Preview

Food systems

Advanced search

Profiling of volatile compounds in four Egyptian date cultivars

https://doi.org/10.21323/2618-9771-2025-8-2-252-259

Abstract

Volatile compound plays an important role in consumers’ satisfaction and influences further consumption of the date fruit. Thus, the study analyzed the volatile compounds of three date fruit cultivars: Barhy, Samani, Zaghloul at khalal stage of ripeness (complete color) and Siwi at tamr stage of ripeness using solid-phase microextraction (SPME) in conjunction with gas chromatography-mass spectrometry (GC–MS). A total of 69 compounds were identified, including aldehydes, alcohols, esters, terpenoids, ketones, hydrocarbons, alkanes, and ethers. Barhy dates featured high levels of aldehydes, saturated hydrocarbons, volatiles, ethers, ketones, and esters. Zaghloul dates predominantly contained aldehydes, ethers, and ketones, while Samani dates were rich in ketones, aldehydes, esters, and ethers. Key compounds such as β-(Z)-2-butenal and β-methyl ionone were identified as significant contributors to the distinctive peculiar aromas of these date varieties. Notably, the Siwi variety exhibited a distinctive profile with prominent ethers, aldehydes, ketones, and esters. The Siwi variety contained the highest number of flavour compounds (48), followed by Zaghloul (25), Barhy (20), and Samani (19). This comprehensive analysis reveals a complex and varied aromatic compounds profile among the date cultivars, with each variety having its unique sensory characteristics. The results provide valuable insights into the volatile profiles of Egyptian date varieties, potentially guiding the production of date-derived products and thus enhancing their application in food processing industries.

About the Authors

T. G. Abedelmaksoud
Cairo University
Egypt

Tarek Gamal Abedelmaksoud, Associate Professor, Department of Food Science, Faculty of Agriculture

1 Gamaa Street, 12613, Giza, Egypt

Tel.: +2–0110–144–12–80



M. A. Hassan
Cairo University; Agricultural Research Center
Egypt

Mennatalh A. Hassan, Researcher, The Central Laboratory of Date Palm Research and Development, Agricultural Research Center

Giza, 12619, Egypt

Tel.: +2–0106–130–80–83



M. T. M. Assous
Agricultural Research Center
Egypt

Mostafa T. M. Assous, Professor, The Central Laboratory of Date Palm Research and Development, Agricultural Research Center

Giza, 12619, Egypt

Tel.: +2–0100–314–80–85



A. E. R. M. Khalaf-Allah
Cairo University
Egypt

Abd El-Rahman M. Khalaf-Allah, Professor, Department of Food Science, Faculty of Agriculture

1 Gamaa Street, 12613, Giza, Egypt

Tel.: +2–0100–142–32–46



References

1. Food and Agriculture Organization of the United Nations (FAO). (2024). Climate-smart policies to enhance Egypt’s agrifood system. FAO. Retrieved from https://openknowledge.fao.org/server/api/core/bitstreams/eec90055-7494-440e-ad53-1bc3663dc71b/content Accessed January 16, 2025.

2. Abedelmaksoud, T. G., Hassan, M. A., Assous, M., Khalaf-Allah, A. E. R. M. (2024). Overall quality characteristics of nectar produced by some date cultivars. Egyptian Journal of Chemistry, 67(11), 479–489. https://doi.org/10.21608/ejchem.2024.260427.9140

3. Saafi, E.B., Amira, E.A., Chahdoura, H., Flamini, G., Lachheb, B., Ferchichi, A. et al. (2022). Nutritional properties, aromatic compounds and in vitro antioxidant activity of ten date palm fruit (Phoenix dactylifera L.) varieties grown in Tunisia. Brazilian Journal of Pharmaceutical Sciences, 58, Article e18871. https://doi.org/10.1590/s2175-97902020000318871

4. Amira, E.A., Saafi, E. B., Flamini, G., Issaoui, M., Ferchichi, A., Hammami, M. et al. (2012). Volatile and nonvolatile chemical composition of some date fruits (Phoenix dactylifera L.) harvested at different stages of maturity. International Journal of Food Science and Technology, 47(3), 549–555. https://doi.org/10.1111/j.1365–2621.2011.02876.x

