Preview

Food systems

Advanced search

Complex modification of whey protein profile as an approach to the creation of enriched protein ingredients

https://doi.org/10.21323/2618-9771-2025-8-2-221-230

Abstract

In the context of the persistent problem of deficiency of essential trace elements such as iodine (iodine deficiency is recorded in 68 % of the world’s population), an urgent task is the development of effective approaches to the creation of food ingredients and products with bioavailable forms of trace elements. In this regard, the work investigated the complex modification of protein profile of milk whey in order to create a protein ingredient enriched with iodine and zinc. Based on the results of a number of studies, the optimal parameters of protein profile modification by thermoselective fractionation in the presence of chelator (58 °C; pH 3.0; mass fraction of chelator 0.2 %; 120 minutes) were determined. The rational conditions of zinc chelation by whey proteins (40 °C; pH 8.0; 60 minutes) were established, providing the maximum concentration of organically bound trace element: 169.8±27.3 mg per 100 g of protein. The protease screening revealed that trypsin provides an increase in the number of functional sites capable of binding iodine, provided that the initial concentration of zinc bound to proteins is maintained. Optimal parameters of protein hydrolysis by trypsin (44 °C; pH 8.0; 180 min) are given. Effective modes of preliminary hydrolysis of zinc-enriched whey proteins (enzyme-substrate ratio 1/100 CPROT g/g; 44 °C; pH 8.0; 165 minutes) and substrate iodization (20 °C; pH 8.0; 12 h) were established, providing the concentration of organically bound iodine 2.5±0.4 g per 100 g of protein and preserving the initial concentration of organically bound zinc. Rational parameters of baromembrane purification of protein matrix from inorganic forms of iodine and zinc were determined for each stage of trace elements immobilization: 3-fold ultradiafiltration for the stage of zinc chelation and nanodiafiltration for the stage of iodination. The obtained results can be used in the development of new functional food products and technologies for deep processing of whey.

About the Authors

I. A. Barkovskaya
All-Russian Dairy Research Institute
Russian Federation

Irina A. Barkovskaya, Postgraduate Student, Junior Researcher, Laboratory of Biotransformation and Preservation Technologies

35/7, Lyusinovskaya str., 115093, Moscow

Tel: +7–499–236–02–36



A. E. Ryabova
All-Russian Dairy Research Institute
Russian Federation

Anastasia E. Ryabova, Doctor of Technical Sciences, Researcher, Laboratory of Biotransformation and Preservation Technologies

35/7, Lyusinovskaya str., 115093, Moscow

Tel: +7–499–236–02–36



I. V. Rozhkova
All-Russian Dairy Research Institute
Russian Federation

Irina V. Rozhkova, Candidate of Technical Sciences, Senior Researcher, Laboratory of Applied Microbiology and Genomics of Microorganisms, Laboratory of Applied Microbiology and Microbial Genomics

35/7, Lyusinovskaya str., 115093, Moscow

Tel: +7–499–236–72–16



References

1. Niggli, U., Sonnevelt, M., Kummer, S. (2023). Pathways to advance agroecology for a successful transformation to sustainable food systems. Chapter in a book: Science and Innovations for Food Systems Transformation. Springer Cham, 2023. https://doi.org/10.1007/978-3-031-15703-5_18

2. Yashin, A. N., Petrov, A. N. (2023). The relevance of the development of food products enriched with trace elements for diet therapy in cardiovascular disease. Food Systems, 6(3), 272–278. (In Russian) https://doi.org/10.21323/2618-9771-2023-6-3-272-278

3. Kumar, A., Kerketta, A., Dewali, S., Sharma, N., Panda, A. K., Bisht, S. S. (2023). Tackling hidden hunger: Understanding micronutrient deficiency and effective mitigation strategies. Chapter in a book: Emerging Solutions in Sustainable Food and Nutrition Security. Springer Cham, 2023. https://doi.org/10.1007/978-3-031-40908-0_12

4. Yilmaz, H., Yilmaz, A. (2025). Hidden hunger in the age of abundance: The nutritional pitfalls of modern staple crops. Food Science and Nutrition, 13(2), Article e4610. https://doi.org/10.1002/fsn3.4610

5. Malézieux, E., Verger, E. O., Avallone, S., Alpha, A., Ngigi, P. B., Lourme-Ruiz, A. et al. (2024). Biofortification versus diversification to fight micronutrient deficiencies: An interdisciplinary review. Food Security, 16, 261–275. https://doi.org/10.1007/s12571-023-01422-z

