15), Article 2545. https://doi.org/10.3390/nu17152545

11. Teleanu, D. M., Niculescu, A.-G., Lungu, I. I., Radu, C. I., Vladâcenco, O., Roza, E. et al. (2022). An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. International Journal of Molecular Sciences, 23(11), Article 5938. https://doi.org/10.3390/ijms23115938

12. Picca, A., Calvani, R., Coelho-Junior, H. J., Landi, F., Bernabei, R., Marzetti, E. (2020). Mitochondrial dysfunction, oxidative stress, and neuroinflammation: Intertwined roads to neurodegeneration. Antioxidants, 9(8), Article 647. https://doi.org/10.3390/antiox9080647

13. Chang, J., Liu, M., Liu, C., Zhou, S., Jiao, Y., Sun, H. et al. (2024). Effects of vitamins and polyunsaturated fatty acids on cognitive function in older adults with mild cognitive impairment: A meta-analysis of randomized controlled trials. European Journal of Nutrition, 63(4), 1003–1022. https://doi.org/10.1007/s00394-024-03324-y

14. Joffre, C., Dinel, A.-L., Chataigner, M., Pallet, V., Layé, S. (2020). n 3 Polyunsaturated fatty acids and their derivates reduce neuroinflammation during aging. Nutrients, 12(3), Article 647. https://doi.org/10.3390/nu12030647

15. Pellowski, D., Kusch, P., Henning, T., Kochlik, B., Maares, M., Schmiedeskamp, A. et al. (2024). Postprandial micronutrient variability and bioavailability: An interventional meal study in young vs. old participants. Nutrients, 16(5), Article 625. https://doi.org/10.3390/nu16050625

16. Rathod, R. S., Khaire, A. A., Kale, A. A., Joshi, S. R. (2016). Effect of vitamin B12 and omega 3 fatty acid supplementation on brain neurotrophins and cognition in rats: A multigeneration study. Biochimie, 128–129, 201–208. https://doi.org/10.1016/j.biochi.2016.08.009

17. Kemse, N., Kale, A., Chavan-Gautam, P., Joshi, S. (2018). Increased intake of vitamin B12, folate, and omega 3 fatty acids to improve cognitive performance in offspring born to rats with induced hypertension during pregnancy. Food and Function, 9(7), 3872–3883. https://doi.org/10.1039/C8FO00467F

18. Kumar, R. R., Singh, L., Thakur, A., Singh, S., Kumar, B. (2022). Role of vitamins in neurodegenerative diseases: A review. CNS and Neurological Disorders — Drug Targets, 21(9), 766–773. https://doi.org/10.2174/1871527320666211119122150

19. da Cunha Germano, B. C., de Morais, L. C. C., Idalina Neta, F., Fernandes, A. C. L., Pinheiro, F. I., do Rego, A. C. M. et al. (2023). Vitamin E and its molecular effects in experimental models of neurodegenerative diseases. International Journal of Molecular Sciences, 24(13), Article 11191. https://doi.org/10.3390/ijms241311191

20. Rai, S. N., Singh, P., Steinbusch, H. W. M., Vamanu, E., Ashraf, G., Singh, M. P. (2021). The role of vitamins in neurodegenerative disease: An update. Biomedicines, 9(10), Article 1284. https://doi.org/10.3390/biomedicines9101284

21. Traber, M. G. (2021). Vitamin E: Necessary nutrient for neural development and cognitive function. Proceedings of the Nutrition Society, 80(3), 319–326. https://doi.org/10.1017/S0029665121000914

22. Noor, A., Shah, S. I. A. (2023). The emerging role of vitamin D in neurological health and disease. Global Journal of Medical, Pharmaceutical, and Biomedical Update, 18, Article 28. https://doi.org/10.25259/GJMPBU_31_2023

23. Hafiz, A. A. (2024). The neuroprotective effect of vitamin D in Parkinson’s disease: Association or causation. Nutritional Neuroscience, 27(8), 870–886. https://doi.org/10.1080/1028415X.2023.2259680

24. Tang, Y., Le, W. (2016). Differential roles of M1 and M2 microglia in neurodegenerative diseases. Molecular Neurobiology, 53(2), 1181–1194. https://doi.org/10.1007/s12035-014-9070-5

