Методы количественного определения содержания липидов и жирных кислот в микроводорослях
https://doi.org/10.21323/2618-9771-2025-8-2-267-275
Аннотация
Микроводоросли представляют собой перспективное сырьё для устойчивого производства биотоплива и ценных биопродуктов благодаря высокой липидной продуктивности и быстрому темпу роста микроводорослей. Точное и воспроизводимое количественное определение липидов имеет решающее значение для отбора штаммов, оптимизации процессов и масштабирования производства. Настоящий обзор представляет собой всестороннюю и критическую оценку современных методов количественного анализа липидов, применяемых к микроводорослям. Рассмотренные методики классифицируются по типу применения: скрининговые, количественные и профилирующие подходы, включая такие технологии, как экстракция растворителями, in situ и прямая этерификация, колориметрические тесты, спектроскопические методы (NIR, FTIR), а также хроматографические техники (ГХ, ВЭЖХ–МС/МС). Каждый метод оценивается по нескольким критериям, включая аналитическую точность, пропускную способность, требования к образцам, техническую сложность и потенциал стандартизации. Результаты обобщаются в виде сравнительных таблиц. Несмотря на высокую скорость и простоту применения, скрининговые инструменты (например, Nile Red, SPV) недостаточно точны и воспроизводимы. Количественные методы, такие как кислотно-катализируемая in situ этерификация в сочетании с газовой хроматографией, демонстрируют оптимальное соотношение точности и масштабируемости применения. Методы профилирования, включая ВЭЖХ–МС/МС, обеспечивают наивысшее молекулярное разрешение, но требуют значительных экономических и трудовых затрат. Обзор подчёркивает необходимость гармонизации методик и обсуждает компромиссы, связанные с выбором аналитического подхода в научных и прикладных целях. Предлагаются практические рекомендации по выбору наиболее подходящих методов в зависимости от контекста применения — от раннего скрининга до продвинутого липидомного профилирования.
Об авторе
И. В. МорщининРоссия
Морщинин Иван Владимирович — инженер, факультет экотехнологий
197101, Санкт-Петербург, Кронверкский пр., д. 49, лит. А
Тел.: +7–996–182–32–99
Список литературы
1. Nguyen, H. T. D., Ramli, A., Kee, L. M. (2017). A review on methods used in analysis of microalgae lipid composition. Journal of the Japan Institute of Energy 96(12), 532–537. https://doi.org/10.3775/jie.96.532
2. Zhou, J., Wang, M., Saraiva, J. A., Martins, A. P., Pinto, C. A., Prieto, M. A. et al. (2022). Extraction of lipids from microalgae using classical and innovative approaches. Food Chemistry, 384, Article 132236. https://doi.org/10.1016/j.foodchem.2022.132236
3. Yao, L., Gerde, J. A., Lee, S. L., Wang, T., Harrata, K. A. (2015). Microalgae lipid characterization. Journal of Agricultural and Food Chemistry, 63(6), 1773–1787. https://doi.org/10.1021/jf5050603
4. Challagulla, V., Nayar, S., Walsh, K., Fabbro, L. (2017). Advances in techniques for assessment of microalgal lipids. Critical Reviews in Biotechnology, 37(5), 566–578. https://doi.org/10.1080/07388551.2016.1206058
5. Bligh, E. G., Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917. https://doi.org/10.1139/o59-099
6. Morales, M., Aflalo, C., Bernard, O. (2021). Microalgal lipids: A review of lipids potential and quantification for 95 phytoplankton species. Biomass and Bioenergy, 150, Article 106108. https://doi.org/10.1016/j.biombioe.2021.106108
7. Byreddy, A., Gupta, A., Barrow, C., Puri, M. (2016). A quick colorimetric method for total lipid quantification in microalgae. Journal of Microbiological Methods, 125, 28–32. https://doi.org/10.1016/j.mimet.2016.04.002
8. Yang, M., Fan, Y., Wu, P.-C., Chu, Y.-D., Shen, P. — L., Xue, S. et al. (2017). An extended approach to quantify triacylglycerol in microalgae by characteristic fatty acids. Frontiers in Plant Science, 8, Article 1949. https://doi.org/10.3389/fpls.2017.01949