6. Thiviya, P., Gamage, A., Kapilan, R., Merah, O., Madhujith, T. (2022). Single cell protein production using different fruit waste: A review. Separations, 9(7), Article 178. https://doi.org/10.3390/separations9070178

7. Passarelli, S., Free, Ch. M., Shepon, A., Beal, T., Batis, C., Golden, Ch. D. (2024). Global estimation of dietary micronutrient inadequacies: A modelling analysis. The Lancet Global Health, 12(10), E1590–E1599. https://doi.org/10.1016/S2214-109X(24)00276-6

8. Roth, J. A., Galyon, J. (2024). Food security: The ultimate one-health challenge. One Health, 19, Article 100864. https://doi.org/10.1016/j.onehlt.2024.100864

9. Colgrave, M. L., Dominik, S., Tobin, B. A., Stockmann, R., Simon, C., Howitt, C. A. et al. (2021). Perspectives on future protein production. Journal of Agricultural and Food Chemistry, 69(50), 15076–15083. https://doi.org/10.1021/acs.jafc.1c05989

10. Hendriks, S., Jean-François, S. Cole, M., Kambugu, F., Zilberman, D. et al. (2023). Ensuring access to safe and nutritious food for all through the transformation of food systems. Chapter in a book: Science and Innovations for Food Systems Transformation. Springer Cham, 2023. https://doi.org/10.1007/978-3-031-15703-5_4

11. Ladnova, O. L., Bolshakova, L. S., Kuzina, A. V., Izvekova, E. V., Merkulova, E. G., Ashikhina, L.A. (February 26–29, 2020). Development of technology of cottage cheese enriched with iodine and succinic acid. IOP Conference Series: Earth and Environmental Science, 640(3), Article 032016. Voronezh, Russian Federation, 2020. https://doi.org/10.1088/1755-1315/640/3/032016

12. Rai, D., Chaudhary, Ch., Khatak, A., Banyal, S. (2024). A sustainable approach to combat micronutrient deficiencies and ensure global food security through biofortification. European Journal of Nutrition and Food Safety, 16(4), 15–30. https://doi.org/10.9734/ejnfs/2024/v16i41404

13. Li, J., Martin, C., Fernie, A. (2024). Biofortification’s contribution to mitigating micronutrient deficiencies. Nature Food, 5(1), 19–27. https://doi.org/10.1038/s43016-023-00905-8

14. Izydorczyk, G., Ligas, B., Mikula, K., Witek-Krowiak, A., Moustakas, K., Chojnacka K. (2021). Biofortification of edible plants with selenium and iodine–A systematic literature review. Science of The Total Environment, 754, Article 141983. https://doi.org/10.1016/j.scitotenv.2020.141983

15. Azorín, I., Madrid, J., Martínez-Miró, S., López, M., López, M. B., López, M. J. et al. (2024). Combined supplementation of two selenium forms (organic and inorganic) and iodine in dairy cows’ diet to obtain enriched milk, cheese, and yogurt. Animals, 14(9), Article 1373. https://doi.org/10.3390/ani14091373

16. Barkovskaya, I. A., Kruchinin, A. G., Rozhkova, I. V. (2024). Iodine deficiency in Russia: Current state of the problem, global practice and new approaches to therapy. Food Systems, 7(2), 238–245. (In Russian) https://doi.org/10.21323/2618-9771-2024-7-2-238-245

17. Vinogradov, D. V., Lupova, E. I., Pityurina, I. S. (March 29–30, 2021). The use of iodine-containing additives in bakery production technology. IOP Conference Series: Earth and Environmental Science, 954(1), Article 012046. Omsk City, Western Siberia, Russian Federation, 2021. https://doi.org/10.1088/1755-1315/954/1/012046

18. Biryukova, Z. А., Panteleeva, О. G., Yurova, Е. А., Goncharova, А. Ya. (2014). Preservation of iodine in fortified milk at sterilization and storage. Milk Industry, 10, 54–56. (In Russian)

19. Zobkova, Z. S. (2020). Implementation and commercialization of the investigations results in whole milk branch. Topical Issues of the Dairy Industry, Cross-Sectoral Technologies and Quality Management Systems, 1(1), 199–204. (In Russian) https://doi.org/10.37442/978-5-6043854-1-8-2020-1-199-204

20. Tanina, V. I., Ionova, I. I., Filchakova, S. A., Lukin, D. S. (2012). Drinking milk with iodine-containing additives. Milk Processing, 5(151), 16–17. (In Russian)

