Утилизация остатков дистилляции эфирных масел ажгона, чабера садового и орегано
https://doi.org/10.21323/2618-9771-2025-8-3-414-422
Аннотация
Водная дистилляция (ВД) является традиционным методом экстракции эфирных масел (ЭМ). Этот метод даёт значительный объем водного остатка (ВО) и твёрдого остатка (ТО), получаемых в качестве побочных продуктов. Целью данного исследования было изучение эффективности использования побочных продуктов дистилляции, а именно — ВО и ТО в качестве антиоксидантных и антимикробных действующих веществ. Химический профиль ЭМ, экстрагированных из некоторых ароматических растений, богатых фенольными соединениями (ажгон, чабер садовый и орегано), был проанализирован с помощью метода газовой хроматографии-масс-спектрометрии (ГХ–МС). Наиболее часто встречающимися соединениями оказались фенольные монотерпены, такие как тимол и карвакрол. Полифенольные характеристики проанализированных ВО и ТО экстрактов были определены с помощью метода высокоэффективной жидкостной хроматографии (ВЭЖХ). Анализ по методу ВЭЖХ показал присутствие хлорогеновой кислоты, катехина, ρ-гидроксибензойной кислоты, феруловой кислоты, рутина и гесперидина в качестве основных компонентов в ВО. Общее содержание фенольных соединений и флавоноидов определяли с помощью анализа Фолина-Чокальтеу и анализа на содержание хлорида алюминия соответственно. Антиоксидантный потенциал оценивали с помощью анализа 2,2-дифенил‑1-пикрилгидразила (ДФПГ) и анализа восстанавливающей железо антиоксидантной активности (ВЖАА). Экстракты из водного остатка орегано (ВОО) и водного остатка чабера (ВОЧ) проявляли более высокую активность в отношении радикалов ДФПГ и восстанавливающую способность, нежели бутилированный гидрокситолуол (БГТ). Антибактериальная активность экстрактов ВО и ТО оценивалась на примере их эффективности в отношении шести штаммов бактерий. Антибактериальная активность экстракта ВОО в отношении Salmonella typhimurium 14028 и Serratia marcescens 37 превышала антибактериальную активность стандартного ампициллина. При этом экстракт ВОЧ проявлял более высокую антибактериальную активность, нежели ампициллин, в отношении Bacillus cereus 33018.
Ключевые слова
Об авторах
Ф. Аль-З. РефатЕгипет
Рефат Фарма Аль-З. — Научный сотрудник
12619, Гиза, ул. Гамаа, 9
А. О. Али
Египет
Али Афаф О. — Главный научный сотрудник
12619, Египет, Гиза, ул. Гамаа, 9
Н. С. М. Морси
Египет
Морси Нашва С. М. — Ph.D., профессор, Кафедра науки о пище, Сельскохозяйственный факультет
12613, Гиза, ул. Гамаа, 1
К. С. М. Хаммад
Египет
Хаммад Карима С. М. — Адъюнкт- профессор, Кафедра науки о пище, Сельскохозяйственный факультет
12613, Гиза, ул. Гамаа, 1
Список литературы
1. Katekara, V. P., Rao, A. B., Sardeshpande, V. R. (2023). A hydrodistillation-based essential oils extraction: A quest for the most effective and cleaner technology. Sustainable Chemistry and Pharmacy, 36, Article 101270. https://doi.org/10.1016/j.scp.2023.101270
2. Dhouibi, N., Binous, H., Dhaouadi, H., Dridi-Dhaouadi, S. (2020). Hydrodistillation residues of Centaurea nicaeensis plant for copper and zinc ions removal: Novel concept for waste re-use. Journal of Cleaner Production, 261(3), Article 121106. https://doi.org/10.1016/j.jclepro.2020.121106
3. Rodrigues, L., Coelho, E., Madeira, R., Teixeira, P., Henriques, I., Coimbra, M. A. (2022). Food ingredients derived from lemongrass byproduct hydrodistillation: Essential oil, hydrolate, and decoction. Molecules, 27(8), Article 2493. https://doi.org/10.3390/molecules27082493