25. Calvello, R., Cianciulli, A., Nicolardi, G., De Nuccio, F., Giannotti, L., Salvatore, R. et al. (2017). Vitamin D treatment attenuates neuroinflammation and dopaminergic neurodegeneration in an animal model of Parkinson’s disease, shifting M1 to M2 microglia responses. Journal of Neuroimmune Pharmacology, 12(2), 327–339. https://doi.org/10.1007/s11481-016-9720-7

26. Gombash, S. E., Lee, P. W., Sawdai, E., Lovett-Racke, A. E. (2022). Vitamin D as a risk factor for multiple sclerosis: Immunoregulatory or neuroprotective? Frontiers in Neurology, 13, Article 796933. https://doi.org/10.3389/fneur.2022.796933

27. Wang, W., Li, Y., Meng, X. (2023). Vitamin D and neurodegenerative diseases. Heliyon, 9(1), Article e12877. https://doi.org/10.1016/j.heliyon.2023.e12877

28. Diachenko, A. I., Rodin, I. A., Krasnova, T. N., Klychnikov, O. I., Nefedova, L. N. (2024). The role of vitamin K in the development of neurodegenerative diseases. Biochemistry (Moscow), 89(S1), S57-S70. https://doi.org/10.1134/S0006297924140049

29. Sharma, V., Aran, K. R. (2025). Unraveling the molecular mechanisms of vitamin deficiency in Alzheimer’s disease pathophysiology. Aging and Health Research, 5(2), Article 100226. https://doi.org/10.1016/j.ahr.2025.100226

30. Grimaldi, L., Cavallaro, R. A., De Angelis, D., Fuso, A., Sancesario, G. (2025). Vitamin K properties in stroke and Alzheimer’s disease: A Janus Bifrons in protection and prevention. Molecules, 30(5), Article 1027. https://doi.org/10.3390/molecules30051027

31. Chatterjee, K., Mazumder, P. M., Banerjee, S. (2023). Vitamin K2 protects against aluminium chloride-mediated neurodegeneration. Inflammopharmacology, 31(5), 2675–2684. https://doi.org/10.1007/s10787-023-01290-1

32. Emekli-Alturfan, E., Alturfan, A. A. (2023). The emerging relationship between vitamin K and neurodegenerative diseases: A review of current evidence. Molecular Biology Reports, 50(1), 815–828. https://doi.org/10.1007/s11033-022-07925-w

33. Yang, X., Wang, Z., Zandkarimi, F., Liu, Y., Duan, S., Li, Z. et al. (2023). Regulation of VKORC1L1 is critical for p53-mediated tumor suppression through vitamin K metabolism. Cell Metabolism, 35(8), 1474–1490. https://doi.org/10.1016/j.cmet.2023.06.014

34. Sadler, R. A., Shoveller, A. K., Shandilya, U. K., Charchoglyan, A., Wagter-Lesperance, L., Bridle, B. W. et al. (2024). Beyond the coagulation cascade: Vitamin K and its multifaceted impact on human and domesticated animal health. Current Issues in Molecular Biology, 46(7), 7001–7031. https://doi.org/10.3390/cimb46070418

35. Isik, F. I., Thomson, S., Cueto, J. F., Spathos, J., Breit, S. N., Tsai, V. W. W. et al. (2024). A systematic review of the neuroprotective role and biomarker potential of GDF15 in neurodegeneration. Frontiers in Immunology, 15, Article 1514518. https://doi.org/10.3389/fimmu.2024.1514518

36. Guo, Z., Zhang, H., Jingele, X., Yan, J., Wang, X., Liu, Y. et al. (2024). Stanniocalcin 2 promotes neuronal differentiation in neural stem/progenitor cells of the mouse subventricular zone through activation of AKT pathway. Stem Cells and Development, 33(19–20), 551–561. https://doi.org/10.1089/scd.2024.0094

37. D’Ambrosio, D. N., Clugston, R. D., Blaner, W. S. (2011). Vitamin A metabolism: An update. Nutrients, 3(1), 63–103. https://doi.org/10.3390/nu3010063

38. Carazo, A., Macáková, K., Matoušová, K., Krčmová, L. K., Protti, M., Mladěnka, P. (2021). Vitamin A update: Forms, sources, kinetics, detection, function, deficiency, therapeutic use and toxicity. Nutrients, 13(5), Article 1703. https://doi.org/10.3390/nu13051703

