Preview

Пищевые системы

Расширенный поиск

Влияние наночастиц цинка-сывороточного белка в кисломолочном продукте на окислительный стресс и функции печени у крыс с ожирением

https://doi.org/10.21323/2618-9771-2025-8-3-362-369

Аннотация

Ожирение характеризуется накоплением жировой ткани в организме человека и широко распространено во всём мире. Необходимо разрабатывать продукты, направленные на борьбу с проблемой ожирения и продвигать здоровый образ жизни пока проблема не достигнет масштабов эпидемии. Целью данного исследования было оценить влияние наночастиц цинка и сывороточного белка (Zn-WPNPs), включённых в состав кисломолочного продукта (FM), на окислительный стресс, воспаление и фиброз печени у крыс с ожирением. Химический анализ включал определение содержания сухих веществ, белка, жира, углеводов, золы и измерение pH. Эффективность связывания цинка составила 91,22–97,12%, при среднем размере частиц 41,4–228 нм. Zn-WPNPs сохраняли стабильность после инкапсуляции, что было подтверждено фотографиями, полученными с помощью просвечивающей электронной микроскопии. В исследовании использовали 40  самок белых крыс, разделённых на пять групп и  получавших пероральное лечение в течение 30 последовательных дней: контрольная группа, группа на высокожировой диете (HFD; холестерин 1%), FM без добавок, FM-Zn и FM-Zn-WPNPs. После эксперимента у  животных отбирали кровь и  печень для анализа. В  группе HFD наблюдались значительные увеличения массы тела, показателей липидного профиля (триглицеридов и ЛПНП) и малонового диальдегида, а также снижение уровня печёночного холестерина, ЛПВП и активности ферментов (АСТ и АЛТ). В то же время у животных, получавших FM-Zn-WPNPs, уровень всех маркеров окислительного стресса (MDA, CAT и GSH) снизился до 1,19; 1,89 и 43,25 соответственно, по сравнению с 2,29; 1,20 и 27,40 в группе HFD, а также отмечалось улучшение всех печёночных показателей. Таким образом, FM-Zn-WPNPs могут рассматриваться как перспективный продукт питания для пациентов с неалкогольной жировой болезнью печени (НАЖБП), способный улучшать их состояние здоровья.

Об авторах

М. А. Хасан
Национальная организация по контролю за наркотиками и научным исследованиям
Египет

Мона А.  Хассан  — ассистент-профессор, Отдел оценки пищевых продуктов и  науки о  продуктах питания

12654, Гиза, Агоуза, ул. Везарет Эль-Зераа, 51 



М. Салама
Каирский университет
Египет

Салама Махмуд  — ассистент-профессор, кафедра пищевых наук, сельскохозяйственный факультет

12613, Гиза, ул. Гамаа, 1



А. А. Абд Эль-Максуд
Каирский университет
Египет

Ахмед А. Абд Эль-Максуд  — Адъюнкт-Профессор, кафедра молочных наук, сельскохозяйственный факультет

12613, Гиза, ул. Гамаа, 1



Список литературы

1. World Health Organization. (2025). Obesity and overweight. Retrieved from https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight Accessed July 14, 2025.

2. World Obesity Federation. (2022). The Economic Impact of Overweight Obesity. Retrieved from https://data.worldobesity.org/publications/WOF-EconomicImpacts2-V2.pdf Accessed July 14, 2025.

3. Öner-İyidoğan, Y., Koçak, H., Seyidhanoğlu, M., Gürdöl, F., Gülçubuk, A., Yildirim, F. et al. (2013). Curcumin prevents liver fat accumulation and serum fetuin — A increase in rats fed a high-fat diet. Journal of Physiology and Biochemistry, 69(4), 677–686. https://doi.org/10.1007/s13105-013-0244-9

4. Ragab, S. M. M., Abd Elghaffar, S. K., El-Metwally, T. H., Badr, G., Mahmoud, M. H., Omar, H. M. (2015). Effect of a high fat, high sucrose diet on the promotion of non-alcoholic fatty liver disease in male rats: The ameliorative role of three natural compounds. Lipids in Health and Disease, 14(1), Article 83. https://doi.org/10.1186/s12944-015-0087-1

