A comprehensive overview of cyclodextrins in terms of production, properties, and applications
https://doi.org/10.21323/2618-9771-2025-8-2-196-203
Abstract
Cyclodextrins (CDs) are cyclic oligosaccharides formed through the enzymatic transformation of starch into glucose, catalyzed by cyclodextrin glucanotransferase (CGTase). They are composed of six (α-CD), seven (β-CD), or eight (γ-CD) glucose molecules, interconnected by α-1,4 glycosidic bonds. Cyclodextrin glucanotransferase has been declared safe for use in food applications by the European Food Safety Authority (EFSA). CGTase is an extracellular enzyme that is found in nature on a cellular level and is generated by a variety of microorganisms, such as fungi, bacteria, and archaea. Approximately 90 % of bacteria that generate CGTase belong to the genus Bacillus. A number of glucose units joined covalently by oxygen atoms form cyclodextrins. CDs have a truncated cone shape with a hydrophilic outer wall and a less hydrophilic inner wall. Due to their numerous health benefits, CDs are regarded as advantageous nutrients and biologically active dietary supplements. CDs and their derivatives have diverse applications across the food, cosmetics, and pharmaceutical industries, with their use being most prominent in the food sector. Within the food industry, CDs serve primarily as auxiliary agents, acting as technological enhancers to improve the physicochemical properties of various food components. For example, they can be used to stabilize aroma and flavor compounds, polyunsaturated fatty acids (PUFAs), and poorly water-soluble vitamins and nutrients, as well as to improve medication solubility and bioavailability. Studies on their toxicity have also revealed that CDs are safe to use orally. Many studies have examined the insertion of conventional medications or naturally occurring bioactive substances into CDs cavities in an effort to better understand their effects on various cancer cell lines in vitro. CDs are used in cosmetics products to extend their shelf life, stabilize volatile chemical ingredients, lessen offensive tastes or smells, and prevent or lessen topical irritation. Cyclodextrins remain a focal point of research due to their ability to encapsulate molecules and function as catalysts and carriers for a wide range of chemical compounds.
About the Authors
H. A. Abd AlhusseinIraq
Huda Ali Abd Alhussein, Postgraduate, Department of Food Science, College of Agriculture
Basrah, 61004, Iraq
Tel.: +964–771–620–36–17
A. J. Abd Al-Manhel
Iraq
Alaa Jabbar Abd Al-Manhel, Professor, Department of Food Science, College of Agriculture
Basrah, 61004, Iraq
Tel.: +964–780–878–57–72
References
1. Ogunbadejo, B., Al-Zuhair, S. (2021). MOFs as potential matrices in cyclodextrin glycosyltransferase immobilization. Molecules, 26(3), Article 680. http://doi.org/10.3390/molecules26030680
2. Cid-Samamed, A., Rakmai, J., Mejuto, J. C., Simal-Gandara, J., Astray, G. (2022). Cyclodextrins inclusion complex: Preparation methods, analytical techniques and food industry applications. Food Chemistry, 384, Article 132467. https://doi.org/10.1016/j.foodchem.2022.132467
3. Pardhi, D. S., Rabadiya, K. J., Panchal, R. R., Raval, V. H., Joshi, R. G., Rajput, K. N. (2023). Cyclodextrin glucanotransferase: Fundamentals and biotechnological implications. Applied Microbiology and Biotechnology, 107(19), 5899–5907. https://doi.org/10.1007/s00253-023-12708-9
4. Lambré, C., Barat Baviera, J. M., Bolognesi, C., Cocconcelli, P. S., Crebelli, R., Gott, D. M. et al. (2023). Safety evaluation of the food enzyme cyclomaltodextrin glucanotransferase from the non-genetically modified Anoxybacillus caldiproteolyticus strain TCM3-539. EFSA Journal, 21(2), Article e07842. https://doi.org/10.2903/j.efsa.2023.7842
5. Lachowicz, M., Stańczak, A., Kołodziejczyk, M. (2020). Characteristic of cyclodextrins: Their role and use in the pharmaceutical technology. Current Drug Targets, 21(14), 1495–1510. https://doi.org/10.2174/1389450121666200615150039
