Preview

Пищевые системы

Расширенный поиск

Методы количественного определения содержания липидов и жирных кислот в микроводорослях

https://doi.org/10.21323/2618-9771-2025-8-2-267-275

Аннотация

Микроводоросли представляют собой перспективное сырьё для устойчивого производства биотоплива и ценных биопродуктов благодаря высокой липидной продуктивности и быстрому темпу роста микроводорослей. Точное и воспроизводимое количественное определение липидов имеет решающее значение для отбора штаммов, оптимизации процессов и масштабирования производства. Настоящий обзор представляет собой всестороннюю и критическую оценку современных методов количественного анализа липидов, применяемых к микроводорослям. Рассмотренные методики классифицируются по типу применения: скрининговые, количественные и профилирующие подходы, включая такие технологии, как экстракция растворителями, in situ и прямая этерификация, колориметрические тесты, спектроскопические методы (NIR, FTIR), а также хроматографические техники (ГХ, ВЭЖХ–МС/МС). Каждый метод оценивается по нескольким критериям, включая аналитическую точность, пропускную способность, требования к образцам, техническую сложность и потенциал стандартизации. Результаты обобщаются в виде сравнительных таблиц. Несмотря на высокую скорость и простоту применения, скрининговые инструменты (например, Nile Red, SPV) недостаточно точны и воспроизводимы. Количественные методы, такие как кислотно-катализируемая in situ этерификация в сочетании с газовой хроматографией, демонстрируют оптимальное соотношение точности и масштабируемости применения. Методы профилирования, включая ВЭЖХ–МС/МС, обеспечивают наивысшее молекулярное разрешение, но требуют значительных экономических и трудовых затрат. Обзор подчёркивает необходимость гармонизации методик и обсуждает компромиссы, связанные с выбором аналитического подхода в научных и прикладных целях. Предлагаются практические рекомендации по выбору наиболее подходящих методов в зависимости от контекста применения — от раннего скрининга до продвинутого липидомного профилирования.

Об авторе

И. В. Морщинин
Университет ИТМО
Россия

Морщинин Иван Владимирович — инженер, факультет экотехнологий

197101, Санкт-Петербург, Кронверкский пр., д. 49, лит. А

Тел.: +7–996–182–32–99



Список литературы

1. Nguyen, H. T. D., Ramli, A., Kee, L. M. (2017). A review on methods used in analysis of microalgae lipid composition. Journal of the Japan Institute of Energy 96(12), 532–537. https://doi.org/10.3775/jie.96.532

2. Zhou, J., Wang, M., Saraiva, J. A., Martins, A. P., Pinto, C. A., Prieto, M. A. et al. (2022). Extraction of lipids from microalgae using classical and innovative approaches. Food Chemistry, 384, Article 132236. https://doi.org/10.1016/j.foodchem.2022.132236

3. Yao, L., Gerde, J. A., Lee, S. L., Wang, T., Harrata, K. A. (2015). Microalgae lipid characterization. Journal of Agricultural and Food Chemistry, 63(6), 1773–1787. https://doi.org/10.1021/jf5050603

4. Challagulla, V., Nayar, S., Walsh, K., Fabbro, L. (2017). Advances in techniques for assessment of microalgal lipids. Critical Reviews in Biotechnology, 37(5), 566–578. https://doi.org/10.1080/07388551.2016.1206058

5. Bligh, E. G., Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917. https://doi.org/10.1139/o59-099

6. Morales, M., Aflalo, C., Bernard, O. (2021). Microalgal lipids: A review of lipids potential and quantification for 95 phytoplankton species. Biomass and Bioenergy, 150, Article 106108. https://doi.org/10.1016/j.biombioe.2021.106108

7. Byreddy, A., Gupta, A., Barrow, C., Puri, M. (2016). A quick colorimetric method for total lipid quantification in microalgae. Journal of Microbiological Methods, 125, 28–32. https://doi.org/10.1016/j.mimet.2016.04.002

8. Yang, M., Fan, Y., Wu, P.-C., Chu, Y.-D., Shen, P. — L., Xue, S. et al. (2017). An extended approach to quantify triacylglycerol in microalgae by characteristic fatty acids. Frontiers in Plant Science, 8, Article 1949. https://doi.org/10.3389/fpls.2017.01949

9. Blanco-Llamero, C., García-García, P., Señoráns, F. J. (2024). Efficient green extraction of nutraceutical compounds from nannochloropsis gaditana: A comparative electrospray ionization LC–MS and GC–MS analysis for lipid profiling. Foods, 13(24), Article 4117. https://doi.org/10.3390/foods13244117