9. Blanco-Llamero, C., García-García, P., Señoráns, F. J. (2024). Efficient green extraction of nutraceutical compounds from nannochloropsis gaditana: A comparative electrospray ionization LC–MS and GC–MS analysis for lipid profiling. Foods, 13(24), Article 4117. https://doi.org/10.3390/foods13244117
10. Folch, J., Lees, M., Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry, 226(1), 497–509. https://doi.org/10.1016/S0021-9258(18)64849-5
11. Mishra, S. K., Suh, W. I., Farooq, W., Moon, M., Shrivastav, A., Park, M. S. et al. (2014). Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresource Technology, 155, 330–333. https://doi.org/10.1016/j.biortech.2013.12.077
12. Elsey, D., Jameson, D., Raleigh, B., Cooney, M. J. (2007). Fluorescent measurement of microalgal neutral lipids. Journal of Microbiological Methods, 68(3), 639–642. https://doi.org/10.1016/j.mimet.2006.11.008
13. Rumin, J., Bonnefond, H., Saint-Jean, B., Rouxel, C., Sciandra, A., Bernard, O. et al. (2015). The use of fluorescent Nile red and BODIPY for lipid measurement in microalgae. Biotechnology for Biofuels, 8(1), Article 42. https://doi.org/10.1186/s13068-015-0220-4
14. Wahlen, B.D., Willis, R.M., Seefeldt, L.C. (2011). Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresource Technology, 102(3), 2724–2730. http://dx.doi.org/10.1016/j.biortech.2010.11.026
15. Breuer, G., Lamers, P. P., Martens, D. E., Draaisma, R. B., Wijffels, R. H. (2013). The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresource Technology, 124, 217–226. https://doi.org/10.1016/j.biortech.2012.08.003
16. Meng, Y., Yao, C., Xue, S., Yang, H. (2014). Application of Fourier transform infrared (FT-IR) spectroscopy in determination of microalgal compositions. Bioresource Technology, 151, 347–354. https://doi.org/10.1016/j.biortech.2013.10.064
17. Dean, A. P., Sigee, D. C., Estrada, B., Pittman, J. K. (2010). Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresource Technology, 101(12), 4499–4507. https://doi.org/10.1016/j.biortech.2010.01.065
18. Iverson, S. J., Lang, S. L., Cooper, M. H. (2001). Comparison of the bligh and dyer and folch methods for total lipid determination in a broad range of marine tissue. Lipids, 36(11), 1283–1287. https://doi.org/10.1007/s11745-001-0843-0
19. Saini, R. K., Prasad, P., Shang, X., Keum, Y. -S. (2021). Advances in lipid extraction methods — A review. International Journal of Molecular Sciences, 22(24), Article 13643. https://doi.org/10.3390/ijms222413643
20. Lewis, T., Nichols, P. D., McMeekin, T. A. (2000). Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs. Journal of Microbiological Methods, 43(2), 107–116. https://doi.org/10.1016/s0167-7012(00)00217-7
21. Halim, R., Danquah, M. K., Webley, P. A. (2012). Extraction of oil from microalgae for biodiesel production: A review. Biotechnology Advances, 30(3), 709–732. https://doi.org/10.1016/j.biotechadv.2012.01.001
22. Chen, Z., Wang, L., Qiu, S., Ge, S. (2018). Determination of microalgal lipid content and fatty acid for biofuel production. BioMed Research International, 2018, Article 1503126. https://doi.org/10.1155/2018/1503126
23. Lee, J.-Y., Yoo, C., Jun, S.-Y., Ahn, C.-Y., Oh, H.-M. (2010). Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technology, 101(1, Supplement), S75-S77. https://doi.org/10.1016/j.biortech.2009.03.058
24. Chen, W., Zhang, C., Song, L., Sommerfeld, M., Hu, Q. (2009). A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. Journal of Microbiological Methods, 77(1), 41–47. https://doi.org/10.1016/j.mimet.2009.01.001
25. Cooper, M. S., Hardin, W. R., Petersen, T. W., Cattolico, R. A. (2010). Visualizing “green oil” in live algal cells. Journal of Bioscience and Bioengineering, 109(2), 198–201. https://doi.org/10.1016/j.jbiosc.2009.08.004
26. Brennan, L., Fernández, A.B., Mostaert, A. S., Owende, P. (2012). Enhancement of BODIPY505/515 lipid fluorescence method for applications in biofuel-directed microalgae production. Journal of Microbiological Methods, 90(2), 137–143. https://doi.org/10.1016/j.mimet.2012.03.020