6. Saini, K., Pathak, V. M., Tyagi, A., Gupta, R. (2022). Microbial cyclodextrin glycosyltransferases: Sources, production, and application in cyclodextrin synthesis. Catalysis Research, 2(3), 1–69. http://doi.org/10.21926/cr.2203029
7. Muldakhmetov, Z., Fazylov, S., Nurkenov, O., Gazaliev, A., Sarsenbekova, A., Pustolaikina, I. et al. (2022). Combined computational and experimental studies of anabasine encapsulation by beta-cyclodextrin. Plants, 11(17), Article 2283. https://doi.org/10.3390/plants11172283
8. Liu, Y., Chen, Y., Gao, X., Fu, J., Hu, L. (2022). Application of cyclodextrin in food industry. Critical Reviews in Food Science and Nutrition, 62(10), 2627–2640. https://doi.org/10.1080/10408398.2020.1856035
9. Tian, B., Hua, S., Tian, Y., Liu, J. (2021). Cyclodextrin-based adsorbents for the removal of pollutants from wastewater: A review. Environmental Science and Pollution Research, 28(2), 1317–1340. https://doi.org/10.1007/s11356-020-11168-2
10. Jicsinszky, L., Martina, K., Cravotto, G. (2021). Cyclodextrins in the antiviral therapy. Journal of Drug Delivery Science and Technology, 64, Article 102589. https://doi.org/10.1016/j.jddst.2021.102589
11. Gonzalez Pereira, A., Carpena, M., García Oliveira, P., Mejuto, J. C., Prieto, M. A., Simal Gandara, J. (2021). Main applications of cyclodextrins in the food industry as the compounds of choice to form host–guest complexes. International Journal of Molecular Sciences, 22(3), Article 1339. https://doi.org/10.3390/ijms22031339
12. Zhang, Z., Niu, J., Wang, J., Zheng, Q., Miao, W. Lin, Q. et al. (2024). Advances in the preparation and application of cyclodextrin derivatives in food and the related fields. Food Research International, 95, Article 114952. https://doi.org/10.1016/j.foodres.2024.114952
13. FDA. GRAS Notice GRN No. 155 Alpha-Cyclodextrin. Retrieved from https://www.cfsanappsexternal.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=155 Accessed February 18, 2021.
14. Jødal, A. S. S., Czaja, T. P., van den Berg, F. W., Jespersen, B. M., Larsen, K. L. (2021). The effect of α-, β-and γ-Cyclodextrin on wheat dough and bread properties. Molecules, 26(8), Article 2242.
15. Hu, Y., Qiu, C., Julian McClements, D., Qin, Y., Long, J., Jiao, A. et al. (2022). Encapsulation, protection, and delivery of curcumin using succinylated-cyclodextrin systems with strong resistance to environmental and physiological stimuli. Food Chemistry, 376, Article 131869. https://doi.org/10.1016/j.foodchem.2021.131869
16. Bera, H., Layek, B., Singh, J. (2021). Tailor-Made and Functionalized Biopolymer Systems. For Drug Delivery and Biomedical Applications. Woodhead Publishing, 2021.
17. Wang, L., Xia, Y., Su, L., Wu, J. (2020). Modification of Bacillus clarkii γ-cyclodextrin glycosyltransferase and addition of complexing agents to increase γ-cyclodextrin production. Journal of Agricultural and Food Chemistry, 68(43), 12079–12085. https://doi.org/10.1021/acs.jafc.0c05408
18. Lim, C. H., Rasti, B., Sulistyo, J., Hamid, M. A. (2021). Comprehensive study on transglycosylation of CGTase from various sources. Heliyon, 7(2), Article e06305. https://doi.org/10.1016/j.heliyon.2021.e06305
19. Pereia, A. G., Carpena, M., Oliveira, P. G., Mejuto, J. C., Prieto, M.. A., Gandara, J. S. (2023). Main applications of cyclodextrins in the food industry as the compounds of choice to form host–guest complexes. International Journal of Molecular Sciences, 22(3), 1339–1362. https://doi.10.3390/ijms22031339
20. Szerman, N., Schroh, I., Rossi, A. L., Rosso, A. M., Krymkiewicz, N., Ferrarotti, S. A. (2007). Cyclodextrin production by cyclodextrin glycosyltransferase from Bacillus circulans DF 9R. Bioresource Technology, 98(15), 2886–2891. https://doi.org/10.1016/j.biortech.2006.09.056
21. Sivakumar, N., Banu, S. (2011). Standardization of optimum conditions for cyclodextrin glycosyltransferase production. International Conference on Food Engineering and Biotechnology. IACSIT Press, Singapore, 2011.