10. Folch, J., Lees, M., Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry, 226(1), 497–509. https://doi.org/10.1016/S0021-9258(18)64849-5

11. Mishra, S. K., Suh, W. I., Farooq, W., Moon, M., Shrivastav, A., Park, M. S. et al. (2014). Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresource Technology, 155, 330–333. https://doi.org/10.1016/j.biortech.2013.12.077

12. Elsey, D., Jameson, D., Raleigh, B., Cooney, M. J. (2007). Fluorescent measurement of microalgal neutral lipids. Journal of Microbiological Methods, 68(3), 639–642. https://doi.org/10.1016/j.mimet.2006.11.008

13. Rumin, J., Bonnefond, H., Saint-Jean, B., Rouxel, C., Sciandra, A., Bernard, O. et al. (2015). The use of fluorescent Nile red and BODIPY for lipid measurement in microalgae. Biotechnology for Biofuels, 8(1), Article 42. https://doi.org/10.1186/s13068-015-0220-4

14. Wahlen, B.D., Willis, R.M., Seefeldt, L.C. (2011). Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresource Technology, 102(3), 2724–2730. http://dx.doi.org/10.1016/j.biortech.2010.11.026

15. Breuer, G., Lamers, P. P., Martens, D. E., Draaisma, R. B., Wijffels, R. H. (2013). The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresource Technology, 124, 217–226. https://doi.org/10.1016/j.biortech.2012.08.003

16. Meng, Y., Yao, C., Xue, S., Yang, H. (2014). Application of Fourier transform infrared (FT-IR) spectroscopy in determination of microalgal compositions. Bioresource Technology, 151, 347–354. https://doi.org/10.1016/j.biortech.2013.10.064

17. Dean, A. P., Sigee, D. C., Estrada, B., Pittman, J. K. (2010). Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresource Technology, 101(12), 4499–4507. https://doi.org/10.1016/j.biortech.2010.01.065

18. Iverson, S. J., Lang, S. L., Cooper, M. H. (2001). Comparison of the bligh and dyer and folch methods for total lipid determination in a broad range of marine tissue. Lipids, 36(11), 1283–1287. https://doi.org/10.1007/s11745-001-0843-0

19. Saini, R. K., Prasad, P., Shang, X., Keum, Y. -S. (2021). Advances in lipid extraction methods — A review. International Journal of Molecular Sciences, 22(24), Article 13643. https://doi.org/10.3390/ijms222413643

20. Lewis, T., Nichols, P. D., McMeekin, T. A. (2000). Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs. Journal of Microbiological Methods, 43(2), 107–116. https://doi.org/10.1016/s0167-7012(00)00217-7

21. Halim, R., Danquah, M. K., Webley, P. A. (2012). Extraction of oil from microalgae for biodiesel production: A review. Biotechnology Advances, 30(3), 709–732. https://doi.org/10.1016/j.biotechadv.2012.01.001

22. Chen, Z., Wang, L., Qiu, S., Ge, S. (2018). Determination of microalgal lipid content and fatty acid for biofuel production. BioMed Research International, 2018, Article 1503126. https://doi.org/10.1155/2018/1503126

23. Lee, J.-Y., Yoo, C., Jun, S.-Y., Ahn, C.-Y., Oh, H.-M. (2010). Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technology, 101(1, Supplement), S75-S77. https://doi.org/10.1016/j.biortech.2009.03.058

24. Chen, W., Zhang, C., Song, L., Sommerfeld, M., Hu, Q. (2009). A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. Journal of Microbiological Methods, 77(1), 41–47. https://doi.org/10.1016/j.mimet.2009.01.001

25. Cooper, M. S., Hardin, W. R., Petersen, T. W., Cattolico, R. A. (2010). Visualizing “green oil” in live algal cells. Journal of Bioscience and Bioengineering, 109(2), 198–201. https://doi.org/10.1016/j.jbiosc.2009.08.004

26. Brennan, L., Fernández, A.B., Mostaert, A. S., Owende, P. (2012). Enhancement of BODIPY505/515 lipid fluorescence method for applications in biofuel-directed microalgae production. Journal of Microbiological Methods, 90(2), 137–143. https://doi.org/10.1016/j.mimet.2012.03.020

27. Khozin-Goldberg, I., Cohen, Z. (2006). The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry, 67(7), 696–701. https://doi.org/10.1016/j.phytochem.2006.01.010

28. Guschina, I. A., Harwood, J. L. (2006). Lipids and lipid metabolism in eukaryotic algae. Progress in Lipid Research, 45(2), 160–186. https://doi.org/10.1016/j.plipres.2006.01.001

