Preview

Food systems

Advanced search

Influence of zinc-whey protein nanoparticles in fermented milk on oxidative stress and liver function in obese rats

https://doi.org/10.21323/2618-9771-2025-8-3-362-369

Abstract

Obesity refers to fat accumulation in patients’ adipose tissue and is widespread globally. It is necessary to develop anti-obesity foods and promote a healthy lifestyle before it reaches epidemic proportions. This study aimed to evaluate the effects of zincwhey protein nanoparticles (Zn-WPNPs), incorporated into fermented milk (FM), on oxidative stress, inflammation, and liver fibrosis in obese rats. Chemical analysis included the determination of total solids, protein, fat, carbohydrates, ash contents, and pH. Zn efficacy was within 91.22–97.12%, with particle size within 41.4–228 nm. Zn-WPNPs demonstrated stability after encapsulation, as confirmed by transmission electron microscopy photographs. Moreover, forty female albino rats were divided into five groups and were orally treated for 30 consecutive days: a control group, high-fat diet (HFD; Ch; 1%), FM alone, FM-Zn, and FM-Zn-WPNPS. Blood and liver samples were then collected for analysis. Highly significant increases in body weight, lipid profile (TG and LDL), and malonaldehyde, along with decreases in the levels of hepatic Ch, HDL, and enzyme activity (AST and ALT) were found in the HFD group. On the other hand, the animals treated with FM-Zn-WPNPs showed reduced levels of all the oxidative stress markers (MDA, CAT, and GSH) to 1.19, 1.89, and 43.25, compared to 2.29, 1.20, and 27.40 in the HFD group, respectively, along with improvements in all the liver measurements. Thus, FM-Zn-WPNPs may serve as an appropriate food for nonalcoholic fatty liver disease (NAFLD) patients to improve their health.

About the Authors

M. A. Hassan
National Organization for Drug Control and Research
Egypt

Mona A.  Hassan, Assistant Professor, Food Evaluation and Food Science Department

51 Wezaret El-Zeraa Street, Agouza, 12654, Giza



M. Salama
Cairo University
Egypt

Mahmoud Salama, Assistant Professor, Food Science Department, Faculty of Agriculture

1 Gamaa Street, 12613, Giza



A. A. Abd El-Maksoud
Cairo University
Egypt

Ahmed A.  Abd El-Maksoud, Associate Professor, Department of Dairy Science, Faculty of Agriculture

1 Gamaa Street, 12613, Giza

 



References

1. World Health Organization. (2025). Obesity and overweight. Retrieved from https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight Accessed July 14, 2025.

2. World Obesity Federation. (2022). The Economic Impact of Overweight Obesity. Retrieved from https://data.worldobesity.org/publications/WOF-EconomicImpacts2-V2.pdf Accessed July 14, 2025.

3. Öner-İyidoğan, Y., Koçak, H., Seyidhanoğlu, M., Gürdöl, F., Gülçubuk, A., Yildirim, F. et al. (2013). Curcumin prevents liver fat accumulation and serum fetuin — A increase in rats fed a high-fat diet. Journal of Physiology and Biochemistry, 69(4), 677–686. https://doi.org/10.1007/s13105-013-0244-9

4. Ragab, S. M. M., Abd Elghaffar, S. K., El-Metwally, T. H., Badr, G., Mahmoud, M. H., Omar, H. M. (2015). Effect of a high fat, high sucrose diet on the promotion of non-alcoholic fatty liver disease in male rats: The ameliorative role of three natural compounds. Lipids in Health and Disease, 14(1), Article 83. https://doi.org/10.1186/s12944-015-0087-1

5. Petrie, J. R., Guzik, T. J., Touyz, R. M. (2018). Diabetes, hypertension, and cardiovascular disease: Clinical insights and vascular mechanisms. Canadian Journal of Cardiology, 34(5), 575–584. https://doi.org/10.1016/j.cjca.2017.12.005

6. Grundy, S. M. (2006). Atherogenic dyslipidemia associated with metabolic syndrome and insulin resistance. Clinical Cornerstone, 8(Suppl 1), S21-S27. https://doi.org/10.1016/S1098-3597(06)80005-0