4. Napoli, E., Dattilo, S., Ruberto, G. (2020). Hydrodistillation of Trachelospermum jasminoides Lindl. Flowers. An analysis of essential oil, hydrolate and polyphenols content of the process wastes. Journal of Essential Oil Research, 32(6), 556–561. https://doi.org/10.1080/10412905.2020.1808538
5. Gonzalez-Rivera, J., Campanella, B., Pulidori, E., Bramanti, E., Tiné, M. R., Bernazzani, L. et al. (2023). From volatiles to solid wastes: Towards the full valorization of lavender and rosemary by simultaneous in situ microwaves and ultrasounds irradiation extraction. Industrial Crops and Products, 194, Article 116362. https://doi.org/10.1016/j.indcrop.2023.116362
6. Alves-Silva, J. M., Guerraa, I., Gonçalvesa, M. J., Cavaleiroa, C., Cruzc, M. T., Figueirinha, A. et al. (2020). Chemical composition of Crithmum maritimum L. essential oil and hydrodistillation residual water by GC–MS and HPLC-DAD-MS/MS, and their biological activities. Industrial Crops and Products, 149, Article 112329. https://doi.org/10.1016/j.indcrop.2020.112329
7. Skendi, A., Irakli, M., Chatzopoulou, P., Bouloumpasi, E., Biliaderis, C. G. (2022). Phenolic extracts from solid wastes of the aromatic plant essential oil industry: Potential uses in food applications. Food Chemistry Advances, 1, Article 100065. https://doi.org/10.1016/j.focha.2022.100065
8. Ozkan, G., Sagdiç, O., Baydar, N. G., Baydar, H. (2004). Note: Antioxidant and antibacterial activities of Rosa damascene flower extracts. Food Science and Technology International, 10(4), 277–281. https://doi.org/10.1177/1082013204045882
9. Slavov, A., Vasileva, I., Stefanov, L., Stoyanova, A. (2017). Valorization of wastes from the rose oil industry. Reviews in Environmental Science and Biotechnology, 16(2), 309–325. https://doi.org/10.1007/s11157-017-9430-5
10. Sabahi, Z., Farmani, F., Mousavinoor, E., Moein, M. (2020). Valorization of waste water of Rosa amascene oil distillation process by Ion Exchange Chromatography. Hindawi Scientific World Journal, 2020, Article 5409493. https://doi.org/10.1155/2020/5409493
11. Lamine, M., Hamdi, Z., Zemni, H., Rahali, F. Z., Melki, I., Mliki, A. et al. (2024). From residue to resource: The recovery of high-added values compounds through an integral green valorization of citrus residual biomass. Sustainable Chemistry and Pharmacy, 37, Article 101379. https://doi.org/10.1016/j.scp.2023.101379
12. Ferraz, C. A., Sousa, A. C. A., Caramelo, D., Delgado, F., de Oliveira, A. P., Pastorinho, M. R. (2022). Chemical profile and eco-safety evaluation of essential oils and hydrolates from Cistus ladanifer, Helichrysum italicum, Ocimum basilicum and Thymbra capitata. Industrial Crops and Products, 175, Article 114232. https://doi.org/10.1016/j.indcrop.2021.114232
13. Lourenço Neto, M., Agra, K. L., Suassuna Filho, J., Jorge, F. E. (2018). TDDFT calculations and photoacoustic spectroscopy experiments used to identify phenolic acid functional biomolecules in Brazilian tropical fruits in natura. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 193, 249–257. https://doi.org/10.1016/j.saa.2017.12.036
14. Coşkun, N., Sarıtaş, S., Bechelany, M., Karav, S. (2025). Polyphenols in foods and their use in the food industry: Enhancing the quality and nutritional value of functional foods. International Journal of Molecular Sciences, 26(12), Article 5806. https://doi.org/10.3390/ijms26125803