39. Orywal, K., Socha, K., Iwaniuk, P., Kaczyński, P., Farhan, J. A., Zoń, W. et al. (2025). Vitamins in the prevention and support therapy of neurodegenerative diseases. International Journal of Molecular Sciences, 26(3), Article 1333. https://doi.org/10.3390/ijms26031333

40. Clark, J. N., Whiting, A., McCaffery, P. (2020). Retinoic acid receptor-targeted drugs in neurodegenerative disease. Expert Opinion on Drug Metabolism and Toxicology, 16(11), 1097–1108. https://doi.org/10.1080/17425255.2020.1811232

41. Chang, M. C., Kwak, S. G., Kwak, S. (2021). Effect of dietary vitamins C and E on the risk of Parkinson’s disease: A meta-analysis. Clinical Nutrition, 40(6), 3922– 3930. https://doi.org/10.1016/j.clnu.2021.05.011

42. Wu, F., Xu, K., Liu, L., Zhang, K., Xia, L., Zhang, M. et al. (2019). Vitamin B12 enhances nerve repair and improves functional recovery after traumatic brain injury by inhibiting ER stress-induced neuron injury. Frontiers in Pharmacology, 10, Article 406. https://doi.org/10.3389/fphar.2019.00406

43. Battaglia-Hsu, S., Akchiche, N., Noel, N., Alberto, J.-M., Jeannesson, E., OrozcoBarrios, C. E. et al. (2009). Vitamin B12 deficiency reduces proliferation and promotes differentiation of neuroblastoma cells and up-regulates PP2A, proNGF, and TACE. Proceedings of the National Academy of Sciences, 106(51), 21930– 21935. https://doi.org/10.1073/pnas.0811794106

44. Calderón-Ospina, C. A., Nava-Mesa, M. O. (2020). B Vitamins in the nervous system: Current knowledge of the biochemical modes of action and synergies of thiamine, pyridoxine, and cobalamin. CNS Neuroscience and Therapeutics, 26(1), 5–13. https://doi.org/10.1111/cns.13207

45. Kennedy, D. (2016). B Vitamins and the brain: Mechanisms, dose and efficacy — a review. Nutrients, 8(2), Article 68. https://doi.org/10.3390/nu8020068

46. Mikkelsen, K., Stojanovska, L., Tangalakis, K., Bosevski, M., Apostolopoulos, V. (2016). Cognitive decline: A vitamin B perspective. Maturitas, 93, 108–113. https://doi.org/10.1016/j.maturitas.2016.08.001

47. Palacios, N., Scott, T., Sahasrabudhe, N., Gao, X., Tucker, K. L. (2019). Lower plasma vitamin B 6 is associated with 2-year cognitive decline in the Boston Puerto Rican health study. The Journal of Nutrition, 149(4), 635–641. https://doi.org/10.1093/jn/nxy268

48. Kibitkina, A. A., Fedulova, L. V., Karabanov, S. Yu., Vasilevskaya, E. R. (2024). Amino acids with neuroregulatory potential: Mechanisms to optimize brain function. Vsyo o myase, 6, 3–15. https://doi.org/10.21323/2071-2499-2024-6-3-15

49. Plevin, D., Galletly, C. (2020). The neuropsychiatric effects of vitamin C deficiency: A systematic review. BMC Psychiatry, 20(1), Article 315. https://doi.org/10.1186/s12888–020–02730-w

50. Kangisser, L., Tan, E., Bellomo, R., Deane, A. M., Plummer, M. P. (2021). Neuroprotective properties of vitamin C: A scoping review of pre-clinical and clinical studies. Journal of Neurotrauma, 38(16), 2194–2205. https://doi.org/10.1089/neu.2020.7443

51. Olajide, O. J., Fatoye, J. O., Idowu, O. F., Ilekoya, D., Gbadamosi, I. T., Gbadamosi, M. T. et al. (2018). Reversal of behavioral decline and neuropathology by a complex vitamin supplement involves modulation of key neurochemical stressors. Environmental Toxicology and Pharmacology, 62, 120–131. https://doi.org/10.1016/j.etap.2018.07.005

52. Wang, J., Um, P., Dickerman, B. A., Liu, J. (2018). Zinc, magnesium, selenium and depression: A Review of the evidence, potential mechanisms and implications. Nutrients, 10(5), Article 584. https://doi.org/10.3390/nu10050584