7. Castro-Barquero, S., Ruiz-León, A. M., Sierra-Pérez, M., Estruch, R., Casas, R. (2020). Dietary strategies for metabolic syndrome: A comprehensive review. Nutrients, 12(10), Article 2983. https://doi.org/10.3390/nu12102983

8. Ulla, A., Alam, M. A., Sikder, B., Sumi, F. A., Rahman, M. M., Habib, Z. F. et al. (2017). Supplementation of Syzygium cumini seed powder prevented obesity, glucose intolerance, hyperlipidemia and oxidative stress in high carbohydrate high fat diet induced obese rats. BMC Complementary and Alternative Medicine, 17(1), Article 289. https://doi.org/10.1186/s12906-017-1799-8

9. Anders, L. C., Yeo, H., Kaelin, B. R., Lang, A. L., Bushau, A. M., Douglas, A. N. et al. (2016). Role of dietary fatty acids in liver injury caused by vinyl chloride metabolites in mice. Toxicology and Applied Pharmacology, 311, 34–41. https://doi.org/10.1016/j.taap.2016.09.026

10. Zelber-Sagi, S., Moore, J. B. (2024). Practical lifestyle management of nonalcoholic fatty liver disease for busy clinicians. Diabetes Spectrum, 37(1), 39–47. https://doi.org/10.2337/dsi23-0009

11. Coelho, D. F., Pereira-Lancha, L. O., Chaves, D. S., Diwan, D., Ferraz, R., CamposFerraz, P. L. et al. (2011). Effect of high-fat diets on body composition, lipid metabolism and insulin sensitivity, and the role of exercise on these parameters. Brazilian Journal of Medical and Biological Research, 44(10), 966–972. https://doi.org/10.1590/S0100-879X2011007500107

12. Hoey, H., Roche, E. (2024). Obesity a triple pandemic, the trillion dollar disease: Prevention is imperative. Global Pediatrics, 7, Article 100141. https://doi.org/10.1016/j.gpeds.2024.100141

13. Naghdi, A., Goodarzi, M. T., Karimi, J., Hashemnia, M., Khodadadi, I. (2022). Effects of curcumin and metformin on oxidative stress and apoptosis in heart tissue of type 1 diabetic rats. Journal of Cardiovascular and Thoracic Research, 14(2), 128–137. https://doi.org/10.34172/jcvtr.2022.23

14. Yan, Y., Jun, C., Lu, Y., Jiangmei, S. (2019). Combination of metformin and luteolin synergistically protects carbon tetrachloride-induced hepatotoxicity: Mechanism involves antioxidant, anti-inflammatory, antiapoptotic, and Nrf2/HO 1 signaling pathway. BioFactors, 45(4), 598–606. https://doi.org/10.1002/biof.1521

15. Bovi, A.P.D., Marciano, F., Mandato, C., Siano, M. A., Savoia, M., Vajro, P. (2021). Oxidative stress in non-alcoholic fatty liver disease. An updated mini review. Frontiers in Medicine, 8, Article 595371. https://doi.org/10.3389/fmed.2021.595371

16. Naeem, H., Hassan, H. U., Shahbaz, M., Imran, M., Memon, A. G., Hasnain, A. et al. (2024). Role of probiotics against human cancers, inflammatory diseases, and other complex malignancies. Journal of Food Biochemistry, 2024, Article 6632209. https://doi.org/10.1155/2024/6632209

17. Miller, G. D., Jarvis, J. K., McBean, L. D. (2006). Handbook of Dairy Foods and Nutrition. CRC Press, 2006. https://doi.org/10.1201/9781420004311

18. Fox, P. F., McSweeney, P. L. (1998). Dairy chemistry and biochemistry. Blackie Academic and Professional, 1998.

19. Kolokolova, A. Y., Kishilova, S. A., Rozhkova, I. V., Mitrova, V. A. (2024). The Role of postbiotic composition in the growth stimulating of bifidobacteria. FOOD METAENGINEERING, 2(2), 12–21. https://doi.org/10.37442/fme.2024.2.56 (In Russian)