21. Barkovskaya, I. А. (2024). Prospects for fortifying preserved dairy pro ducts with iodized whey proteins. Milk Industry, 2, 35–39. (In Russian) https://doi.org/10.21603/1019-8946-2024-2-6

22. Wachowska, M., Adamczak, M. (2023). Importance of iodine fortification in food production: Human health and technology. Journal of Elementology, 28(1), 199–222. https://doi.org/10.5601/jelem.2022.27.4.2342

23. Arias-Borrego, A., Velasco, I., Gómez-Ariza, J. L., García-Barrera, T. (2022). Iodine deficiency disturbs the metabolic profile and elemental composition of human breast milk. Food Chemistry, 371, Article 131329. https://doi.org/10.1016/j.foodchem.2021.131329

24. Bonofiglio, D., Catalano, S. (2020). Effects of iodine intake and nutraceuticals in thyroidology: Update and prospects. Nutrients, 12(5), Article 1491. https://doi.org/10.3390/nu12051491

25. Gharibzahedi, S. М. T., Jafari, S. M. (2017). The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends in Food Science and Technology, 62, 119–132. https://doi.org/10.1016/j.tifs.2017.02.017

26. Muhidinov, Z. К., Kasimova, G. F., Juraeva, F. N., Bobokalonov, J. Т., Khalikova, М. D., Teshaev, Kh. I. (2008). Whey protein: Composition analysis on the PAAG, separation by ion exchenge chromatography. News of the Academy of sciences of the Republic of Tajikistan. Department of Physical, Mathematical, Chemical, Geological and Technical Sciences, 1, 52–57. (In Russian)

27. Polishchuk, Е. К., Aryzina, М. А., Spirina, М. Е., Kotenkova, Е. А. (2023). Influence of pH on protein extraction from Sus scrofa pancreas. Food Systems, 6(4), 539–546. (In Russian) https://doi.org/10.21323/2618-9771-2023-6-4-539-546

28. Adler-Nissen, J. (1979). Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. Journal of Agricultural and Food Chemistry, 27(6), 1256–1262. https://doi.org/10.1021/jf60226a042

29. Spellman, D., McEvoy, E., O’cuinn, G., FitzGerald, R. J. (2003). Proteinase and exopeptidase hydrolysis of whey protein: Comparison of the TNBS, OPA and pH stat methods for quantification of degree of hydrolysis. International Dairy Journal, 13(6), 447–453. https://doi.org/10.1016/S0958-6946(03)00053-0

30. Chen, L., Chen, Q., Zhang, Z., Wan, X. (2009). A novel colorimetric determination of free amino acids content in tea infusions with 2,4-dinitrofluorobenzene. Journal of Food Composition and Analysis, 22(2), 137–141. https://doi.org/10.1016/j.jfca.2008.08.007

31. Spellman, D., O’cuinn, G., FitzGerald, R. J. (2009). Bitterness in Bacillus proteinase hydrolysates of whey proteins. Food Chemistry, 114(2), 440–446. https://doi.org/10.1016/j.foodchem.2008.09.067

32. Permyakov, E. A. (2020). α-Lactalbumin, amazing calcium-binding protein. Biomolecules, 10(9), Article 1210. https://doi.org/10.3390/biom10091210

33. UniProt. (n. d.). P02769 ALBU_BOVIN. Retrieved from https://www.uniprot.org/uniprotkb/P02769/entry Accessed March 08, 2025

34. Barkovskaya, I. А., Kruchinin, А. G. (2024). Study of the process of selective thermodenaturation of whey proteins. Food Industry, 11, 34–37. (In Russian) https://doi.org/10.52653/PPI.2024.11.11.006

35. McGuffey, M. K., Otter, D. E., van Zanten, J. H., Foegeding, E. A. (2007). Solubility and aggregation of commercial α-lactalbumin at neutral pH. International Dairy Journal, 17(10), 1168–1178. https://doi.org/10.1016/j.idairyj.2007.04.003

36. Sordonova, Е. V., Zhamsaranova, S. D., Lygdenov, D. V. (2018). Development and characterization of organic iodine and zinc derivatives. ESSUTM Bulletin, 2(69), 73–79. (In Russian)

37. Kutyakov, V. А., Salmina, А. B. (2014). Metallothioneins as sensors and controls exchange of metals in the cells. Bulletin of Siberian Medicine, 13(3), 91–99. (In Russian)