5. Petrie, J. R., Guzik, T. J., Touyz, R. M. (2018). Diabetes, hypertension, and cardiovascular disease: Clinical insights and vascular mechanisms. Canadian Journal of Cardiology, 34(5), 575–584. https://doi.org/10.1016/j.cjca.2017.12.005

6. Grundy, S. M. (2006). Atherogenic dyslipidemia associated with metabolic syndrome and insulin resistance. Clinical Cornerstone, 8(Suppl 1), S21-S27. https://doi.org/10.1016/S1098-3597(06)80005-0

7. Castro-Barquero, S., Ruiz-León, A. M., Sierra-Pérez, M., Estruch, R., Casas, R. (2020). Dietary strategies for metabolic syndrome: A comprehensive review. Nutrients, 12(10), Article 2983. https://doi.org/10.3390/nu12102983

8. Ulla, A., Alam, M. A., Sikder, B., Sumi, F. A., Rahman, M. M., Habib, Z. F. et al. (2017). Supplementation of Syzygium cumini seed powder prevented obesity, glucose intolerance, hyperlipidemia and oxidative stress in high carbohydrate high fat diet induced obese rats. BMC Complementary and Alternative Medicine, 17(1), Article 289. https://doi.org/10.1186/s12906-017-1799-8

9. Anders, L. C., Yeo, H., Kaelin, B. R., Lang, A. L., Bushau, A. M., Douglas, A. N. et al. (2016). Role of dietary fatty acids in liver injury caused by vinyl chloride metabolites in mice. Toxicology and Applied Pharmacology, 311, 34–41. https://doi.org/10.1016/j.taap.2016.09.026

10. Zelber-Sagi, S., Moore, J. B. (2024). Practical lifestyle management of nonalcoholic fatty liver disease for busy clinicians. Diabetes Spectrum, 37(1), 39–47. https://doi.org/10.2337/dsi23-0009

11. Coelho, D. F., Pereira-Lancha, L. O., Chaves, D. S., Diwan, D., Ferraz, R., CamposFerraz, P. L. et al. (2011). Effect of high-fat diets on body composition, lipid metabolism and insulin sensitivity, and the role of exercise on these parameters. Brazilian Journal of Medical and Biological Research, 44(10), 966–972. https://doi.org/10.1590/S0100-879X2011007500107

12. Hoey, H., Roche, E. (2024). Obesity a triple pandemic, the trillion dollar disease: Prevention is imperative. Global Pediatrics, 7, Article 100141. https://doi.org/10.1016/j.gpeds.2024.100141

13. Naghdi, A., Goodarzi, M. T., Karimi, J., Hashemnia, M., Khodadadi, I. (2022). Effects of curcumin and metformin on oxidative stress and apoptosis in heart tissue of type 1 diabetic rats. Journal of Cardiovascular and Thoracic Research, 14(2), 128–137. https://doi.org/10.34172/jcvtr.2022.23

14. Yan, Y., Jun, C., Lu, Y., Jiangmei, S. (2019). Combination of metformin and luteolin synergistically protects carbon tetrachloride-induced hepatotoxicity: Mechanism involves antioxidant, anti-inflammatory, antiapoptotic, and Nrf2/HO 1 signaling pathway. BioFactors, 45(4), 598–606. https://doi.org/10.1002/biof.1521

15. Bovi, A.P.D., Marciano, F., Mandato, C., Siano, M. A., Savoia, M., Vajro, P. (2021). Oxidative stress in non-alcoholic fatty liver disease. An updated mini review. Frontiers in Medicine, 8, Article 595371. https://doi.org/10.3389/fmed.2021.595371

16. Naeem, H., Hassan, H. U., Shahbaz, M., Imran, M., Memon, A. G., Hasnain, A. et al. (2024). Role of probiotics against human cancers, inflammatory diseases, and other complex malignancies. Journal of Food Biochemistry, 2024, Article 6632209. https://doi.org/10.1155/2024/6632209

17. Miller, G. D., Jarvis, J. K., McBean, L. D. (2006). Handbook of Dairy Foods and Nutrition. CRC Press, 2006. https://doi.org/10.1201/9781420004311