53. Björkholm, C., Monteggia, L. M. (2016). BDNF — a key transducer of antidepressant effects. Neuropharmacology, 102, 72–79. https://doi.org/10.1016/j.neuropharm.2015.10.034

54. Brüning, C. A., Souza, A. C. G., Gai, B. M., Zeni, G., Nogueira, C. W. (2011). Antidepressant-like effect of m-trifluoromethyl-diphenyl diselenide in the mouse forced swimming test involves opioid and serotonergic systems. European Journal of Pharmacology, 658(2–3), 145–149. https://doi.org/10.1016/j.ejphar.2011.02.039

55. Ekpo, U. U., Umana, U. E., Sadeeq, A. A. (2023). Impact of nutrition on depression: a review of some dietary components with antidepressant effects and their mechanism of action. The Journal of Neurobehavioral Sciences, 10(3), 86–96. https://doi.org/10.4103/jnbs.jnbs_5_23

56. Schneider-Matyka, D., Cybulska, A. M., Szkup, M., Pilarczyk, B., Panczyk, M., Lubkowska, A. et al. (2023). Selenium as a factor moderating depression and obesity in middle-aged women. Nutrients, 15(7), Article 1594. https://doi.org/10.3390/nu15071594

57. National Institutes of Health. (2025). Selenium — Health Professional. Retrieved from https://ods.od.nih.gov/factsheets/Selenium-HealthProfessional/#en18 Accessed August 10, 2025.

58. Prasad, A. S. (1995). Zinc: An overview. Nutrition, 11(1 Suppl), 93–99.

59. Pfaender, S., Föhr, K., Lutz, A.-K., Putz, S., Achberger, K., Linta, L. et al. (2016). Cellular zinc homeostasis contributes to neuronal differentiation in human induced pluripotent stem cells. Neural Plasticity, 2016, 1–15. https://doi.org/10.1155/2016/3760702

60. Satała, G., Duszyńska, B., Stachowicz, K., Rafalo, A., Pochwat, B., Luckhart, C. et al. (2016). Concentration-dependent dual mode of Zn action at serotonin 5-HT1A receptors: In vitro and in vivo studies. Molecular Neurobiology, 53(10), 6869–6881. https://doi.org/10.1007/s12035-015-9586-3

61. Takeda, A., Tamano, H., Ogawa, T., Takada, S., Ando, M., Oku, N. et al. (2012). Significance of serum glucocorticoid and chelatable zinc in depression and cognition in zinc deficiency. Behavioural Brain Research, 226(1), 259–264. https://doi.org/10.1016/j.bbr.2011.09.026

62. Jarosz, M., Olbert, M., Wyszogrodzka, G., Młyniec, K., Librowski, T. (2017). Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF κB signaling. Inflammopharmacology, 25(1), 11–24. https://doi.org/10.1007/s10787-017-0309-4

63. Doboszewska, U., Wlaź, P., Nowak, G., Radziwoń-Zaleska, M., Cui, R., Młyniec, K. (2017). Zinc in the monoaminergic theory of depression: Its relationship to neural plasticity. Neural Plasticity, 2017, 1–18. https://doi.org/10.1155/2017/3682752

64. Mlyniec, K. (2015). Zinc in the glutamatergic theory of depression. Current Neuropharmacology, 13(4), 505–513. https://doi.org/10.2174/1570159X13666150115220617

65. Gröber, U., Schmidt, J., Kisters, K. (2015). Magnesium in prevention and therapy. Nutrients, 7(9), 8199–8226. https://doi.org/10.3390/nu7095388

66. Kirkland, A. E., Sarlo, G. L., Holton, K. F. (2018). The role of magnesium in neurological disorders. Nutrients, 10(6), Article 730. https://doi.org/10.3390/nu10060730

67. Stroebel, D., Casado, M., Paoletti, P. (2018). Triheteromeric NMDA receptors: From structure to synaptic physiology. Current Opinion in Physiology, 2, 1–12. https://doi.org/10.1016/j.cophys.2017.12.004

68. Ji, N., Lei, M., Chen, Y., Tian, S., Li, C., Zhang, B. (2023). How oxidative stress induces depression? ASN Neuro, 15(1), Article 17590914231181037. https://doi.org/10.1177/17590914231181037

