Preview

Пищевые системы

Расширенный поиск

Подробный обзор производства, свойств и применения циклодекстринов

https://doi.org/10.21323/2618-9771-2025-8-2-196-203

Аннотация

Циклодекстрины (ЦД) — это циклические олигосахариды, образующиеся в результате ферментативного преобразования крахмала в глюкозу, катализируемого циклодекстринглюканотрансферазой (ЦГТазой). Они состоят из шести (α-ЦД), семи (β-ЦД) или восьми (γ-ЦД) молекул глюкозы, соединенных между собой α-1,4-гликозидными связями. Европейское агентство по безопасности пищевых продуктов (EFSA) считает циклодекстринглюканотрансферазу безопасной для использования в пищевых продуктах. ЦГТаза — это внеклеточный фермент, который встречается в природе на клеточном уровне и вырабатывается различными микроорганизмами, такими как грибки, бактерии и археи. Примерно 90 % бактерий, вырабатывающих ЦГТазу, принадлежат к роду Bacillus. Циклодекстрины образуются несколькими молекулами глюкозы, ковалентно соединенными атомами кислорода. Они имеют форму усеченного конуса с гидрофильной внешней частью и менее гидрофильной внутренней частью. Благодаря многочисленным преимуществам ЦД считаются полезными для здоровья питательными веществами и биологически активными пищевыми добавками. ЦД и их производные находят разнообразное применение в пищевой, косметической и фармацевтической промышленности, причем наиболее распространено их использование в пищевых продуктах. В пищевой промышленности ЦД в первую очередь служат в качестве вспомогательных ингредиентов, таких как добавки для улучшения физико-химических свойств различных пищевых компонентов. Например, их можно использовать для стабилизации ароматических и вкусовых соединений, полиненасыщенных жирных кислот (ПНЖК) и плохо растворимых в воде витаминов или питательных веществ, а также для улучшения растворимости и биодоступности лекарственных средств. Токсикологические исследования показали, что ЦД безопасны для перорального применения. Во многих исследованиях изучалось введение обычных лекарственных средств или природных биологически активных веществ в полости ЦД с целью лучшего понимания их воздействия на различные линии раковых клеток in vitro. ЦД используются в косметических продуктах для продления срока их годности, стабилизации летучих химических ингредиентов, уменьшения неприятного вкуса или запаха и предотвращения или уменьшения местного раздражения. Циклодекстрины остаются в центре внимания исследований благодаря своей способности инкапсулировать молекулы и выполнять функции катализаторов и носителей для широкого спектра химических соединений. 

Об авторах

Х. А. Абд Аль-Хусейн
Университет Басры
Ирак

Абд Аль-Хусейн Х. А. — аспирант, факультет пищевых наук, сельскохозяйственный колледж

61004, Ирак, Басра

Тел.: +964–771–620–36–17



А. Д. Абд Аль-Манхел
Университет Басры
Ирак

Абд Аль-Манхел А. Д. — профессор, факультет пищевых наук, сельскохозяйственный колледж

61004, Ирак, Басра

Тел.: +964–780–878–57–72



Список литературы

1. Ogunbadejo, B., Al-Zuhair, S. (2021). MOFs as potential matrices in cyclodextrin glycosyltransferase immobilization. Molecules, 26(3), Article 680. http://doi.org/10.3390/molecules26030680

2. Cid-Samamed, A., Rakmai, J., Mejuto, J. C., Simal-Gandara, J., Astray, G. (2022). Cyclodextrins inclusion complex: Preparation methods, analytical techniques and food industry applications. Food Chemistry, 384, Article 132467. https://doi.org/10.1016/j.foodchem.2022.132467

3. Pardhi, D. S., Rabadiya, K. J., Panchal, R. R., Raval, V. H., Joshi, R. G., Rajput, K. N. (2023). Cyclodextrin glucanotransferase: Fundamentals and biotechnological implications. Applied Microbiology and Biotechnology, 107(19), 5899–5907. https://doi.org/10.1007/s00253-023-12708-9