15. Olszewska, M.A., Gędas, A., Simoes, M. (2020). Antimicrobial polyphenol-rich extracts: Applications and limitations in the food industry. Food Research International, 134, Article 109214. https://doi.org/10.1016/j.foodres.2020.109214
16. Oreopoulou, A., Papavassilopoulou, E., Bardouki, H., Vamvakias, M., Bimpilas, A., Oreopoulou, V. (2018). Antioxidant recovery from hydrodistillation residues of selected Lamiaceae species by alkaline extraction. Applied Research on Medicinal and Aromatic Plants, 8, 83–89. https://doi.org/10.1016/j.jarmap.2017.12.004
17. Rocha-Guzmán, N. E., Gallegos-Infante, J. A., Gonzàlez-Laredo, R. F., Ramos-Gómez, M., Rodríguez-Mu˜noz, M. E., Reynoso-Camacho, R. et al. (2007). Antioxidant effect of oregano (Lippia berlandieri v. Shauer) essential oil and mother liquors. Food Chemistry, 102(1), 330–335. https://doi.org/10.1016/j.foodchem.2006.05.024
18. Seidemann, J. (2005). World spice plants. Heidelberg, Germany: Springer-Verlag, 2005.
19. Dhaiwal, K., Chahal, K. K., Kataria, D., Kumar, A. (2017). Gas chromatographymass spectrometry analysis and in vitro antioxidant potential of ajwain seed (Trachyspermum ammi L.) essential oil and its extracts. Journal of Food Biochemistry, 41(3), Article e12364. https://doi.org/10.1111/jfbc.12364
20. Zarshenas, M. M., Moein, M., Mohammadi Samani, S., Petramfar, P. (2014). An overview on ajwain (Trachyspermum ammi) pharmacological effects; modern and traditional. Journal of Natural Remedies, 14(1), 98–105.
21. Hamidpour, R., Hamidpour, S., Hamidpour, M., Shahlari, M., Sohraby, M. (2014). Summer savory: From the selection of traditional applications to the novel effect in relief, prevention, and treatment of a number of serious illnesses such as diabetes, cardiovascular disease, Alzheimer’s disease, and cancer. Journal of Traditional and Complementary Medicine, 4(3), 140–144. https://doi.org/10.4103/2225-4110.136540
22. Bumedi, F., Aran, M., Miri, M. A., Seyedabadi, E. (2023). Preparation and characterization of zein electrospun fibers loaded with savory essential oil for fruit preservation. Industrial Crops and Products, 203, Article 117121. https://doi.org/10.1016/j.indcrop.2023.117121
23. Smaoui, S., Hsouna, A. B., Lahmar, A., Ennouri, K., Mtibaa-Chakchouk, A., Sellem, I. et al. (2016). Bio-preservative effect of the essential oil of the endemic Mentha piperita used alone and in combination with bacTN635 in stored minced beef meat. Meat Science, 117, 196–204. https://doi.org/10.1016/j.meatsci.2016.03.006
24. Lastra-Vargas, L., Hernández-Nava, R., Ruíz-González, N., Jiménez-Munguía, M. T., López-Malo, A., Palou, E. (2023). Oregano essential oil as an alternative antimicrobial for the control of Listeria monocytogenes and Salmonella in Turkey mortadella during refrigerated storage. Food Chemistry Advances, 2, Article 100314. https://doi.org/10.1016/j.focha.2023.100314
25. Kumar, V., Marković, T., Emerald, M., Dey, A. (2016). Herbs: Composition and dietary importance. Chapter in a book: Encyclopedia of Food and Health. Academic Press, 2016. https://doi.org/10.1016/b978-0-12-384947-2.00376-7
26. Hassoun, A., Emir Çoban, Ö. (2017). Essential oils for antimicrobial and antioxidant applications in fish and other seafood products. Trends in Food Science and Technology, 68, 26–36. https://doi.org/10.1016/j.tifs.2017.07.016