20. Tamang, J. P., Cotter, P. D., Endo, A., Han, N. S., Kort, R., Liu, S. Q. et al. (2020). Fermented foods in a global age: East meets West. Comprehensive Reviews in Food Science and Food Safety, 19(1), 184–217. https://doi.org/10.1111/1541–4337.12520

21. Patel, P., Butani, K., Kumar, A., Singh, S., Prajapati, B. G. (2023). Effects of fermented food consumption on non-communicable diseases. Foods, 12(4), Article 687. https://doi.org/10.3390/foods12040687

22. Kaur, H., Kaur, G., Ali, S. A. (2022). Dairy-based probiotic-fermented functional foods: An update on their health-promoting properties. Fermentation, 8(9), Article 425. https://doi.org/10.3390/fermentation8090425

23. Stachelska, M. A., Karpiński, P., Kruszewski, B. (2025). Health-promoting and functional properties of fermented milk beverages with probiotic bacteria in the prevention of civilization diseases. Nutrients, 17(1), Article 9. https://doi.org/10.3390/nu17010009

24. Hara, T., Yoshigai, E., Ohashi, T., Fukada, T. (2022). Zinc transporters as potential therapeutic targets: An updated review. Journal of Pharmacological Sciences, 148(2), 221–228. https://doi.org/10.1016/j.jphs.2021.11.007

25. Patil, R., Sontakke, T., Biradar, A., Nalage, D. (2023). Zinc: An essential trace element for human health and beyond. Food and Health, 5(3), Article 13. https://doi.org/10.53388/fh2023013

26. Luan, R., Ding, D., Xue, Q., Li, H., Wang, Y., Yang, J. (2023). Protective role of zinc in the pathogenesis of respiratory diseases. European Journal of Clinical Nutrition, 77(4), 427–435. https://doi.org/10.1038/s41430-022-01191-6

27. Hara, T., Yoshigai, E., Ohashi, T., Fukada, T. (2023). Zinc in cardiovascular functions and diseases: epidemiology and molecular mechanisms for therapeutic development. International Journal of Molecular Sciences, 24(8), Article 7152. https://doi.org/10.3390/ijms24087152

28. Long, Q., Feng, Y., Chen, F., Wang, W., Ma, M., Mao, S. (2022). Association between serum zinc level and lipid profiles in children with spinal muscular atrophy. Frontiers in Nutrition, 9, Article 960006. https://doi.org/10.3389/fnut.2022.960006

29. Luparelli, A., Trisciuzzi, D., Schirinzi, W. M., Caputo, L., Smiriglia, L., Quintieri, L. et al. (2025). Whey proteins and bioactive peptides: Advances in production, selection and bioactivity profiling. Biomedicines, 13(6), Article 1311. https://doi.org/10.3390/biomedicines13061311

30. Jiang, L., Zhang, Z., Qiu, C., Wen, J. (2024). A review of whey protein-based bioactive delivery systems: design, fabrication, and application. Foods, 13(15), Article 2453. https://doi.org/10.3390/foods13152453

31. El-Maksoud, A. A. A., Korany, R. M. S., El-Ghany, I. H. A., El-Beltagi, H. S., de Gouveia, G. M. A. F. (2020). Dietary solutions to dyslipidemia: Milk protein– polysaccharide conjugates as liver biochemical enhancers. Journal of Food Biochemistry, 44(3), Article e13142. https://doi.org/10.1111/jfbc.13142

32. Hassan, M. A., El-Nekeety, A. A., Abdel-Aziem, S. H., Hassan, N. S., AbdelWahhab, M. A. (2019). Zinc citrate incorporation with whey protein nanoparticles alleviate the oxidative stress complication and modulate gene expression in the liver of rats. Food and Chemical Toxicology, 125, 439–451. https://doi.org/10.1016/j.fct.2019.01.026