29. Triebl, A., Trötzmüller, M., Hartler, J., Stojakovic, T., Köfeler, H. C. (2017). Lipidomics by ultrahigh performance liquid chromatography-high resolution mass spectrometry and its application to complex biological samples. Journal of Chromatography B, 1053, 72–80. https://doi.org/10.1016/j.jchromb.2017.03.027

30. Li-Beisson, Y., Thelen, J. J., Fedosejevs, E., Harwood, J. L. (2019). The lipid biochemistry of eukaryotic algae. Progress in Lipid Research, 74, 31–68. https://doi.org/10.1016/j.plipres.2019.01.003

31. Ryckebosch, E., Bruneel, C., Termote-Verhalle, R., Goiris, K., Muylaert, K., Foubert, I. (2014). Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chemistry, 160, 393–400. https://doi.org/10.1016/j.foodchem.2014.03.087

32. Pääkkönen, S., Pölönen, I., Calderini, M., Yli-Tuomola, A., Ruokolainen, V., Vihinen-Ranta, M. et al. (2025). Lipid monitoring of Chlorella vulgaris using non-invasive near-infrared spectral imaging. Journal of Applied Phycology, 37(1), 205–219. https://doi.org/10.1007/s10811-024-03397-6

33. Shao, Y., Gu, W., Qiu, Y. A., Wang, S., Peng, Y., Zhu, Y. M. et al. (2020). Lipids monitoring in Scenedesmus obliquus based on terahertz technology. Biotechnology for Biofuels, 13(1), Article 161. https://doi.org/10.1186/s13068-020-01801-0

34. Kiyani, D. A., Maryam, S., Amina, S. J., Ahmad, A., Chattha, M. W. A., Janjua, H. A. (2023). Lipid extraction and analysis of microalgae strain pectinodesmus PHM3 for biodiesel production. BMC Biotechnology, 23(1), Article 20. https://doi.org/10.1186/s12896-023-00784-8

35. Bouillaud, D., Drouin, D., Charrier, B., Jacquemmoz, C., Farjon, J., Giraudeau, P. et al. (2020). Using benchtop NMR spectroscopy as an online non-invasive in vivo lipid sensor for microalgae cultivated in photobioreactors. Process Biochemistry, 93, 63–68. https://doi.org/10.1016/j.procbio.2020.03.016

36. Bouillaud, D., Heredia, V., Castaing-Cordier, T., Drouin, D., Charrier, B., Gonçalves, O. et al. (2019). Benchtop flow NMR spectroscopy as an online device for the in vivo monitoring of lipid accumulation in microalgae. Algal Research, 43, Article 101624. https://doi.org/10.1016/j.algal.2019.101624

37. Cheng, F., Cui, Z., Chen, L., Jarvis, J., Paz, N., Schaub, T. et al. (2017). Hydrothermal liquefaction of high- and low-lipid algae: Bio-crude oil chemistry. Applied Energy, 206, 278–292. https://doi.org/10.1016/j.apenergy.2017.08.105

38. Harini, A. B., Sarangi, N. V., Nisha, N., Rajkumar, R. (2023). Cultivation of marine diatom, Amphora sp. in municipal wastewater for enhancing lipids toward sustainable biofuel production. South African Journal of Botany, 155, 288–297. https://doi.org/10.1016/j.sajb.2023.02.007

39. Akonjuen, B. M., Onuh, J. O., Aryee, A. N. A. (2023). Bioactive fatty acids from non-conventional lipid sources and their potential application in functional food development. Food Science and Nutrition, 11(10), 5689–5700. https://doi.org/10.1002/fsn3.3521

40. Jaiswal, K. K., Kumar, V., Vlaskin, M. S., Nanda, M. (2020). Impact of glyphosate herbicide stress on metabolic growth and lipid inducement in Chlorella sorokiniana UUIND6 for biodiesel production. Algal Research, 51, Article 102071. https://doi.org/10.1016/j.algal.2020.102071

41. Martínez-Bisbal, M. C., Mestre, N. C., Martínez-Máñez, R., Bauzá, J., Fillol, M. A. (2019). Microalgae degradation follow up by voltammetric electronic tongue, impedance spectroscopy and NMR spectroscopy. Sensors and Actuators, B: Chemical, 281, 44–52. https://doi.org/10.1016/j.snb.2018.10.069

42. Mayers, J. J., Flynn, K. J., Shields, R. J. (2013). Rapid determination of bulk microalgal biochemical composition by Fourier-Transform Infrared spectroscopy. Bioresource Technology, 148, 215–220. https://doi.org/10.1016/j.biortech.2013.08.133