38. Popov, I. A., Indeikina, M. I., Kononikhin, A. S., Starodubtseva, N. L., Nikolaev, E. N., Kozin, S. A. et al. (2013). ESI–MS identification of the minimal zinc-binding center in natural isoforms of β-amyloid domain 1–16. Molecular Biology, 47(3), 440–445. https://doi.org/10.1134/S002689331302012X

39. Pinto, L. D., Puppin, P. A. L., Behring, V. M., Alves, O. C., Rey, N. A., Felcman, J. (2012). Solution and solid state study of copper (II) ternary complexes containing amino acids of interest for brain biochemistry-2: Homocysteine with aspartate, glutamate or methionine. Inorganica Chimica Acta, 386, 60–67. https://doi.org/10.1016/j.ica.2012.01.025

40. Gołębiowski, A., Pomastowski, P., Rafińska, K., Zuvela, P., Wong, M. W., Pryshchepa, O. et al. (2022). Functionalization of alpha-lactalbumin by zinc ions. ACS Omega, 7(43), 38459–38474. https://doi.org/10.1021/acsomega.2c03674

41. Dissanayake, M., Ramchandran, L., Piyadasa, C., Vasiljevic, T. (2013). Influence of heat and pH on structure and conformation of whey proteins. International Dairy Journal, 28(2), 56–61. https://doi.org/10.1016/j.idairyj.2012.08.014

42. Kalugina, D. N., Yurova, Е. А. (2021). The protein composition characteristics in the formation of ultra pasteurized milk shelf life. Bulliten of KSAU, 10, 165–172. (In Russian) https://doi.org/10.36718/1819-4036-2021-10-165-172

43. Alkadour, M. I., Pryanichnikova, N. S., Yurova, Е. А., Petrov, А. N. (2024). Effect of thermal treatment and pasteurization on milk powder quality. Food Processing: Techniques and Technology, 54(2), 275–284. https://doi.org/10.21603/2074-9414-2024-2-2506

44. Lam, R. S. H., Nickerson, M. T. (2015). The effect of pH and temperature pretreatments on the physicochemical and emulsifying properties of whey protein isolate. LWT — Food Science and Technology, 60(1), 427–434. https://doi.org/10.1016/j.lwt.2014.07.031

45. Ibragimova, Z. R., Tsopanova, Е. I., Simeonidi, D. D. (2015). Preparation and aspects of the rational use of iodized proteins in technology of functional foods. Technology and Merchandising of the Innovative Foodstuff, 5(34), 73–77. (In Russian)

46. Kruchinin, A. G., Bolshakova, E. I. (2022). Hybrid strategy of bioinformatics modeling (in silico): Biologically active peptides of milk protein. Food Processing: Techniques and Technology, 52(1), 46–57. https://doi.org/10.21603/2074-9414-2022-1-46-57

47. Ulrikh, Е. V., Kriger, О. V., Poturaeva, N. L., Budrik, V. G., Botina, S. G., Agarkova, Е. J. et al. (2012). Technology of structurised hypoallergenic food product. Food Processing: Techniques and Technology, 4(27), 76A-80. (In Russian)

48. Donskaja, G. A., Krekker, L. G., Kolosova, E. V., Bychkova, T. S., Karapetyan, V. K. (2024). Radioprotective ingredients of a composite dairy product. Vestnik of MSTU, 27(2), 193-204. (In Russian) https://doi.org/10.21443/1560-9278-2024-27-2-193-204

49. Bolshakova, L. S., Litvinova, E. V., Kuzina, A. V., Lisicyn, A. B., Chernuha, I. M. (2013). Study of prophylactic effectiveness of the biologicalski active additives Bioiod. Fundamental Research, 10–11, 2401–2404. (In Russian)

50. Semenova, E. S., Simonenko, E. S., Simonenko, S. V., Zorin, S. N., Petrov, N. A., Mazo, V. K. (2023). Study of the process of hydrolysis of milk proteins using enzyme preparations of domestic and production. Food Systems, 6(2), 224–232. https://doi.org/10.21323/2618-9771-2023-6-2-224-232


Review

For citations:


Barkovskaya I.A., Ryabova A.E., Rozhkova I.V. Complex modification of whey protein profile as an approach to the creation of enriched protein ingredients. Food systems. 2025;8(2):221-230. (In Russ.) https://doi.org/10.21323/2618-9771-2025-8-2-221-230

Views: 27


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)