22. Atanasova, N., Kitayska, T., Bojadjieva, I., Yankov, D., Tonkova, A. (2011). A novel cyclodextrin glucanotransferase from alkaliphilic Bacillus pseudalcaliphilus 20RF: Purification and properties. Process Biochemistry, 46(1), 116–122. https://doi.org/10.1016/j.procbio.2010.07.027
23. Elbaz, A. F., Sobhi, A., ElMekawy, A. (2015). Purification and characterization of cyclodextrin b-glucanotransferase from novel alkalophilic bacilli. Bioprocess and Biosystems Engineering, 38(4), 767–776. https://doi.org/10.1007/s00449-014-1318-y
24. Costa, H., Gastón, J. R., Lara, J., Martinez, C. O., Moriwaki, C., Matioli, G. et al. (2015). Cyclodextrin glycosyltransferase production by free cells of Bacillus circulans DF 9R in batch fermentation and by immobilized cells in a semicontinuous process. Bioprocess and Biosystems Engineering, 38(6), 1055–1063. https://doi.org/10.1007/s00449-014-1347-6
25. Arce-Vázquez, M. B., Ponce-Alquicira, E., Delgado-Fornué, E., Pedroza-Islas, R., Díaz-Godínez, G., Soriano-Santos, J. (2016). Integral use of amaranth starch to obtain cyclodextrin glycosyltransferase, by Bacillus megaterium to produce β-Cyclodextrin. Frontiers in Microbiology, 7, 1–11. https://doi.org/10.3389/fmicb.2016.01513
26. Nik-Pa, N. I. M., Sobri, M. F. M., Abd-Aziz, S., Ibrahim, M. F., Kamal Bahrin, E., Mohammed Alitheen, N. B. et al. (2020). Combined optimization of codon usage and glycine supplementation enhances the extracellular production of a β-Cyclodextrin glycosyltransferase from Bacillus sp. NR5 UPM in Escherichia coli. International Journal of Molecular Sciences, 21(11), Article 3919. https://doi.org/10.3390/ijms21113919
27. Liu, Z., Wu, G., Wu, H. (2022). Molecular cloning, and optimized production and characterization of recombinant cyclodextrin glucanotransferase from Bacillus sp. T1. 3 Biotech, 12(3), Article 58. https://doi.org/10.1007/s13205-022-03111-8
28. Ibrahim, A. S. S., El-Tayeb, M. A., Elbadawi, Y. B., Al-Salamah, A. A. (2011). Effects of substrates and reaction conditions on production of cyclodextrins using cyclodextrin glucanotransferase from newly isolated Bacillus agaradhaerens KSU-A11. Electronic Journal of Biotechnology, 14(5), 1–12. https://doi.org/10.2225/vol14-issue5-fulltext-4
29. Sánchez, K. H., Martínez Mora, M. M., Ramírez, H. L. (2014). Production and characterization of cyclodextrin glycosyltransferase from Bacillus sp. isolated from Cuban soil. ScienceOpen Research, 0(0), 1–6. https://doi.org/10.14293/s2199-1006.1.sor-chem.asglim.v1
30. Rajput, K. N., Patel, K. C., Trivedi, U. B. (2016). β-Cyclodextrin production by cyclodextrin glucanotransferase from an alkaliphile Microbacterium terrae KNR9 using different starch substrates. Biotechnology Research International, 2016, 1–7. https://doi.org/10.1155/2016/2034359
31. Che Man, R., Md. Shaarani-Nawi, S., Mohd Arshad, Z. I., Abdul Mudalip, S. K., Sulaiman, S. Z., Ramli, A. N. M. (2020). Effect of reaction parameters on the production of cyclodextrin using cyclodextrin glucanotransferase from Bacillus licheniformis. Journal of Chemical Engineering and Industrial Biotechnology, 6(1), 39–45. https://doi.org/10.15282/jceib.v6i1.4531
32. Suhaimi, S., Man, R. C., Jamil, N., Arshad, Z. I. M., Shaarani, S. M., Mudalip, S. K. A. et al. (July 17–19, 2019). Optimization of reaction conditions for the production of cyclodextrin (CD) using cyclodextrin glucanotransferase (CGTase) immobilized on hollow fiber membrane. IOP Conference Series: Materials Science and Engineering. Energy Security and Chemical Engineering Congress, Kuala Lumpur, Malaysia. IOP Publishing Ltd, 2020. https://doi.org/10.1088/1757-899x/736/4/042005
33. Jansook, P., Ogawa, N., Loftsson, T. (2018). Cyclodextrins: Structure, physicochemical properties and pharmaceutical applications. International Journal of Pharmaceutics, 535(1–2), 272–284. https://doi.org/10.1016/j.ijpharm.2017.11.018