27. Khozin-Goldberg, I., Cohen, Z. (2006). The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry, 67(7), 696–701. https://doi.org/10.1016/j.phytochem.2006.01.010
28. Guschina, I. A., Harwood, J. L. (2006). Lipids and lipid metabolism in eukaryotic algae. Progress in Lipid Research, 45(2), 160–186. https://doi.org/10.1016/j.plipres.2006.01.001
29. Triebl, A., Trötzmüller, M., Hartler, J., Stojakovic, T., Köfeler, H. C. (2017). Lipidomics by ultrahigh performance liquid chromatography-high resolution mass spectrometry and its application to complex biological samples. Journal of Chromatography B, 1053, 72–80. https://doi.org/10.1016/j.jchromb.2017.03.027
30. Li-Beisson, Y., Thelen, J. J., Fedosejevs, E., Harwood, J. L. (2019). The lipid biochemistry of eukaryotic algae. Progress in Lipid Research, 74, 31–68. https://doi.org/10.1016/j.plipres.2019.01.003
31. Ryckebosch, E., Bruneel, C., Termote-Verhalle, R., Goiris, K., Muylaert, K., Foubert, I. (2014). Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chemistry, 160, 393–400. https://doi.org/10.1016/j.foodchem.2014.03.087
32. Pääkkönen, S., Pölönen, I., Calderini, M., Yli-Tuomola, A., Ruokolainen, V., Vihinen-Ranta, M. et al. (2025). Lipid monitoring of Chlorella vulgaris using non-invasive near-infrared spectral imaging. Journal of Applied Phycology, 37(1), 205–219. https://doi.org/10.1007/s10811-024-03397-6
33. Shao, Y., Gu, W., Qiu, Y. A., Wang, S., Peng, Y., Zhu, Y. M. et al. (2020). Lipids monitoring in Scenedesmus obliquus based on terahertz technology. Biotechnology for Biofuels, 13(1), Article 161. https://doi.org/10.1186/s13068-020-01801-0
34. Kiyani, D. A., Maryam, S., Amina, S. J., Ahmad, A., Chattha, M. W. A., Janjua, H. A. (2023). Lipid extraction and analysis of microalgae strain pectinodesmus PHM3 for biodiesel production. BMC Biotechnology, 23(1), Article 20. https://doi.org/10.1186/s12896-023-00784-8
35. Bouillaud, D., Drouin, D., Charrier, B., Jacquemmoz, C., Farjon, J., Giraudeau, P. et al. (2020). Using benchtop NMR spectroscopy as an online non-invasive in vivo lipid sensor for microalgae cultivated in photobioreactors. Process Biochemistry, 93, 63–68. https://doi.org/10.1016/j.procbio.2020.03.016
36. Bouillaud, D., Heredia, V., Castaing-Cordier, T., Drouin, D., Charrier, B., Gonçalves, O. et al. (2019). Benchtop flow NMR spectroscopy as an online device for the in vivo monitoring of lipid accumulation in microalgae. Algal Research, 43, Article 101624. https://doi.org/10.1016/j.algal.2019.101624
37. Cheng, F., Cui, Z., Chen, L., Jarvis, J., Paz, N., Schaub, T. et al. (2017). Hydrothermal liquefaction of high- and low-lipid algae: Bio-crude oil chemistry. Applied Energy, 206, 278–292. https://doi.org/10.1016/j.apenergy.2017.08.105
38. Harini, A. B., Sarangi, N. V., Nisha, N., Rajkumar, R. (2023). Cultivation of marine diatom, Amphora sp. in municipal wastewater for enhancing lipids toward sustainable biofuel production. South African Journal of Botany, 155, 288–297. https://doi.org/10.1016/j.sajb.2023.02.007
39. Akonjuen, B. M., Onuh, J. O., Aryee, A. N. A. (2023). Bioactive fatty acids from non-conventional lipid sources and their potential application in functional food development. Food Science and Nutrition, 11(10), 5689–5700. https://doi.org/10.1002/fsn3.3521
40. Jaiswal, K. K., Kumar, V., Vlaskin, M. S., Nanda, M. (2020). Impact of glyphosate herbicide stress on metabolic growth and lipid inducement in Chlorella sorokiniana UUIND6 for biodiesel production. Algal Research, 51, Article 102071. https://doi.org/10.1016/j.algal.2020.102071
41. Martínez-Bisbal, M. C., Mestre, N. C., Martínez-Máñez, R., Bauzá, J., Fillol, M. A. (2019). Microalgae degradation follow up by voltammetric electronic tongue, impedance spectroscopy and NMR spectroscopy. Sensors and Actuators, B: Chemical, 281, 44–52. https://doi.org/10.1016/j.snb.2018.10.069