4. Lambré, C., Barat Baviera, J. M., Bolognesi, C., Cocconcelli, P. S., Crebelli, R., Gott, D. M. et al. (2023). Safety evaluation of the food enzyme cyclomaltodextrin glucanotransferase from the non-genetically modified Anoxybacillus caldiproteolyticus strain TCM3-539. EFSA Journal, 21(2), Article e07842. https://doi.org/10.2903/j.efsa.2023.7842

5. Lachowicz, M., Stańczak, A., Kołodziejczyk, M. (2020). Characteristic of cyclodextrins: Their role and use in the pharmaceutical technology. Current Drug Targets, 21(14), 1495–1510. https://doi.org/10.2174/1389450121666200615150039

6. Saini, K., Pathak, V. M., Tyagi, A., Gupta, R. (2022). Microbial cyclodextrin glycosyltransferases: Sources, production, and application in cyclodextrin synthesis. Catalysis Research, 2(3), 1–69. http://doi.org/10.21926/cr.2203029

7. Muldakhmetov, Z., Fazylov, S., Nurkenov, O., Gazaliev, A., Sarsenbekova, A., Pustolaikina, I. et al. (2022). Combined computational and experimental studies of anabasine encapsulation by beta-cyclodextrin. Plants, 11(17), Article 2283. https://doi.org/10.3390/plants11172283

8. Liu, Y., Chen, Y., Gao, X., Fu, J., Hu, L. (2022). Application of cyclodextrin in food industry. Critical Reviews in Food Science and Nutrition, 62(10), 2627–2640. https://doi.org/10.1080/10408398.2020.1856035

9. Tian, B., Hua, S., Tian, Y., Liu, J. (2021). Cyclodextrin-based adsorbents for the removal of pollutants from wastewater: A review. Environmental Science and Pollution Research, 28(2), 1317–1340. https://doi.org/10.1007/s11356-020-11168-2

10. Jicsinszky, L., Martina, K., Cravotto, G. (2021). Cyclodextrins in the antiviral therapy. Journal of Drug Delivery Science and Technology, 64, Article 102589. https://doi.org/10.1016/j.jddst.2021.102589

11. Gonzalez Pereira, A., Carpena, M., García Oliveira, P., Mejuto, J. C., Prieto, M. A., Simal Gandara, J. (2021). Main applications of cyclodextrins in the food industry as the compounds of choice to form host–guest complexes. International Journal of Molecular Sciences, 22(3), Article 1339. https://doi.org/10.3390/ijms22031339

12. Zhang, Z., Niu, J., Wang, J., Zheng, Q., Miao, W. Lin, Q. et al. (2024). Advances in the preparation and application of cyclodextrin derivatives in food and the related fields. Food Research International, 95, Article 114952. https://doi.org/10.1016/j.foodres.2024.114952

13. FDA. GRAS Notice GRN No. 155 Alpha-Cyclodextrin. Retrieved from https://www.cfsanappsexternal.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=155 Accessed February 18, 2021.

14. Jødal, A. S. S., Czaja, T. P., van den Berg, F. W., Jespersen, B. M., Larsen, K. L. (2021). The effect of α-, β-and γ-Cyclodextrin on wheat dough and bread properties. Molecules, 26(8), Article 2242.

15. Hu, Y., Qiu, C., Julian McClements, D., Qin, Y., Long, J., Jiao, A. et al. (2022). Encapsulation, protection, and delivery of curcumin using succinylated-cyclodextrin systems with strong resistance to environmental and physiological stimuli. Food Chemistry, 376, Article 131869. https://doi.org/10.1016/j.foodchem.2021.131869

16. Bera, H., Layek, B., Singh, J. (2021). Tailor-Made and Functionalized Biopolymer Systems. For Drug Delivery and Biomedical Applications. Woodhead Publishing, 2021.