27. European Pharmacopoeia (2004). 5th Edition. Directorate for the Quality of Medicines. Strasbourg Cedex, France.2004.
28. Helmy, S. A., Morsy, N. F. S., Elaby, S. M., Ghaly, M. A. H. (2024). Antidiabetic effect of green vegetable leaf powders in diabetic rats. Egyptian Journal of Chemistry, 67(4), 93–104. https://doi.org/10.21608/ejchem.2023.225687.8321
29. Morsy, N. F. S., Hammad, K. S. M. (2021). Extraction of essential oil from methyl cinnamate basil (Ocimum canum Sims) with high yield in a short time using enzyme pretreatment. Journal of Food Science and Technology, 58(7), 2599–2605. https://doi.org/10.1007/s13197-020-04766-y
30. Gulluce, M., Sahin, F., Sokmen, M., Ozer, H., Daferera, D., Sokmen, A. et al. (2007). Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. longifolia. Food Chemistry, 103(4), 1449–1456. https://doi.org/10.1016/j.foodchem.2006.10.061
31. Zhishen, J., Mengcheng, T., Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555–559. https://doi.org/10.1016/S0308-8146(98)00102-2
32. Pereira, J.A., Oliveira, I., Sousa, A., Ferreira, I.C.F.R., Bento, A., Estevinho, L. (2008). Bioactive properties and chemical composition of six walnut (Juglans regia L.) cultivars. Food and Chemical Toxicology, 46(6), 2103–2111. https://doi.org/10.1016/j.fct.2008.02.002
33. Vijayalakshmi, M., Ruckmani, K. (2016). Ferric reducing anti-oxidant power assay in plant extract. Bangladesh Journal Pharmacology, 11, 570–572. https://doi.org/10.3329/bjp.v11i3.27663
34. Sağdiҫ, O. (2003). Sensitivity of four pathogenic bacteria to Turkish thyme and oregano. LWT-Food Science and Technology, 36(5), 467–473. https://doi.org/10.1016/S0023-6438(03)00037-9
35. Gerçek, Y. C., Bayram, S., Çelik, S., Canlı, D., Mavaldi, M. H., Boztas, K. et al. (2022). Characterization of essential oil and wastewater from Thymusnummularius M. Bieb. and micromorphological examination of glandular trichomes. Journal of Essential Oil Bearing Plants, 25(3), 690–706. https://doi.org/10.1080/097206 0X.2022.2107403
36. Skubij, N., Dzida, K. (2019). Essential oil composition of summer savory (Satureja hortensis L.) cv. Saturn depending on nitrogen nutrition and plant development phases in raw material cultivated for industrial use. Industrial Crops and Products, 135, 260–270. https://doi.org/10.1016/j.indcrop.2019.04.057
37. Morsy, N. F.S. (2020). Production of thymol rich extracts from ajwain (Carum copticum L.) and thyme (Thymus vulgaris L.) using supercritical CO2. Industrial Crops and Products, 145, Article 112072. http://doi.org/10.1016/j.indcrop.2019.112072
38. Manaa, A. O., Baghdadi, H. H., El-Nikhely, N. A., Heikal, L. A., El-Hosseiny, L. S. (2022). Oregano oil-nanoemulsions: Formulation and evaluation of antibacterial and anticancer potentials. Journal of Drug Delivery Science and Technology, 78, Article 103978. https://doi.org/10.1016/j.jddst.2022.103978
39. Anwar, S., Ahmed, N., Habibatni, S., Abusamra, Y. (2016). Ajwain (Trachyspermum ammi L.) oils. Chapter in a book: Essential Oils in Food Preservation, Flavor and Safety. Elsevier Inc., London, UK, 2016. https://doi.org/10.1016/B978-0-12-416641-7.00019-5
40. Saadat, S., Rawtani, D., Braganza, V. (2022). Antimicrobial activity of chitosan film containing nanocomposite of Trachyspermum ammi (ajwain) seed oil loaded Halloysite nanotubes against foodborne pathogenic microorganisms. Applied Clay Science, 226, Article 106554. https://doi.org/10.1016/j.clay.2022.106554