42. Mayers, J. J., Flynn, K. J., Shields, R. J. (2013). Rapid determination of bulk microalgal biochemical composition by Fourier-Transform Infrared spectroscopy. Bioresource Technology, 148, 215–220. https://doi.org/10.1016/j.biortech.2013.08.133
43. Feng, G. D., Zhang, F., Cheng, L. -H., Xu, X. -H., Zhang, L., Chen, H. -L. (2013). Evaluation of FT-IR and Nile Red methods for microalgal lipid characterization and biomass composition determination. Bioresource Technology, 128, 107–112. https://doi.org/10.1016/j.biortech.2012.09.123
44. Czamara, K., Majzner, K., Pacia, M. Z., Kochan, K., Kaczor, A. A., Baranska, M. (2015). Raman spectroscopy of lipids: A review. Journal of Raman Spectroscopy, 46(1), 4–20. https://doi.org/10.1002/jrs.4607
45. Wu, H., Volponi, J. V., Oliver, A. E., Parikh, A. N., Simmons, B. A., Singh, S. (2011). In vivo lipidomics using single-cell Raman spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 108(9), 3809–3814. https://doi.org/10.1073/pnas.1009043108
46. Sharma, S. K., Nelson, D. R., Abdrabu, R., Khraiwesh, B., Jijakli, K., Arnoux, M. et al. (2015). An integrative Raman microscopy-based workflow for rapid in situ analysis of microalgal lipid bodies. Biotechnology for Biofuels and Bioproducts, 8, Article 164. https://doi.org/10.1186/s13068-015-0349-1
47. Shao, Y., Fang, H., Zhou, H., Wang, Q., Zhu, Y., He, Y. (2017). Detection and imaging of lipids of Scenedesmus obliquus based on confocal Raman microspectroscopy. Biotechnology for Biofuels and Bioproducts, 10(1), Article 300. https://doi.org/10.1186/S13068-017-0977-8
48. Bruñas Gómez, I., Casale, M., Barreno, E., Catalá, M. (2022). Near-infrared metabolomic fingerprinting study of lichen thalli and phycobionts in culture: Aquaphotomics of Trebouxia lynnae dehydration. Microorganisms, 10(12), Article 2444. https://doi.org/10.3390/microorganisms10122444
49. Beć, K. B., Grabska, J., Huck, C. W. (2020). Near-infrared spectroscopy in bioapplications. Molecules, 25(12), Article 2948. https://doi.org/10.3390/molecules25122948
50. Podevin, M., Fotidis, I. A., Angelidaki, I. (2018). Microalgal process-monitoring based on high-selectivity spectroscopy tools: Status and future perspectives. Critical Reviews in Biotechnology, 38(5), 704–718. https://doi.org/10.1080/07388551.2017.1398132
51. Cheng, Y.-S., Zheng, Y., Labavitch, J.M., VanderGheynst, J.S. (2011). Rapid quantification of total lipids using a colorimetric method in green microalgae. Lipids, 46(1), 95–103. https://doi.org/10.1007/s11745-010-3494-0
52. Khozin-Goldberg, I., Iskandarov, U., Cohen, Z. (2011). LC-PUFA from photosynthetic microalgae: Occurrence, biosynthesis, and prospects in biotechnology. Applied Microbiology and Biotechnology, 91(4), 905–915. https://doi.org/10.1007/s00253-011-3441-x
53. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. et al. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. The Plant Journal, 54(4), 621–639. https://doi.org/10.1111/j.1365-313X.2008.03492.x
54. Lete, M. G., Tripathi, A., Chandran, V., Bankaitis, V. A., McDermott, M. I. (2020). Lipid transfer proteins and instructive regulation of lipid kinase activities: Implications for inositol lipid signaling and disease. Advances in Biological Regulation, 78, Article 100740. https://doi.org/10.1016/j.jbior.2020.100740
55. Wagner, H., Jungandreas, A., Fanesi, A., Wilhelm, C. (2014). Surveillance of C-allocation in microalgal cells. Metabolites, 4(2), 453-464. https://doi.org/10.3390/metabo4020453
56. Han, Y., Wen, Q., Chen, Z., Li, P. (2011). Review of methods used for microalgal lipid-content analysis. Energy Procedia, 12, 944-950. https://doi.org/10.1016/j.egypro.2011.10.124
Рецензия
Для цитирования:
Морщинин И.В. Методы количественного определения содержания липидов и жирных кислот в микроводорослях. Пищевые системы. 2025;8(2):267-275. https://doi.org/10.21323/2618-9771-2025-8-2-267-275
For citation:
Morshchinin I.V. Methods for quantitative determination of microalgal lipid and fatty acids content. Food systems. 2025;8(2):267-275. https://doi.org/10.21323/2618-9771-2025-8-2-267-275