33. Kanoni, S., Dedoussis, G. V., Herbein, G., Fulop, T., Varin, A., Jajte, J. et al. (2010). Assessment of gene–nutrient interactions on inflammatory status of the elderly with the use of a zinc diet score — ZINCAGE study. The Journal of Nutritional Biochemistry, 21(6), 526–531. https://doi.org/10.1016/j.jnutbio.2009.02.011

34. Hamed, A. M., Taha, S. H., Darwish, A. A., Aly, E. (2021). Antioxidant activity and some quality characteristics of buffalo yoghurt fortified with peanut skin extract powder. Journal of Food Science and Technology, 58(6), 2431–2440. https://doi.org/10.1007/s13197-020-04835-2

35. Tamime, A. Y., Robinson, R. K. (2007). Tamime and Robinson’s yoghurt: Science and technology. Woodhead Publishing-Elsevier, 2007.

36. AOAC. (2005). Association of Official Analytical Chemists, Official Methods of Analysis of AOAC international, 18th Edition, Published by AOAC international Maryland, USA. 2005.

37. DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017

38. Soliman, T. N., Hassan, M. A. E. F. (2018). Preparation and characterization of sustained released zinc citrate encapsulated in whey protein nanoparticles. Pakistan Journal of Biological Sciences, 21(9), 448–453. https://doi.org/10.3923/pjbs.2018.448.453

39. Zhang, S., Wang, C. (2023). Precise analysis of nanoparticle size distribution in TEM image. Methods and Protocols, 6(4), Article 63. https://doi.org/10.3390/mps6040063

40. Konecny, F. (2021). Rodent general anesthesia suitable for measurement of experimental invasive hemodynamics. European Journal of Biology and Biotechnology, 2(4), 33–43. https://doi.org/10.24018/ejbio.2021.2.4.259

41. McClure, D. E. (1999). Clinical pathology and sample collection in the laboratory rodent. Veterinary Clinics of North America: Exotic Animal Practice, 2(3), 565–590. https://doi.org/10.1016/S1094-9194(17)30111-1

42. Plate, A. Y. A., Crankshaw, D. L., Gallaher, D. D. (2005). The effect of anesthesia by diethyl ether or isoflurane on activity of cytochrome P450 2E1 and P450 reductases in rat liver. Anesthesia and Analgesia, 101(4), 1063–1064. https://doi.org/10.1213/01.ane.0000166791.30963.ef

43. Suvarna, S.K., Layton, C., John D. Bancroft, J.D. (2019). Bancroft’s Theory and Practice of Histological Techniques. Elsevier Ltd, 2019. https://doi.org/10.1016/C2015-0-00143-5

44. World Health Organization. (2024). Noncommunicable diseases. Retrieved from https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases Accessed July 14, 2025.

45. Farhana, A., Rehman, A. (2023). Metabolic consequences of weight reduction. In StatPearls [Internet]. Treasure Island (FL). StatPearls Publishing. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK572145/ Accessed July 14, 2025.

46. Park, D. -Y., Ahn, Y. -T., Park, S. -H., Huh, C. -S., Yoo, S. -R., Yu, R. et al. (2013). Supplementation of Lactobacillus curvatus KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity. PLoS ONE, 8(3), Article e59470. https://doi.org/10.1371/journal.pone.0059470

47. ALSuhaymi, N., Darwish, A. M., Khattab, A. E.-N. (2023). Assessment of two potential probiotic strains as anti-obesity supplements under high-fat feeding conditions. Probiotics and Antimicrobial Proteins, 15(4), 856–867. https://doi.org/10.1007/s12602-022-09912-w

48. Younossi, Z. M., Zelber-Sagi, S., Henry, L., Gerber, L. H. (2023). Lifestyle interventions in nonalcoholic fatty liver disease. Nature Reviews Gastroenterology and Hepatology, 20(11), 708–722. https://doi.org/10.1038/s41575-023-00800-4

49. Koutnikova, H., Genser, B., Monteiro-Sepulveda, M., Faurie, J. -M., Rizkalla, S., Schrezenmeir, J. et al. (2019). Impact of bacterial probiotics on obesity, diabetes and non-alcoholic fatty liver disease related variables: A systematic review and meta-analysis of randomised controlled trials. BMJ Open, 9(3), Article e017995. https://doi.org/10.1136/bmjopen2017-017995