17. Wang, L., Xia, Y., Su, L., Wu, J. (2020). Modification of Bacillus clarkii γ-cyclodextrin glycosyltransferase and addition of complexing agents to increase γ-cyclodextrin production. Journal of Agricultural and Food Chemistry, 68(43), 12079–12085. https://doi.org/10.1021/acs.jafc.0c05408

18. Lim, C. H., Rasti, B., Sulistyo, J., Hamid, M. A. (2021). Comprehensive study on transglycosylation of CGTase from various sources. Heliyon, 7(2), Article e06305. https://doi.org/10.1016/j.heliyon.2021.e06305

19. Pereia, A. G., Carpena, M., Oliveira, P. G., Mejuto, J. C., Prieto, M.. A., Gandara, J. S. (2023). Main applications of cyclodextrins in the food industry as the compounds of choice to form host–guest complexes. International Journal of Molecular Sciences, 22(3), 1339–1362. https://doi.10.3390/ijms22031339

20. Szerman, N., Schroh, I., Rossi, A. L., Rosso, A. M., Krymkiewicz, N., Ferrarotti, S. A. (2007). Cyclodextrin production by cyclodextrin glycosyltransferase from Bacillus circulans DF 9R. Bioresource Technology, 98(15), 2886–2891. https://doi.org/10.1016/j.biortech.2006.09.056

21. Sivakumar, N., Banu, S. (2011). Standardization of optimum conditions for cyclodextrin glycosyltransferase production. International Conference on Food Engineering and Biotechnology. IACSIT Press, Singapore, 2011.

22. Atanasova, N., Kitayska, T., Bojadjieva, I., Yankov, D., Tonkova, A. (2011). A novel cyclodextrin glucanotransferase from alkaliphilic Bacillus pseudalcaliphilus 20RF: Purification and properties. Process Biochemistry, 46(1), 116–122. https://doi.org/10.1016/j.procbio.2010.07.027

23. Elbaz, A. F., Sobhi, A., ElMekawy, A. (2015). Purification and characterization of cyclodextrin b-glucanotransferase from novel alkalophilic bacilli. Bioprocess and Biosystems Engineering, 38(4), 767–776. https://doi.org/10.1007/s00449-014-1318-y

24. Costa, H., Gastón, J. R., Lara, J., Martinez, C. O., Moriwaki, C., Matioli, G. et al. (2015). Cyclodextrin glycosyltransferase production by free cells of Bacillus circulans DF 9R in batch fermentation and by immobilized cells in a semicontinuous process. Bioprocess and Biosystems Engineering, 38(6), 1055–1063. https://doi.org/10.1007/s00449-014-1347-6

25. Arce-Vázquez, M. B., Ponce-Alquicira, E., Delgado-Fornué, E., Pedroza-Islas, R., Díaz-Godínez, G., Soriano-Santos, J. (2016). Integral use of amaranth starch to obtain cyclodextrin glycosyltransferase, by Bacillus megaterium to produce β-Cyclodextrin. Frontiers in Microbiology, 7, 1–11. https://doi.org/10.3389/fmicb.2016.01513

26. Nik-Pa, N. I. M., Sobri, M. F. M., Abd-Aziz, S., Ibrahim, M. F., Kamal Bahrin, E., Mohammed Alitheen, N. B. et al. (2020). Combined optimization of codon usage and glycine supplementation enhances the extracellular production of a β-Cyclodextrin glycosyltransferase from Bacillus sp. NR5 UPM in Escherichia coli. International Journal of Molecular Sciences, 21(11), Article 3919. https://doi.org/10.3390/ijms21113919

27. Liu, Z., Wu, G., Wu, H. (2022). Molecular cloning, and optimized production and characterization of recombinant cyclodextrin glucanotransferase from Bacillus sp. T1. 3 Biotech, 12(3), Article 58. https://doi.org/10.1007/s13205-022-03111-8