41. Das, B. S., Sarangi, A., Rout, S. S., Sahoo, A., Giri, S., Bhattacharya, D. (2025). Antimycobacterial potential of Trachyspermum ammi seed essential oil via fume contact and determination of major compounds. Natural Product Research, 39(6), 1467–1473. https://doi.org/10.1080/14786419.2023.2300404
42. Zare, M. R., Khorram, M., Barzegar, S., Asadian, F., Zareshahrabadi, Z., Saharkhiz, M. J. et al. (2021). Antimicrobial cor — eshell electrospun nanofibers containing Ajwain essential oil for accelerating infected wound healing. International Journal of Pharmaceutics, 603, Article 120698. https://doi.org/10.1016/j.ijpharm.2021.120698
43. Alizadeh, A., Moghaddam, M., Asgharzade, A., Sourestani, M. M. (2020). Phytochemical and physiological response of Satureja hortensis L. to different irrigation regimes and chitosan application. Industrial Crops and Products, 158, Article 112990. https://doi.org/10.1016/j.indcrop.2020.112990
44. Memari-Tabrizi, E. F., Yousefpour-Dokhanieh, A., Babashpour-Asl, M. (2021). Foliar-applied silicon nanoparticles mitigate cadmium stress through physiochemical changes to improve growth, antioxidant capacity, and essential oil profile of summer savory (Satureja hortensis L.). Plant Physiology and Biochemistry, 165, 71–79. https://doi.org/10.1016/j.plaphy.2021.04.040
45. Mohtashami, S., Rowshan, V., Tabrizi, L., Babalar, M., Ghani, A. (2018). Summer savory (Satureja hortensis L.) essential oil constituent oscillation at different storage conditions. Industrial Crops and Products, 111, 226–231. http://doi.org/10.1016/j.indcrop.2017.09.055
46. Meerasri, J., Sukatta, U., Rugthaworn, P., Klinsukhon, K., Khacharat, L., Sakayaroj, S. (2024). Synergistic effects of thyme and oregano essential oil combinations for enhanced functional properties of sericin/pectin film. International Journal of Biological Macromolecules, 263(Part 1), Article 130288. https://doi.org/10.1016/j.ijbiomac.2024.130288
47. Ferhat, M. A., Meklati, B. Y., Smadja, J., Chemat, F. (2006). An improved microwave clevenger apparatus for distillation of essential oils from orange peel. Journal of Chromatography A, 1112(1–2), 121–126. https://doi.org/10.1016/j.chroma.2005.12.030
48. Majeed, M., Hussain, A. I., Chatha, S. A. S., Khosa, M. K. K., Kamal, G. M., Kamal, M. A. et al. (2016). Optimization protocol for the extraction of antioxidant components from Origanum vulgare leaves using response surface methodology. Saudi Journal of Biological Sciences, 23(3), 389–396. https://doi.org/10.1016/j.sjbs.2015.04.010
49. Irakli, M., Skendi, A., Bouloumpasi, E., Chatzopoulou, P., Biliaderis, C. G. (2021). LC–MS identification and quantification of phenolic compounds in solid residues from the essential oil industry. Antioxidants, 10(12), Article 2016. https://doi.org/10.3390/antiox10122016
50. Mishra, P. K., Kakatkar, A. S., Gautam, R. K., Kumar, V., Debbarma, A., Chatterjee, S. (2023). Effect of ajwain (Trachyspermum ammi) extract and gamma irradiation on the shelf-life extension of rohu (Labeo rohita) and seer (Scomberomorus guttatus) fish steaks during chilled storage. Food Research International, 163, Article 112149. https://doi.org/10.1016/j.foodres.2022.112149