69. Olloquequi, J., Cornejo-Córdova, E., Verdaguer, E., Soriano, F. X., Binvignat, O., Auladell, C. et al. (2018). Excitotoxicity in the pathogenesis of neurological and psychiatric disorders: Therapeutic implications. Journal of Psychopharmacology, 32(3), 265–275. https://doi.org/10.1177/0269881118754680

70. Clerc, P., Young, C. A., Bordt, E. A., Grigore, A. M., Fiskum, G., Polster, B. M. (2013). Magnesium sulfate protects against the bioenergetic consequences of chronic glutamate receptor stimulation. PLoS ONE, 8(11), Article e79982. https://doi.org/10.1371/journal.pone.0079982

71. Lambuk, L., Jafri, A. J. A., Arfuzir, N. N. N., Iezhitsa, I., Agarwal, R., Rozali, K. N. B. et al. (2017). Neuroprotective effect of magnesium acetyltaurate against NMDA induced excitotoxicity in rat retina. Neurotoxicity Research, 31(1), 31–45. https://doi.org/10.1007/s12640-016-9658-9

72. Berthou, C., Iliou, J. P., Barba, D. (2022). Iron, neuro-bioavailability and depression. EJHaem, 3(1), 263–275. https://doi.org/10.1002/jha2.321

73. Dichtl, S., Haschka, D., Nairz, M., Seifert, M., Volani, C., Lutz, O. et al. (2018). Dopamine promotes cellular iron accumulation and oxidative stress responses in macrophages. Biochemical Pharmacology, 148, 193–201. https://doi.org/10.1016/j.bcp.2017.12.001

74. Kulaszyńska, M., Kwiatkowski, S., Skonieczna-Żydecka, K. (2024). The iron metabolism with a specific focus on the functioning of the nervous system. Biomedicines, 12(3), Article 595. https://doi.org/10.3390/biomedicines12030595

75. Gutteridge, J. M. C. (1998). Iron in Free Radical Reactions and Antioxidant Protection. Chapter in a book: Free Radicals, Oxidative Stress, and Antioxidants. Springer, Boston, MA, 1998. https://doi.org/10.1007/978-1-4757-2907-8_1

76. Kuang, F., Liu, J., Tang, D., Kang, R. (2020). Oxidative damage and antioxidant defense in ferroptosis. Frontiers in Cell and Developmental Biology, 8, Article 586578. https://doi.org/10.3389/fcell.2020.586578

77. Gasperini, L., Meneghetti, E., Pastore, B., Benetti, F., Legname, G. (2015). Prion protein and copper cooperatively protect neurons by modulating NMDA receptor through S nitrosylation. Antioxidants and Redox Signaling, 22(9), 772–784. https://doi.org/10.1089/ars.2014.6032

78. Lane, A. R., Roberts, B. R., Fahrni, C. J., Faundez, V. (2025). A primer on copper biology in the brain. Neurobiology of Disease, 212, Article 106974. https://doi.org/10.1016/j.nbd.2025.106974

79. An, Y., Li, S., Huang, X., Chen, X., Shan, H., Zhang, M. (2022). The role of copper homeostasis in brain disease. International Journal of Molecular Sciences, 23(22), Article 13850. https://doi.org/10.3390/ijms232213850

80. Gale, J., Aizenman, E. (2024). The physiological and pathophysiological roles of copper in the nervous system. European Journal of Neuroscience, 60(1), 3505– 3543. https://doi.org/10.1111/ejn.16370

81. D’Ambrosi, N., Rossi, L. (2015). Copper at synapse: Release, binding and modulation of neurotransmission. Neurochemistry International, 90, 36–45. https://doi.org/10.1016/j.neuint.2015.07.006

82. Rodriguez-Diaz, E., Pearce, E. N. (2020). Iodine status and supplementation before, during, and after pregnancy. Best Practice and Research Clinical Endocrinology and Metabolism, 34(4), Article 101430. https://doi.org/10.1016/j.beem.2020.101430

83. Abel, M. H., Caspersen, I. H., Sengpiel, V., Jacobsson, B., Meltzer, H. M., Magnus, P. et al. (2020). Insufficient maternal iodine intake is associated with subfecundity, reduced foetal growth, and adverse pregnancy outcomes in the Norwegian Mother, Father and Child Cohort Study. BMC Medicine, 18(1), Article 211. https://doi.org/10.1186/s12916-020-01676-w