28. Ibrahim, A. S. S., El-Tayeb, M. A., Elbadawi, Y. B., Al-Salamah, A. A. (2011). Effects of substrates and reaction conditions on production of cyclodextrins using cyclodextrin glucanotransferase from newly isolated Bacillus agaradhaerens KSU-A11. Electronic Journal of Biotechnology, 14(5), 1–12. https://doi.org/10.2225/vol14-issue5-fulltext-4

29. Sánchez, K. H., Martínez Mora, M. M., Ramírez, H. L. (2014). Production and characterization of cyclodextrin glycosyltransferase from Bacillus sp. isolated from Cuban soil. ScienceOpen Research, 0(0), 1–6. https://doi.org/10.14293/s2199-1006.1.sor-chem.asglim.v1

30. Rajput, K. N., Patel, K. C., Trivedi, U. B. (2016). β-Cyclodextrin production by cyclodextrin glucanotransferase from an alkaliphile Microbacterium terrae KNR9 using different starch substrates. Biotechnology Research International, 2016, 1–7. https://doi.org/10.1155/2016/2034359

31. Che Man, R., Md. Shaarani-Nawi, S., Mohd Arshad, Z. I., Abdul Mudalip, S. K., Sulaiman, S. Z., Ramli, A. N. M. (2020). Effect of reaction parameters on the production of cyclodextrin using cyclodextrin glucanotransferase from Bacillus licheniformis. Journal of Chemical Engineering and Industrial Biotechnology, 6(1), 39–45. https://doi.org/10.15282/jceib.v6i1.4531

32. Suhaimi, S., Man, R. C., Jamil, N., Arshad, Z. I. M., Shaarani, S. M., Mudalip, S. K. A. et al. (July 17–19, 2019). Optimization of reaction conditions for the production of cyclodextrin (CD) using cyclodextrin glucanotransferase (CGTase) immobilized on hollow fiber membrane. IOP Conference Series: Materials Science and Engineering. Energy Security and Chemical Engineering Congress, Kuala Lumpur, Malaysia. IOP Publishing Ltd, 2020. https://doi.org/10.1088/1757-899x/736/4/042005

33. Jansook, P., Ogawa, N., Loftsson, T. (2018). Cyclodextrins: Structure, physicochemical properties and pharmaceutical applications. International Journal of Pharmaceutics, 535(1–2), 272–284. https://doi.org/10.1016/j.ijpharm.2017.11.018

34. Wüpper, S., Lüersen, K., Rimbach, G. (2021). Cyclodextrins, natural compounds, and plant bioactives — a nutritional perspective. Biomolecules, 11(3), Article 401. https://doi.org/10.3390/biom11030401

35. Sandilya, A. A., Natarajan, U., Priya, M. H. (2020). Molecular view into the cyclodextrin cavity: Structure and hydration. ACS Omega, 5(40), 25655–25667. https://doi.org/10.1021/acsomega.0c02760

36. Satpute, G.M., Ghatbandhe, N.H., Meshram, P. (2023). An overview on cyclodextrin and its derivatives encapsulated inclusion complex: Preparation methods and influencing factors. International Journal for Multidisciplinary Research, 5(6), 1–10. https://doi.org/10.36948/ijfmr.2023.v05i06.10688

37. Esteso, M. A., Romero, C. M. (2024). Cyclodextrins: Properties and applications. International Journal of Molecular Sciences, 25(8), Article 4547. https://doi.org/10.3390/ijms25084547

38. Muñoz-Shugulí, C., Vidal, C. P., Cantero-López, P., Lopez-Polo, J. (2021). Encapsulation of plant extract compounds using cyclodextrin inclusion complexes, liposomes, electrospinning and their combinations for food purposes. Trends in Food Science and Technology, 108, 177–186. https://doi.org/10.1016/j.tifs.2020.12.020

39. Suvarna, V., Bore, B., Bhawar, C., Mallya, R. (2022). Complexation of phytochemicals with cyclodextrins and their derivatives-an update. Biomedicine and Pharmacotherapy, 149, Article 112862. https://doi.org/10.1016/j.biopha.2022.112862