43. Feng, G. D., Zhang, F., Cheng, L. -H., Xu, X. -H., Zhang, L., Chen, H. -L. (2013). Evaluation of FT-IR and Nile Red methods for microalgal lipid characterization and biomass composition determination. Bioresource Technology, 128, 107–112. https://doi.org/10.1016/j.biortech.2012.09.123

44. Czamara, K., Majzner, K., Pacia, M. Z., Kochan, K., Kaczor, A. A., Baranska, M. (2015). Raman spectroscopy of lipids: A review. Journal of Raman Spectroscopy, 46(1), 4–20. https://doi.org/10.1002/jrs.4607

45. Wu, H., Volponi, J. V., Oliver, A. E., Parikh, A. N., Simmons, B. A., Singh, S. (2011). In vivo lipidomics using single-cell Raman spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 108(9), 3809–3814. https://doi.org/10.1073/pnas.1009043108

46. Sharma, S. K., Nelson, D. R., Abdrabu, R., Khraiwesh, B., Jijakli, K., Arnoux, M. et al. (2015). An integrative Raman microscopy-based workflow for rapid in situ analysis of microalgal lipid bodies. Biotechnology for Biofuels and Bioproducts, 8, Article 164. https://doi.org/10.1186/s13068-015-0349-1

47. Shao, Y., Fang, H., Zhou, H., Wang, Q., Zhu, Y., He, Y. (2017). Detection and imaging of lipids of Scenedesmus obliquus based on confocal Raman microspectroscopy. Biotechnology for Biofuels and Bioproducts, 10(1), Article 300. https://doi.org/10.1186/S13068-017-0977-8

48. Bruñas Gómez, I., Casale, M., Barreno, E., Catalá, M. (2022). Near-infrared metabolomic fingerprinting study of lichen thalli and phycobionts in culture: Aquaphotomics of Trebouxia lynnae dehydration. Microorganisms, 10(12), Article 2444. https://doi.org/10.3390/microorganisms10122444

49. Beć, K. B., Grabska, J., Huck, C. W. (2020). Near-infrared spectroscopy in bioapplications. Molecules, 25(12), Article 2948. https://doi.org/10.3390/molecules25122948

50. Podevin, M., Fotidis, I. A., Angelidaki, I. (2018). Microalgal process-monitoring based on high-selectivity spectroscopy tools: Status and future perspectives. Critical Reviews in Biotechnology, 38(5), 704–718. https://doi.org/10.1080/07388551.2017.1398132

51. Cheng, Y.-S., Zheng, Y., Labavitch, J.M., VanderGheynst, J.S. (2011). Rapid quantification of total lipids using a colorimetric method in green microalgae. Lipids, 46(1), 95–103. https://doi.org/10.1007/s11745-010-3494-0

52. Khozin-Goldberg, I., Iskandarov, U., Cohen, Z. (2011). LC-PUFA from photosynthetic microalgae: Occurrence, biosynthesis, and prospects in biotechnology. Applied Microbiology and Biotechnology, 91(4), 905–915. https://doi.org/10.1007/s00253-011-3441-x

53. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. et al. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. The Plant Journal, 54(4), 621–639. https://doi.org/10.1111/j.1365-313X.2008.03492.x

54. Lete, M. G., Tripathi, A., Chandran, V., Bankaitis, V. A., McDermott, M. I. (2020). Lipid transfer proteins and instructive regulation of lipid kinase activities: Implications for inositol lipid signaling and disease. Advances in Biological Regulation, 78, Article 100740. https://doi.org/10.1016/j.jbior.2020.100740

55. Wagner, H., Jungandreas, A., Fanesi, A., Wilhelm, C. (2014). Surveillance of C-allocation in microalgal cells. Metabolites, 4(2), 453-464. https://doi.org/10.3390/metabo4020453

56. Han, Y., Wen, Q., Chen, Z., Li, P. (2011). Review of methods used for microalgal lipid-content analysis. Energy Procedia, 12, 944-950. https://doi.org/10.1016/j.egypro.2011.10.124


Рецензия

Для цитирования:


Морщинин И.В. Методы количественного определения содержания липидов и жирных кислот в микроводорослях. Пищевые системы. 2025;8(2):267-275. https://doi.org/10.21323/2618-9771-2025-8-2-267-275

For citation:


Morshchinin I.V. Methods for quantitative determination of microalgal lipid and fatty acids content. Food systems. 2025;8(2):267-275. https://doi.org/10.21323/2618-9771-2025-8-2-267-275

Просмотров: 799


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)