84. Sterling, K., Brenner, M. A., Sakurada, T. (1980). Rapid effect of triiodothyronine on the mitochondrial pathway in rat liver in Vivo. Science, 210(4467), 340–342. https://doi.org/10.1126/science.7423197

85. Venediktova, N. I., Mashchenko, O. V., Talanov, E. Y., Belosludtseva, N. V., Mironova, G. D. (2020). Energy metabolism and oxidative status of rat liver mitochondria in conditions of experimentally induced hyperthyroidism. Mitochondrion, 52, 190–196. https://doi.org/10.1016/j.mito.2020.04.005

86. Vallortigara, J., Alfos, S., Micheau, J., Higueret, P., Enderlin, V. (2008). T3 administration in adult hypothyroid mice modulates expression of proteins involved in striatal synaptic plasticity and improves motor behavior. Neurobiology of Disease, 31(3), 378–385. https://doi.org/10.1016/j.nbd.2008.05.015

87. Féart, C., Mingaud, F., Enderlin, V., Husson, M., Alfos, S., Higueret, P. et al. (2005). Differential effect of retinoic acid and triiodothyronine on the agerelated hypo-expression of neurogranin in rat. Neurobiology of Aging, 26(5), 729–738. https://doi.org/10.1016/j.neurobiolaging.2004.06.004

88. Alamino, V. A., Montesinos, M. M., Rabinovich, G. A., Pellizas, C. G. (2016). The thyroid hormone triiodothyronine reinvigorates dendritic cells and potentiates anti-tumor immunity. OncoImmunology, 5(1), Article e1064579. https://doi.org/10.1080/2162402X.2015.1064579

89. Callio, J., Oury, T. D., Chu, C. T. (2005). Manganese superoxide dismutase protects against 6-hydroxydopamine injury in mouse brains. Journal of Biological Chemistry, 280(18), 18536–18542. https://doi.org/10.1074/jbc.M413224200

90. Huang, H., Guo, F., Cao, Y., Shi, W., Xia, Q. (2012). Neuroprotection by manganese superoxide dismutase (M n SOD) mimics: Antioxidant effect and oxidative stress regulation in acute experimental stroke. CNS Neuroscience and Therapeutics, 18(10), 811–818. https://doi.org/10.1111/j.1755-5949.2012.00380.x

91. Horning, K. J., Caito, S. W., Tipps, K. G., Bowman, A. B., Aschner, M. (2015). Manganese is essential for neuronal health. Annual Review of Nutrition, 35(1), 71–108. https://doi.org/10.1146/annurev-nutr-071714-034419

92. Balachandran, R. C., Mukhopadhyay, S., McBride, D., Veevers, J., Harrison, F. E., Aschner, M. et al. (2020). Brain manganese and the balance between essential roles and neurotoxicity. Journal of Biological Chemistry, 295(19), 6312–6329. https://doi.org/10.1074/jbc.REV119.009453

93. Bonke, E., Siebels, I., Zwicker, K., Dröse, S. (2016). Manganese ions enhance mitochondrial H2O2 emission from Krebs cycle oxidoreductases by inducing permeability transition. Free Radical Biology and Medicine, 99, 43–53. https://doi.org/10.1016/j.freeradbiomed.2016.07.026

94. Cao, D., Kevala, K., Kim, J., Moon, H., Jun, S. B., Lovinger, D. et al. (2009). Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function. Journal of Neurochemistry, 111(2), 510–521. https://doi.org/10.1111/j.1471-4159.2009.06335.x

95. Ranard, K. M., Appel, B. (2025). Creation of a novel zebrafish model with low DHA status to study the role of maternal nutrition during neurodevelopment. Journal of Lipid Research, 66(1), Article 100716. https://doi.org/10.1016/j.jlr.2024.100716

96. Bazinet, R. P., Layé, S. (2014). Polyunsaturated fatty acids and their metabolites in brain function and disease. Nature Reviews Neuroscience, 15(12), 771–785. https://doi.org/10.1038/nrn3820

97. Sublette, M. E., Daray, F. M., Ganança, L., Shaikh, S. R. (2024). The role of polyunsaturated fatty acids in the neurobiology of major depressive disorder and suicide risk. Molecular Psychiatry, 29(2), 269–286. https://doi.org/10.1038/s41380-023-02322-6