5. Ismail, W. M., Zayed, A., Ramadan, N. S., Sakna, S. T., Farag, M. A. (2025). GC–MS based nutritional and aroma profiling of date palm seeds collected from different Egyptian cultivars for valorization purposes. Scientific Reports, 15(1), Article 16531. https://doi.org/10.1038/s41598-025-00171-7

6. Kapadia, P., Newell, A. S., Cunningham, J., Roberts, M. R., Hardy, J. G. (2022). Extraction of high-value chemicals from plants for technical and medical applications. International Journal of Molecular Sciences, 23(18), Article 10334. https://doi.org/10.3390/ijms231810334

7. Agatonovic-Kustrin, S., Gegechkori, V., Kobakhidze, T., Morton, D. (2023). Solid-phase microextraction techniques and application in food and horticultural crops. Molecules, 28(19), Article 6880. https://doi.org/10.3390/molecules28196880

8. Bouguedoura, N., Bennaceur, M., Babahani, S., Benziouche, S. E. (2015). Date palm status and perspective in Algeria. Chapter in a book: Date Palm Genetic Resources and Utilization: Volume 1: Africa and the Americas, 125–168. https://doi.org/10.1007/978-94-017-9694-1_4

9. Caleb, O. J., Opara, U. L., Mahajan, P. V., Manley, M., Mokwena, L., Tredoux, A.G.J. (2013). Effect of modified atmosphere packaging and storage temperature on volatile composition and postharvest life of minimally-processed pomegranate arils (cvs. ‘Acco’ and ‘Herskawitz’). Postharvest Biology and Technology, 79, 54–61. https://doi.org/10.1016/j.postharvbio.2013.01.006

10. Mezroua E, Y., Agli, A., Flamini, G., Boudalia, S., Oulamara, H. (2017). Aroma characterization of ripe date fruits (Phoemix dactylifera L.) from Algeria. African Journal of Biotechnology, 16(42), 2054–2061. https://doi.org/10.5897/AJB2017.16222

11. Pawliszyn, J. (2023). Evolution of the Fundamentals of Solid-phase Microextraction. Chapter in a book: Evolution of Solid Phase Microextraction Technology. Elsevier Science, 2023. https://doi.org/10.6028/NIST.IR.8369

12. Turan, M. S., McKay, K., Chang, D., Calik, C., Bassham, L., Kang, J. et al. (2021). Status report on the second round of the NIST lightweight cryptography standardization process. NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, 2021. https://doi.org/10.6028/NIST.IR.8369

13. Narain, N. (2007). Volatile compounds in date palm fruit. Acta Horticulturae, 736, 261–266. https://doi.org/10.17660/ActaHortic.2007.736.24

14. Jado, A., Zotl, J. (1984). Quaternary Period in Saudi Arabia 2: Sedimentological, Hydrogeological, Hydrochemical, Geomorphological and Climatological Investigations in Western Saudi Arabia. Springer-Verlag, Vienna, 1984.

15. Reynes, M., Lebrun, M., Shaw, P. E. (1996). Identification of volatile date components and use of multivariate analysis to distinguish date varieties 1. Journal of Food Quality, 19(6), 505–514. https://doi.org/10.1111/j.1745-4557.1996.tb00445.x

16. Shahidi, F., Rubin, L.J., D’Souza, L.A., Teranishi, R., Ron G. Buttery, R.G. (1986). Meat flavor volatiles: A review of the composition, technique of analysis and sensory evaluation. Critical Review in Food Science and Nutrition, 24(2), 219–227. https://doi.org/10.1080/10408398609527435

17. Flowers, J. M., Hazzouri, K. M., Lemansour, A., Capote, T., Gros-Balthazard, M., Ferrand, S. et al. (2022). Patterns of volatile diversity yield insights into the genetics and biochemistry of the date palm fruit volatilome. Frontiers in Plant Science, 13, Article 853651. https://doi.org/10.5061/dryad.mw6m905z8