40. Matencio, A., Navarro-Orcajada, S., García-Carmona, F., López-Nicolás, J. M. (2020). Applications of cyclodextrins in food science. A review. Trends in Food Science and Technology, 104, 132–143. https://doi.org/10.1016/j.tifs.2020.08.009

41. Aiassa, V., Garnero, C., Longhi, M. R., Zoppi, A. (2021). Cyclodextrin multicomponent complexes: Pharmaceutical applications. Pharmaceutics, 13(7), Article 1099. https://doi.org/10.3390/pharmaceutics13071099

42. Menezes, P. dos P., Andrade, T. de A., Frank, L. A., de Souza, E. P. B. S. S., Trindade, G. das G. G., Trindade, I. A. S. et al. (2019). Advances of nanosystems containing cyclodextrins and their applications in pharmaceuticals. International Journal of Pharmaceutics, 559, 312–328. https://doi.org/10.1016/j.ijpharm.2019.01.041

43. Saini, K., Kashyap, A., Saini, M., Gupta, R. (2022). Gamma cyclodextrin glycosyltransferase from evansella caseinilytica: Production, characterization and product specificity. 3 Biotech, 12(1), Article 16. https://doi.org/10.1007/s13205-021-03077-z

44. Zhou, J., Jia, J., He, J., Li, J., Cai, J. (2022). Cyclodextrin inclusion complexes and their application in food safety analysis: Recent developments and future prospects. Foods, 11(23), Article 3871. https://doi.org/10.3390/foods11233871

45. Fatima, N., Khalid, S. H., Liaqat, K., Zulfiqar, A., Munir, R. (2023). Beta-cyclodextrin: A cyclodextrin derivative and its various applications. Polymer Science: Peer Review Journal, 4(5), Article 000597. https://doi.org/10.31031/psprj.2023.04.000597

46. Astray, G., Mejuto, J. C., Simal-Gandara, J. (2020). Latest developments in the application of cyclodextrin host-guest complexes in beverage technology processes. Food Hydrocoll, 106, Article 105882. https://doi.org/10.1016/j.foodhyd.2020.105882

47. Ganjali Koli, M., Fogolari, F. (2023). Exploring the role of cyclodextrins as a cholesterol scavenger: A molecular dynamics investigation of conformational changes and thermodynamics. Scientific Reports, 13(1), Article 21765. https://doi.org/10.1038/s41598-023-49217-8

48. Liu, Y., Sameen, D. E., Ahmed, S., Wang, Y., Lu, R., Dai, J. et al. (2022). Recent advances in cyclodextrin-based films for food packaging. Food Chemistry, 370, Article 131026. https://doi.org/10.1016/j.foodchem.2021.131026

49. Kelanne, N., Yang, B., Laaksonen, O. (2024). Potential of cyclodextrins in food processing for improving sensory properties of food. Food Innovation and Advances, 3(1), 1–10. https://doi.org/10.48130/fia-0024-0001

50. Yang, X., Yang, F., Liu, Y., Li, J., Song, H. (2020). Off-flavor removal from thermaltreated watermelon juice by adsorbent treatment with β-cyclodextrin, xanthan gum, carboxymethyl cellulose sodium, and sugar/acid. LWT, 131, Article 109775. https://doi.org/10.1016/j.lwt.2020.109775

51. Yang, L., Cai, J., Qian, H., Li, Y., Zhang, H., Qi, X. et al. (2022). Effect of cyclodextrin glucosyltransferase extracted from Bacillus xiaoxiensis on wheat dough and bread properties. Frontiers in Nutrition, 9, Article 1026678. https://doi.org/10.3389/fnut.2022.1026678

52. Braga, S.S. (2019). Cyclodextrins: Emerging medicines of the new millennium. Biomolecules, 9(12), Article 801. https://doi.org/10.3390/biom9120801