98. Suh, S. W., Lim, E., Burm, S.-Y., Lee, H., Bae, J. B., Han, J. W. et al. (2024). The influence of n 3 polyunsaturated fatty acids on cognitive function in individuals without dementia: A systematic review and dose–response meta-analysis. BMC Medicine, 22(1), Article 109. https://doi.org/10.1186/s12916-024-03296-0

99. Karabanov, S. Yu., Kibitkina, A. A., Vasilevskaya, E. R., Fedulova, L. V. (2024). Molecular signaling of key neurotrophic factors in the brain while the occurrence of affective disorders. Genes and Cells, 19(3), 334–347. https://doi.org/10.17816/gc631853

100. Stachowicz, K. (2023). The role of polyunsaturated fatty acids in neuronal signaling in depression and cognitive processes. Archives of Biochemistry and Biophysics, 737, Article 109555. https://doi.org/10.1016/j.abb.2023.109555

101. Smolińska, K., Szopa, A., Sobczyński, J., Serefko, A., Dobrowolski, P. (2024). Nutritional quality implications: Exploring the impact of a fatty acid-rich diet on central nervous system development. Nutrients, 16(7), Article 1093. https://doi.org/10.3390/nu16071093

102. Rizzo, G., Baroni, L., Lombardo, M. (2023). Promising sources of plant-derived polyunsaturated fatty acids: A narrative review. International Journal of Environmental Research and Public Health, 20(3), Article 1683. https://doi.org/10.3390/ijerph20031683

103. Simopoulos, A. P. (2011). Evolutionary aspects of diet: The omega 6/omega 3 ratio and the brain. Molecular Neurobiology, 44(2), 203–215. https://doi.org/10.1007/s12035-010-8162-0

104. Chungchunlam, S. M. S., Moughan, P. J. (2024). Comparative bioavailability of vitamins in human foods sourced from animals and plants. Critical Reviews in Food Science and Nutrition, 64(31), 11590–11625. https://doi.org/10.1080/10408398.2023.2241541

105. Koch, W., Czop, M., Nawrocka, A., Wiącek, D. (2020). Contribution of major groups of food products to the daily intake of selected elements — Results from analytical determinations supported by chemometric analysis. Nutrients, 12(11), Article 3412. https://doi.org/10.3390/nu12113412

106. Eberl, E., Li, A. S., Zheng, Z. Y. J., Cunningham, J., Rangan, A. (2021). Temporal change in iron content of vegetables and legumes in Australia: A scoping review. Foods, 11(1), Article 56. https://doi.org/10.3390/foods11010056

107. De Romaña, D. L., Olivares, M., Uauy, R., Araya, M. (2011). Risks and benefits of copper in light of new insights of copper homeostasis. Journal of Trace Elements in Medicine and Biology, 25(1), 3–13. https://doi.org/10.1016/j.jtemb.2010.11.004

108. Nedić, O. (2023). Iodine: Physiological importance and food sources. eFood, 4(1), Article e63. https://doi.org/10.1002/efd2.63

109. Krela-Kaźmierczak, I., Czarnywojtek, A., Skoracka, K., Rychter, A. M., Ratajczak, A. E., Szymczak-Tomczak, A. et al. (2021). Is there an ideal diet to protect against iodine deficiency? Nutrients, 13(2), Article 513. https://doi.org/10.3390/nu13020513

110. Goluch, Z., Haraf, G. (2023). Goose meat as a source of dietary manganese — A systematic review. Animals, 13(5), Article 840. https://doi.org/10.3390/ani13050840

111. Shahidi, F., Ambigaipalan, P. (2018). Omega 3 polyunsaturated fatty acids and their health benefits. Annual Review of Food Science and Technology, 9(1), 345– 381. https://doi.org/10.1146/annurev-food-111317-095850

112. Mititelu, M., Lupuliasa, D., Neacșu, S. M., Olteanu, G., Busnatu, Ș. S., Mihai, A. et al. (2024). Polyunsaturated fatty acids and human health: A key to modern nutritional balance in association with polyphenolic compounds from food sources. Foods, 14(1), Article 46. https://doi.org/10.3390/foods14010046


Review

For citations:


Fedulova L.V., Kibitkina A.A., Vasilevskaya E.R., Karabanov S.Yu., Utyanov D.A. Micronutrients and bioactive compounds in neuroprotection: Potential, mechanisms, and dietary sources. Food systems. 2025;8(4):479-487. (In Russ.) https://doi.org/10.21323/2618-9771-2025-8-4-479-487

Views: 20

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)