18. Hu, G., Peng, C., Xie, X., Zhang, S., Cao, X. (2017). Availability, pharmaceutics, security, pharmacokinetics, and pharmacological activities of patchouli alcohol. Evidence-Based Complementary and Alternative Medicine, 2017, Article 4850612. https://doi.org/10.1155/2017/4850612

19. Xiao, Z., Chen, H., Niu, Y., Zhu, J. (2021). Characterization of the aroma-active compounds in banana (Musa AAA Red green) and their contributions to the enhancement of sweetness perception. Journal of Agricultural and Food Chemistry, 69(50), 15301–15313. https://doi.org/10.1021/acs.jafc.1c06434

20. Bickel Haase, T., Schweiggert-Weisz, U., Ortner, E., Zorn, H., Naumann, S. (2021). Aroma properties of cocoa fruit pulp from different origins. Molecules, 26(24), Article 7618. https://doi.org/10.3390/molecules26247618

21. Abbas, F., Zhou, Y., O’Neill Rothenberg, D., Alam, I., Ke, Y., Wang, H. C. (2023). Aroma components in horticultural crops: Chemical diversity and usage of metabolic engineering for industrial applications. Plants, 12(9), Article 1748. https://doi.org/10.3390/plants12091748

22. Vujanović, M. D., Đurović, S. D., Radojković, M. M. (2021). Chemical composition of essential oils of elderberry (Sambucus nigra L.) flowers and fruits. Acta Periodica Technologica, 52, 229–237. https://doi.org/10.2298/APT2152229V

23. Sotiropoulou, N. S., Xagoraris, M., Revelou, P. K., Kaparakou, E., Kanakis, C., Pappas, C. Tarantilis, P. (2021). The use of SPME-GC–MS IR and Raman techniques for botanical and geographical authentication and detection of adulteration of honey. Foods, 10(7), Article 1671. https://doi.org/10.3390/foods10071671

24. Anandakumar, P., Kamaraj, S., Vanitha, M. K. (2021). D-limonene: A multifunctional compound with potent therapeutic effects. Journal of Food Biochemistry, 45(1), Article e13566. https://doi.org/10.1111/jfbc.13566

25. Qiang, H., Wang, J., Liu, H., Zhu, Y. (2023). From vanillin to biobased aromatic polymers. Polymer Chemistry, 14(37), 4255–4274. https://doi.org/10.1039/D3PY00767G

26. Chai, Z., Bi, X., Jia, H. (2022). Use of typical wastes as biochars in removing diethyl phthalate (Det) from water. Processes, 10(7), Article 1369. https://doi.org/10.3390/pr10071369

27. Wallington, T. J., Hurley, M. D., Maurer, T., Barnes, I., Becker, K. H., Tyndall, G. S., Bilde, M. (2001). Atmospheric oxidation mechanism of methyl formate. The Journal of Physical Chemistry A, 105(21), 5146–5154. https://doi.org/10.1021/jp0041398

28. Baioumy, A.A., Abedelmaksoud, T.G. (2021). Quality properties and storage stability of beef burger as influenced by addition of orange peels (albedo). Theory and Practice of Meat Processing, 6(1), 33–38. https://doi.org/10.21323/2414-438X-2021-6-1-33-38

29. Huang, L., Zhu, X., Zhou, S., Cheng, Z., Shi, K., Zhang, C., Shao, H. (2021). Phthalic acid esters: Natural sources and biological activities. Toxins, 13(7), Article 495. https://doi.org/10.3390/toxins13070495

30. Khalil, M.N.A., Fekry, M.I., Farag, M.A. (2017). Metabolome based volatiles profiling in 13 date palm fruit varieties from Egypt via SPME GC–MS and chemometrics. Food Chemistry, 217, 171–181. https://doi.org/10.1016/j.foodchem.2016.08.089


Review

For citations:


Abedelmaksoud T.G., Hassan M.A., Assous M.T., Khalaf-Allah A.M. Profiling of volatile compounds in four Egyptian date cultivars. Food systems. 2025;8(2):252-259. https://doi.org/10.21323/2618-9771-2025-8-2-252-259

Views: 30


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)