34. Wüpper, S., Lüersen, K., Rimbach, G. (2021). Cyclodextrins, natural compounds, and plant bioactives — a nutritional perspective. Biomolecules, 11(3), Article 401. https://doi.org/10.3390/biom11030401
35. Sandilya, A. A., Natarajan, U., Priya, M. H. (2020). Molecular view into the cyclodextrin cavity: Structure and hydration. ACS Omega, 5(40), 25655–25667. https://doi.org/10.1021/acsomega.0c02760
36. Satpute, G.M., Ghatbandhe, N.H., Meshram, P. (2023). An overview on cyclodextrin and its derivatives encapsulated inclusion complex: Preparation methods and influencing factors. International Journal for Multidisciplinary Research, 5(6), 1–10. https://doi.org/10.36948/ijfmr.2023.v05i06.10688
37. Esteso, M. A., Romero, C. M. (2024). Cyclodextrins: Properties and applications. International Journal of Molecular Sciences, 25(8), Article 4547. https://doi.org/10.3390/ijms25084547
38. Muñoz-Shugulí, C., Vidal, C. P., Cantero-López, P., Lopez-Polo, J. (2021). Encapsulation of plant extract compounds using cyclodextrin inclusion complexes, liposomes, electrospinning and their combinations for food purposes. Trends in Food Science and Technology, 108, 177–186. https://doi.org/10.1016/j.tifs.2020.12.020
39. Suvarna, V., Bore, B., Bhawar, C., Mallya, R. (2022). Complexation of phytochemicals with cyclodextrins and their derivatives-an update. Biomedicine and Pharmacotherapy, 149, Article 112862. https://doi.org/10.1016/j.biopha.2022.112862
40. Matencio, A., Navarro-Orcajada, S., García-Carmona, F., López-Nicolás, J. M. (2020). Applications of cyclodextrins in food science. A review. Trends in Food Science and Technology, 104, 132–143. https://doi.org/10.1016/j.tifs.2020.08.009
41. Aiassa, V., Garnero, C., Longhi, M. R., Zoppi, A. (2021). Cyclodextrin multicomponent complexes: Pharmaceutical applications. Pharmaceutics, 13(7), Article 1099. https://doi.org/10.3390/pharmaceutics13071099
42. Menezes, P. dos P., Andrade, T. de A., Frank, L. A., de Souza, E. P. B. S. S., Trindade, G. das G. G., Trindade, I. A. S. et al. (2019). Advances of nanosystems containing cyclodextrins and their applications in pharmaceuticals. International Journal of Pharmaceutics, 559, 312–328. https://doi.org/10.1016/j.ijpharm.2019.01.041
43. Saini, K., Kashyap, A., Saini, M., Gupta, R. (2022). Gamma cyclodextrin glycosyltransferase from evansella caseinilytica: Production, characterization and product specificity. 3 Biotech, 12(1), Article 16. https://doi.org/10.1007/s13205-021-03077-z
44. Zhou, J., Jia, J., He, J., Li, J., Cai, J. (2022). Cyclodextrin inclusion complexes and their application in food safety analysis: Recent developments and future prospects. Foods, 11(23), Article 3871. https://doi.org/10.3390/foods11233871
45. Fatima, N., Khalid, S. H., Liaqat, K., Zulfiqar, A., Munir, R. (2023). Beta-cyclodextrin: A cyclodextrin derivative and its various applications. Polymer Science: Peer Review Journal, 4(5), Article 000597. https://doi.org/10.31031/psprj.2023.04.000597
46. Astray, G., Mejuto, J. C., Simal-Gandara, J. (2020). Latest developments in the application of cyclodextrin host-guest complexes in beverage technology processes. Food Hydrocoll, 106, Article 105882. https://doi.org/10.1016/j.foodhyd.2020.105882
47. Ganjali Koli, M., Fogolari, F. (2023). Exploring the role of cyclodextrins as a cholesterol scavenger: A molecular dynamics investigation of conformational changes and thermodynamics. Scientific Reports, 13(1), Article 21765. https://doi.org/10.1038/s41598-023-49217-8
48. Liu, Y., Sameen, D. E., Ahmed, S., Wang, Y., Lu, R., Dai, J. et al. (2022). Recent advances in cyclodextrin-based films for food packaging. Food Chemistry, 370, Article 131026. https://doi.org/10.1016/j.foodchem.2021.131026