18. Fox, P. F., McSweeney, P. L. (1998). Dairy chemistry and biochemistry. Blackie Academic and Professional, 1998.

19. Kolokolova, A. Y., Kishilova, S. A., Rozhkova, I. V., Mitrova, V. A. (2024). The Role of postbiotic composition in the growth stimulating of bifidobacteria. FOOD METAENGINEERING, 2(2), 12–21. https://doi.org/10.37442/fme.2024.2.56 (In Russian)

20. Tamang, J. P., Cotter, P. D., Endo, A., Han, N. S., Kort, R., Liu, S. Q. et al. (2020). Fermented foods in a global age: East meets West. Comprehensive Reviews in Food Science and Food Safety, 19(1), 184–217. https://doi.org/10.1111/1541–4337.12520

21. Patel, P., Butani, K., Kumar, A., Singh, S., Prajapati, B. G. (2023). Effects of fermented food consumption on non-communicable diseases. Foods, 12(4), Article 687. https://doi.org/10.3390/foods12040687

22. Kaur, H., Kaur, G., Ali, S. A. (2022). Dairy-based probiotic-fermented functional foods: An update on their health-promoting properties. Fermentation, 8(9), Article 425. https://doi.org/10.3390/fermentation8090425

23. Stachelska, M. A., Karpiński, P., Kruszewski, B. (2025). Health-promoting and functional properties of fermented milk beverages with probiotic bacteria in the prevention of civilization diseases. Nutrients, 17(1), Article 9. https://doi.org/10.3390/nu17010009

24. Hara, T., Yoshigai, E., Ohashi, T., Fukada, T. (2022). Zinc transporters as potential therapeutic targets: An updated review. Journal of Pharmacological Sciences, 148(2), 221–228. https://doi.org/10.1016/j.jphs.2021.11.007

25. Patil, R., Sontakke, T., Biradar, A., Nalage, D. (2023). Zinc: An essential trace element for human health and beyond. Food and Health, 5(3), Article 13. https://doi.org/10.53388/fh2023013

26. Luan, R., Ding, D., Xue, Q., Li, H., Wang, Y., Yang, J. (2023). Protective role of zinc in the pathogenesis of respiratory diseases. European Journal of Clinical Nutrition, 77(4), 427–435. https://doi.org/10.1038/s41430-022-01191-6

27. Hara, T., Yoshigai, E., Ohashi, T., Fukada, T. (2023). Zinc in cardiovascular functions and diseases: epidemiology and molecular mechanisms for therapeutic development. International Journal of Molecular Sciences, 24(8), Article 7152. https://doi.org/10.3390/ijms24087152

28. Long, Q., Feng, Y., Chen, F., Wang, W., Ma, M., Mao, S. (2022). Association between serum zinc level and lipid profiles in children with spinal muscular atrophy. Frontiers in Nutrition, 9, Article 960006. https://doi.org/10.3389/fnut.2022.960006

29. Luparelli, A., Trisciuzzi, D., Schirinzi, W. M., Caputo, L., Smiriglia, L., Quintieri, L. et al. (2025). Whey proteins and bioactive peptides: Advances in production, selection and bioactivity profiling. Biomedicines, 13(6), Article 1311. https://doi.org/10.3390/biomedicines13061311

30. Jiang, L., Zhang, Z., Qiu, C., Wen, J. (2024). A review of whey protein-based bioactive delivery systems: design, fabrication, and application. Foods, 13(15), Article 2453. https://doi.org/10.3390/foods13152453

31. El-Maksoud, A. A. A., Korany, R. M. S., El-Ghany, I. H. A., El-Beltagi, H. S., de Gouveia, G. M. A. F. (2020). Dietary solutions to dyslipidemia: Milk protein– polysaccharide conjugates as liver biochemical enhancers. Journal of Food Biochemistry, 44(3), Article e13142. https://doi.org/10.1111/jfbc.13142

32. Hassan, M. A., El-Nekeety, A. A., Abdel-Aziem, S. H., Hassan, N. S., AbdelWahhab, M. A. (2019). Zinc citrate incorporation with whey protein nanoparticles alleviate the oxidative stress complication and modulate gene expression in the liver of rats. Food and Chemical Toxicology, 125, 439–451. https://doi.org/10.1016/j.fct.2019.01.026