53. Dahabra, L., Broadberry, G., Le Gresley, A., Najlah, M., Khoder, M. (2021). Sunscreens containing cyclodextrin inclusion complexes for enhanced efficiency: A strategy for skin cancer prevention. Molecules, 26(6), Article 1698. https://doi.org/10.3390/molecules26061698

54. Rincón-López, J., Almanza-Arjona, Y. C., Riascos, A. P., Rojas-Aguirre, Y. (2021). Technological evolution of cyclodextrins in the pharmaceutical field. Journal of Drug Delivery Science and Technology, 61, Article 102156. https://doi.org/10.1016/j.jddst.2020.102156

55. Garrido, P. F., Calvelo, M., Blanco-González, A., Veleiro, U., Suárez, F., Conde, D. et al. (2020). The Lord of the NanoRings: Cyclodextrins and the battle against SARS-CoV-2. International Journal of Pharmaceutics, 588, Article 119689. https://doi.org/10.1016/j.ijpharm.2020.119689

56. Sharma, N., Baldi, A. (2016). Exploring versatile applications of cyclodextrins: An overview. Drug Delivery, 23(3), 729–747. https://doi.org/10.3109/10717544.2014.938839

57. Poulson, B. G., Alsulami, Q. A., Sharfalddin, A., El Agammy, E. F., Mouffouk, F., Emwas, A.-H. et al. (2022). Cyclodextrins: Structural, chemical, and physical properties, and applications. Polysaccharides, 3(1), 1–31. https://doi.org/10.3390/polysaccharides3010001

58. Păduraru, D. N., Niculescu, A.-G., Bolocan, A., Andronic, O., Grumezescu, A. M., Bîrlă, R. (2022). An updated overview of cyclodextrin-based drug delivery systems for cancer therapy. Pharmaceutics, 14(8), Article 1748. https://doi.org/10.3390/pharmaceutics14081748

59. Seripracharat, C., Sinthuvanich, C., Karpkird, T. (2022). Cationic cyclodextrinadamantane poly (vinyl alcohol)-poly (ethylene glycol) assembly for siRNA delivery. Journal of Drug Delivery Science and Technology, 68, Article 103052. https://doi.org/10.1016/j.jddst.2021.103052

60. Rubin Pedrazzo, A., Smarra, A., Caldera, F., Musso, G., Dhakar, N. K., Cecone, C. et al. (2019). Eco-friendly β-cyclodextrin and Linecaps polymers for the removal of heavy metals. Polymers, 11(10), Article 1658. https://doi.org/10.3390/polym11101658

61. Rajamanikandan, R., Ilanchelian, M., Ju, H. (2023). β-cyclodextrin functionalized gold nanoparticles as an effective nanocatalyst for reducing toxic nitroaromatics. Optical Materials, 135, Article 113294. https://doi.org/10.1016/j.optmat.2022.113294

62. Sousa, V. I., Parente, J. F., Marques, J. F., Forte, M. A., Tavares, C. J. (2022). Microencapsulation of essential oils: A review. Polymers, 14(9), Article 1730. https://doi.org/10.3390/polym14091730

63. Urooj, T., Mishra, M., Pandey, S. (2024). Unlocking environmental solutions: A review of cyclodextrins in pollutant removal. Discover Environment, 2, Article 65. https://doi.org/10.1007/s44274-024-00090-w


Рецензия

Для цитирования:


Абд Аль-Хусейн Х.А., Абд Аль-Манхел А.Д. Подробный обзор производства, свойств и применения циклодекстринов. Пищевые системы. 2025;8(2):196-203. https://doi.org/10.21323/2618-9771-2025-8-2-196-203

For citation:


Abd Alhussein H.A., Abd Al-Manhel A.J. A comprehensive overview of cyclodextrins in terms of production, properties, and applications. Food systems. 2025;8(2):196-203. https://doi.org/10.21323/2618-9771-2025-8-2-196-203

Просмотров: 32


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)