51. de Elguea-Culebras, G. O., Panamá-Tapia, L. A., Melero-Bravo, E., Cerro-Ibáñez, N., Calvo-Martínez, A., Sánchez-Vioque R. (2023). Comparison of the phenolic composition and biological capacities of wastewater from Origanum vulgare L., Rosmarinus officinalis L., Salvia lavandulifolia Vahl. and Thymus mastichina L. resulting from two hydrodistillation systems: Clevenger and MAE. Journal of Applied Research on Medicinal and Aromatic Plants, 34, Article 100480. https://doi.org/10.1016/j.jarmap.2023.100480
52. Sánchez-Vioque, R., Izquierdo-Melero, M. E., Quílez, M., Herraiz-Peñalver, D., Santana-Méridas, O., Jordán, M. J. (2018). Solid residues from the distillation of Salvia lavandulifolia Vahl. as a natural source of antioxidant compounds. Journal of the American Oil Chemists' Society, 95(10), 1277–1284. https://doi.org/10.1002/aocs.12128
53. Cvetkovikj, I., Stefkov, G., Acevska, J., Petreska Stanoeva, J., Karapandzova, M., Stefova, M. et al. (2013). Polyphenolic characterization and chromatographic methods for fast assessment of culinary Salvia species from South East Europe. Journal of Chromatography A, 1282, 38–45. https://doi.org/10.1016/j.chroma.2012.12.068
54. Celano, R., Piccinelli, A., Pagano, I., Roscigno, G., Campone, L., DeFalco, E. et al. (2017). Oil distillation waste waters from aromatic herbs as new natural source of antioxidant compounds. Food Research International, 99(1), 298–307. https://doi.org/10.1016/j.foodres.2017.05.036
55. Džamić, A. M., Soković, M. D., Novaković, M., Jadranin, M., Ristić, M. S., Tešević, V. et al. (2013). Composition, antifungal and antioxidant properties of Hyssopus officinalis L. subsp. pilifer (Pant.) Murb. essential oil and deodorized extracts. Industrial Crops and Products, 51, 401–407. https://doi.org/10.1016/j.indcrop.2013.09.038
56. Oreopoulou, A., Goussias, G., Tsimogiannis, D., Oreopouloub, V. (2020). Hydroalcoholic extraction kinetics of phenolics from oregano: Optimization of the extraction parameters. Food and Bioproducts Processing, 123, 378–389. https://doi.org/10.1016/j.fbp.2020.07.017
57. Momtaz, S., Abdollahi, M. (2010). An update on pharmacology of Satureja species: From antioxidant, antimicrobial, antidiabetes and anti-hyperlipidemic to reproductive stimulation. International Journal of Pharmacology, 6(4), 454–461. https://doi.org/10.3923/ijp.2010.346.353
58. Yanishlieva, N. V., Marinova, E. M., Gordon, M. H., Raneva, V. G. (1999). Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chemistry, 64(1), 59–66. https://doi.org/10.1016/s0308-8146(98)00086-7
59. Chizzola, R., Michitsch, H., Franz, C. (2008). Antioxidative properties of Thymus vulgaris leaves: Comparison of different extracts and essential oil chemotypes. Journal of Agricultural and Food Chemistry, 56(16), 6897–6904. https://doi.org/10.1021/jf800617g
60. Wollinger, A., Perrin, É., Chahboun, J., Jeannot, V., Touraud, D., Kunz, W. (2016). Antioxidant activity of hydro distillation water residues from Rosmarinus officinalis L. leaves determined by DPPH assays. Comptes Rendus Chimie, 19(6), 754–765. https://doi.org/10.1016/j.crci.2015.12.014
61. Alice, G., Corina, B., Lucia, P., Sultana, N., Bazdoaca, C., Nicoleta, D. (2019). Polyphenol content dynamics in hydrodistillation water residues of lamiaceae species. Journal of Essential Oil Bearing Plants, 22(3), 858–864. https://doi.org/10.1080/0972060x.2019.1633417
62. Noubigh, A., Abderrabba, M., Provost, E. (2007). Temperature and salt addition effects on the solubility behaviour of some phenolic compounds in water. The Journal of Chemical Thermodynamics, 39(2), 297–303. https://doi.org/10.1016/j.jct.2006.06.014