49. Kelanne, N., Yang, B., Laaksonen, O. (2024). Potential of cyclodextrins in food processing for improving sensory properties of food. Food Innovation and Advances, 3(1), 1–10. https://doi.org/10.48130/fia-0024-0001
50. Yang, X., Yang, F., Liu, Y., Li, J., Song, H. (2020). Off-flavor removal from thermaltreated watermelon juice by adsorbent treatment with β-cyclodextrin, xanthan gum, carboxymethyl cellulose sodium, and sugar/acid. LWT, 131, Article 109775. https://doi.org/10.1016/j.lwt.2020.109775
51. Yang, L., Cai, J., Qian, H., Li, Y., Zhang, H., Qi, X. et al. (2022). Effect of cyclodextrin glucosyltransferase extracted from Bacillus xiaoxiensis on wheat dough and bread properties. Frontiers in Nutrition, 9, Article 1026678. https://doi.org/10.3389/fnut.2022.1026678
52. Braga, S.S. (2019). Cyclodextrins: Emerging medicines of the new millennium. Biomolecules, 9(12), Article 801. https://doi.org/10.3390/biom9120801
53. Dahabra, L., Broadberry, G., Le Gresley, A., Najlah, M., Khoder, M. (2021). Sunscreens containing cyclodextrin inclusion complexes for enhanced efficiency: A strategy for skin cancer prevention. Molecules, 26(6), Article 1698. https://doi.org/10.3390/molecules26061698
54. Rincón-López, J., Almanza-Arjona, Y. C., Riascos, A. P., Rojas-Aguirre, Y. (2021). Technological evolution of cyclodextrins in the pharmaceutical field. Journal of Drug Delivery Science and Technology, 61, Article 102156. https://doi.org/10.1016/j.jddst.2020.102156
55. Garrido, P. F., Calvelo, M., Blanco-González, A., Veleiro, U., Suárez, F., Conde, D. et al. (2020). The Lord of the NanoRings: Cyclodextrins and the battle against SARS-CoV-2. International Journal of Pharmaceutics, 588, Article 119689. https://doi.org/10.1016/j.ijpharm.2020.119689
56. Sharma, N., Baldi, A. (2016). Exploring versatile applications of cyclodextrins: An overview. Drug Delivery, 23(3), 729–747. https://doi.org/10.3109/10717544.2014.938839
57. Poulson, B. G., Alsulami, Q. A., Sharfalddin, A., El Agammy, E. F., Mouffouk, F., Emwas, A.-H. et al. (2022). Cyclodextrins: Structural, chemical, and physical properties, and applications. Polysaccharides, 3(1), 1–31. https://doi.org/10.3390/polysaccharides3010001
58. Păduraru, D. N., Niculescu, A.-G., Bolocan, A., Andronic, O., Grumezescu, A. M., Bîrlă, R. (2022). An updated overview of cyclodextrin-based drug delivery systems for cancer therapy. Pharmaceutics, 14(8), Article 1748. https://doi.org/10.3390/pharmaceutics14081748
59. Seripracharat, C., Sinthuvanich, C., Karpkird, T. (2022). Cationic cyclodextrinadamantane poly (vinyl alcohol)-poly (ethylene glycol) assembly for siRNA delivery. Journal of Drug Delivery Science and Technology, 68, Article 103052. https://doi.org/10.1016/j.jddst.2021.103052
60. Rubin Pedrazzo, A., Smarra, A., Caldera, F., Musso, G., Dhakar, N. K., Cecone, C. et al. (2019). Eco-friendly β-cyclodextrin and Linecaps polymers for the removal of heavy metals. Polymers, 11(10), Article 1658. https://doi.org/10.3390/polym11101658
61. Rajamanikandan, R., Ilanchelian, M., Ju, H. (2023). β-cyclodextrin functionalized gold nanoparticles as an effective nanocatalyst for reducing toxic nitroaromatics. Optical Materials, 135, Article 113294. https://doi.org/10.1016/j.optmat.2022.113294
62. Sousa, V. I., Parente, J. F., Marques, J. F., Forte, M. A., Tavares, C. J. (2022). Microencapsulation of essential oils: A review. Polymers, 14(9), Article 1730. https://doi.org/10.3390/polym14091730
63. Urooj, T., Mishra, M., Pandey, S. (2024). Unlocking environmental solutions: A review of cyclodextrins in pollutant removal. Discover Environment, 2, Article 65. https://doi.org/10.1007/s44274-024-00090-w
Review
For citations:
Abd Alhussein H.A., Abd Al-Manhel A.J. A comprehensive overview of cyclodextrins in terms of production, properties, and applications. Food systems. 2025;8(2):196-203. https://doi.org/10.21323/2618-9771-2025-8-2-196-203