50. Timmers, S., den Bosch, J. de V v., de Wit, N., Schaart, G., van Beurden, D., Hesselink, M. et al. (2011). Differential effects of saturated versus unsaturated dietary fatty acids on weight gain and myocellular lipid profiles in mice. Nutrition and Diabetes, 1(7), Article e11. https://doi.org/10.1038/nutd.2011.7

51. Chu, P.-Y., Yu, Y.-C., Pan, Y.-C., Dai, Y.-H., Yang, J.-C., Huang, K.-C. et al. (2024). The efficacy of lactobacillus delbrueckii ssp. bulgaricus supplementation in managing body weight and blood lipids of people with overweight: A randomized pilot trial. Metabolites, 14(2), Article 129. https://doi.org/10.3390/metabo14020129

52. Thoen, R. U., Barther, N. N., Schemitt, E., Bona, S., Fernandes, S., Coral, G. et al. (2019). Zinc supplementation reduces diet-induced obesity and improves insulin sensitivity in rats. Applied Physiology, Nutrition, and Metabolism, 44(6), 580–586. https://doi.org/10.1139/apnm2018-0519

53. Refaat, O. G., Arafa, M. A., Rabeh, N. M., Sabra, R. S. (2020). Biological evaluation of probiotic fermented milk (RAYEB) on obese rats. Egyptian Journal of Applied Science, 35(9), 85–102. https://doi.org/10.21608/ejas.2020.128871

54. Mohammadi, A.A., Jazayeri, S., Khosravi-Darani, K., Solati, Z., Mohammadpour, N., Asemi, Z. et al. (2015). Effects of probiotics on biomarkers of oxidative stress and inflammatory factors in petrochemical workers: A randomized, doubleblind, placebo-controlled trial. International Journal of Preventive Medicine, 6(1), Article 82. https://doi.org/10.4103/2008-7802.164146

55. Bayram, T., Pekmez, M., Arda, N., Yalçın, A. S. (2008). Antioxidant activity of whey protein fractions isolated by gel exclusion chromatography and protease treatment. Talanta, 75(3), 705–709. https://doi.org/10.1016/j.talanta.2007.12.007

56. Jin, D., Wei, X., He, Y., Zhong, L., Lu, H., Lan, J. et al. (2024). The nutritional roles of zinc for immune system and COVID 19 patients. Frontiers in Nutrition, 11, Articl 1385591. https://doi.org/10.3389/fnut.2024.1385591

57. El-Maddawy, Z. K., Abd El Naby, W. S. H. (2019). Protective effects of zinc oxide nanoparticles against doxorubicin induced testicular toxicity and DNA damage in male rats. Toxicology Research, 8(5), 654–662. https://doi.org/10.1039/c9tx00052f

58. Alkaladi, A., Abdelazim, A. M., Afifi, M. (2014). Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. International Journal of Molecular Sciences, 15(2), 2015–2023. https://doi.org/10.3390/ijms15022015

59. Rahman, H. S., Othman, H. H., Abdullah, R., Edin, H. Y. A. S., AL-Haj, N. A. (2022). Beneficial and toxicological aspects of zinc oxide nanoparticles in animals. Veterinary Medicine and Science, 8(4), 1769–1779. https://doi.org/10.1002/vms3.814

60. Goel, A., Dani, V., Dhawan, D. K. (2005). Protective effects of zinc on lipid peroxidation, antioxidant enzymes and hepatic histoarchitecture in chlorpyrifosinduced toxicity. Chemico-Biological Interactions, 156(2–3), 131–140. https://doi.org/10.1016/j.cbi.2005.08.004


Review

For citations:


Hassan M.A., Salama M., Abd El-Maksoud A.A. Influence of zinc-whey protein nanoparticles in fermented milk on oxidative stress and liver function in obese rats. Food systems. 2025;8(3):362-369. https://doi.org/10.21323/2618-9771-2025-8-3-362-369

Views: 41


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)