63. Martins, M. A. R., Silva, L. P., Ferreira, O., Schrӧder, B., Coutinho, J. A. P., Pinho, S. P. (2017). Terpenes solubility in water and their environmental distribution. Journal of Molecular Liquids, 241, 996–1002. https://doi.org/10.1016/j.molliq.2017.06.099
64. Ragab, G. A., Saad-Allah, K. M. (2020). Green synthesis of sulfur nanoparticles using Ocimum basilicum leaves and its prospective effect on manganese-stressed Helianthus annuus (L.) seedlings. Ecotoxicology and Environmental Safety, 191, Article 110242. https://doi.org/10.1016/j.ecoenv.2020.110242
65. Mahmoudi, H., Marzouki, M., M’Rabet, Y., Mezni, M., Ouazzou, A. A., Hosni, K. (2020). Enzyme pretreatment improves the recovery of bioactive phytochemicals from sweet basil (Ocimum basilicum L.) leaves and their hydrodistilled residue byproducts, and potentiates their biological activities. Arabian Journal of Chemistry, 13(8), 6451–6460. https://doi.org/10.1016/j.arabjc.2020.06.003
66. European Parliament and Council (2013). Commission regulation (EU) No 723/2013 of 26 July 2013 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council as regards the use of extracts of rosemary (E392) in certain low fat meat and fish products. Retrieved from https://eurlex.europa.eu/eli/reg/2013/723 Accessed March 12, 2025
67. Dorman, H. J. D., Peltoketo, A., Hiltunen, R., Tikkanen, M. J. (2003). Characterisation of the antioxidant properties of de-odourised aqueous extracts from selected Lamiaceae herbs. Food Chemistry, 83(2), 255–262. https://doi.org/10.1016/s0308-8146(03)00088-8
68. Méndez-Tovar, I., Herrero, B., Pérez-Magariňo, S., Pereira, J. A., Asensio-S.-Manzanera, Manzanera, M. C. (2015). By-product of Lavandula latifolia essential oil distillation as source of antioxidants. Journal of Food and Drug Analysis, 23(2), 225–233. https://doi.org/10.1016/j.jfda.2014.07.003
69. Mielnik, M. B., Sem, S., Egelandsdal, B., Skrede, G. (2008). By-products from herbs essential oil production as ingredient in marinade for turkey thighs. LWT — Food Science and Technology, 41(1), 93–100. https://doi.org/10.1016/j.lwt.2007.01.014
70. Hoffman, D. L. (1987). The herb user’s guide: The basic skills of medical herbalism. Thorsons Publishing Group. Wellingborough, UK, 1987.
71. el Hassouni, A., el Bachiri, A., Belbachir, C. (2019). Lavandula dentata solid residue from essential oil industry. Journal of Essential Oil Bearing Plants, 22(6), 1601– 1613. https://doi.org/10.1080/0972060X.2019.1709906
72. Pandey, K. B., Rizvi, S. I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity, 2(5), 270–278. https://doi.org/10.4161/oxim.2.5.9498
73. Wu, M., Brown, A. C. (2021). Applications of catechins in the treatment of bacterial infections. Pathogens, 10(5), Article 546. https://doi.org/10.3390/pathogens10050546
Рецензия
Для цитирования:
Рефат Ф.А., Али А.О., Морси Н.С., Хаммад К.С. Утилизация остатков дистилляции эфирных масел ажгона, чабера садового и орегано. Пищевые системы. 2025;8(3):414-422. https://doi.org/10.21323/2618-9771-2025-8-3-414-422
For citation:
Refat F.A., Ali A.O., Morsy N.F., Hammad K.S. Utilization of residues of ajwain, summer savory and oregano essential oils distillation. Food systems. 2025;8(3):414-422. https://doi.org/10.21323/2618-9771-2025-8-3-414-422