33. Kanoni, S., Dedoussis, G. V., Herbein, G., Fulop, T., Varin, A., Jajte, J. et al. (2010). Assessment of gene–nutrient interactions on inflammatory status of the elderly with the use of a zinc diet score — ZINCAGE study. The Journal of Nutritional Biochemistry, 21(6), 526–531. https://doi.org/10.1016/j.jnutbio.2009.02.011

34. Hamed, A. M., Taha, S. H., Darwish, A. A., Aly, E. (2021). Antioxidant activity and some quality characteristics of buffalo yoghurt fortified with peanut skin extract powder. Journal of Food Science and Technology, 58(6), 2431–2440. https://doi.org/10.1007/s13197-020-04835-2

35. Tamime, A. Y., Robinson, R. K. (2007). Tamime and Robinson’s yoghurt: Science and technology. Woodhead Publishing-Elsevier, 2007.

36. AOAC. (2005). Association of Official Analytical Chemists, Official Methods of Analysis of AOAC international, 18th Edition, Published by AOAC international Maryland, USA. 2005.

37. DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017

38. Soliman, T. N., Hassan, M. A. E. F. (2018). Preparation and characterization of sustained released zinc citrate encapsulated in whey protein nanoparticles. Pakistan Journal of Biological Sciences, 21(9), 448–453. https://doi.org/10.3923/pjbs.2018.448.453

39. Zhang, S., Wang, C. (2023). Precise analysis of nanoparticle size distribution in TEM image. Methods and Protocols, 6(4), Article 63. https://doi.org/10.3390/mps6040063

40. Konecny, F. (2021). Rodent general anesthesia suitable for measurement of experimental invasive hemodynamics. European Journal of Biology and Biotechnology, 2(4), 33–43. https://doi.org/10.24018/ejbio.2021.2.4.259

41. McClure, D. E. (1999). Clinical pathology and sample collection in the laboratory rodent. Veterinary Clinics of North America: Exotic Animal Practice, 2(3), 565–590. https://doi.org/10.1016/S1094-9194(17)30111-1

42. Plate, A. Y. A., Crankshaw, D. L., Gallaher, D. D. (2005). The effect of anesthesia by diethyl ether or isoflurane on activity of cytochrome P450 2E1 and P450 reductases in rat liver. Anesthesia and Analgesia, 101(4), 1063–1064. https://doi.org/10.1213/01.ane.0000166791.30963.ef

43. Suvarna, S.K., Layton, C., John D. Bancroft, J.D. (2019). Bancroft’s Theory and Practice of Histological Techniques. Elsevier Ltd, 2019. https://doi.org/10.1016/C2015-0-00143-5

44. World Health Organization. (2024). Noncommunicable diseases. Retrieved from https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases Accessed July 14, 2025.

45. Farhana, A., Rehman, A. (2023). Metabolic consequences of weight reduction. In StatPearls [Internet]. Treasure Island (FL). StatPearls Publishing. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK572145/ Accessed July 14, 2025.

46. Park, D. -Y., Ahn, Y. -T., Park, S. -H., Huh, C. -S., Yoo, S. -R., Yu, R. et al. (2013). Supplementation of Lactobacillus curvatus KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity. PLoS ONE, 8(3), Article e59470. https://doi.org/10.1371/journal.pone.0059470

47. ALSuhaymi, N., Darwish, A. M., Khattab, A. E.-N. (2023). Assessment of two potential probiotic strains as anti-obesity supplements under high-fat feeding conditions. Probiotics and Antimicrobial Proteins, 15(4), 856–867. https://doi.org/10.1007/s12602-022-09912-w

48. Younossi, Z. M., Zelber-Sagi, S., Henry, L., Gerber, L. H. (2023). Lifestyle interventions in nonalcoholic fatty liver disease. Nature Reviews Gastroenterology and Hepatology, 20(11), 708–722. https://doi.org/10.1038/s41575-023-00800-4

49. Koutnikova, H., Genser, B., Monteiro-Sepulveda, M., Faurie, J. -M., Rizkalla, S., Schrezenmeir, J. et al. (2019). Impact of bacterial probiotics on obesity, diabetes and non-alcoholic fatty liver disease related variables: A systematic review and meta-analysis of randomised controlled trials. BMJ Open, 9(3), Article e017995. https://doi.org/10.1136/bmjopen2017-017995

50. Timmers, S., den Bosch, J. de V v., de Wit, N., Schaart, G., van Beurden, D., Hesselink, M. et al. (2011). Differential effects of saturated versus unsaturated dietary fatty acids on weight gain and myocellular lipid profiles in mice. Nutrition and Diabetes, 1(7), Article e11. https://doi.org/10.1038/nutd.2011.7

51. Chu, P.-Y., Yu, Y.-C., Pan, Y.-C., Dai, Y.-H., Yang, J.-C., Huang, K.-C. et al. (2024). The efficacy of lactobacillus delbrueckii ssp. bulgaricus supplementation in managing body weight and blood lipids of people with overweight: A randomized pilot trial. Metabolites, 14(2), Article 129. https://doi.org/10.3390/metabo14020129

52. Thoen, R. U., Barther, N. N., Schemitt, E., Bona, S., Fernandes, S., Coral, G. et al. (2019). Zinc supplementation reduces diet-induced obesity and improves insulin sensitivity in rats. Applied Physiology, Nutrition, and Metabolism, 44(6), 580–586. https://doi.org/10.1139/apnm2018-0519

53. Refaat, O. G., Arafa, M. A., Rabeh, N. M., Sabra, R. S. (2020). Biological evaluation of probiotic fermented milk (RAYEB) on obese rats. Egyptian Journal of Applied Science, 35(9), 85–102. https://doi.org/10.21608/ejas.2020.128871

54. Mohammadi, A.A., Jazayeri, S., Khosravi-Darani, K., Solati, Z., Mohammadpour, N., Asemi, Z. et al. (2015). Effects of probiotics on biomarkers of oxidative stress and inflammatory factors in petrochemical workers: A randomized, doubleblind, placebo-controlled trial. International Journal of Preventive Medicine, 6(1), Article 82. https://doi.org/10.4103/2008-7802.164146

55. Bayram, T., Pekmez, M., Arda, N., Yalçın, A. S. (2008). Antioxidant activity of whey protein fractions isolated by gel exclusion chromatography and protease treatment. Talanta, 75(3), 705–709. https://doi.org/10.1016/j.talanta.2007.12.007

56. Jin, D., Wei, X., He, Y., Zhong, L., Lu, H., Lan, J. et al. (2024). The nutritional roles of zinc for immune system and COVID 19 patients. Frontiers in Nutrition, 11, Articl 1385591. https://doi.org/10.3389/fnut.2024.1385591

57. El-Maddawy, Z. K., Abd El Naby, W. S. H. (2019). Protective effects of zinc oxide nanoparticles against doxorubicin induced testicular toxicity and DNA damage in male rats. Toxicology Research, 8(5), 654–662. https://doi.org/10.1039/c9tx00052f

58. Alkaladi, A., Abdelazim, A. M., Afifi, M. (2014). Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. International Journal of Molecular Sciences, 15(2), 2015–2023. https://doi.org/10.3390/ijms15022015

59. Rahman, H. S., Othman, H. H., Abdullah, R., Edin, H. Y. A. S., AL-Haj, N. A. (2022). Beneficial and toxicological aspects of zinc oxide nanoparticles in animals. Veterinary Medicine and Science, 8(4), 1769–1779. https://doi.org/10.1002/vms3.814

60. Goel, A., Dani, V., Dhawan, D. K. (2005). Protective effects of zinc on lipid peroxidation, antioxidant enzymes and hepatic histoarchitecture in chlorpyrifosinduced toxicity. Chemico-Biological Interactions, 156(2–3), 131–140. https://doi.org/10.1016/j.cbi.2005.08.004


Рецензия

Для цитирования:


Хасан М.А., Салама М., Абд Эль-Максуд А.А. Влияние наночастиц цинка-сывороточного белка в кисломолочном продукте на окислительный стресс и функции печени у крыс с ожирением. Пищевые системы. 2025;8(3):362-369. https://doi.org/10.21323/2618-9771-2025-8-3-362-369

For citation:


Hassan M.A., Salama M., Abd El-Maksoud A.A. Influence of zinc-whey protein nanoparticles in fermented milk on oxidative stress and liver function in obese rats. Food systems. 2025;8(3):362-369. https://doi.org/10.21323/2618-9771-2025-8-3-362-369

Просмотров: 42


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)