Preview

Food systems

Advanced search

Enzymatic hydrolysates of grain and products of its processing. A review of the subject field

https://doi.org/10.21323/2618-9771-2025-8-1-144-152

Abstract

The paper presents a review of scientific publications devoted to investigation of an action of enzyme preparations and their compositions on various grain substrates, production of enzymatic hydrolysates and structurally modified secondary products of grain processing. Depending on the set goals, the main of which is the industrial use of products of enzymatic modification, a method is proposed for separation of hydrolysates into two groups: (1) with isolation and purification of protein from ballast compounds with the following hydrolysis and (2) without preliminary isolation of protein. The present review is based on the results of studies by national and foreign scientists with the use of search systems and databases: eLibrary, CyberLeninka, Google Scholar, ScienceDirect, Springer open, PubMed. Analysis of the subject field shows a very wide range of publications related to characteristics of enzymatic hydrolysates produced using biopolimers of animal and plant raw materials as a substrate. Over the last ten years, the number of studies on enzymatic modification of various types of grain and leguminous crops, and composite grain mixtures has increased significantly; the possibilities of their use as enriching, functional-technological and functional components of feedstuff and food products have been studied. The revival of the microbiological branch, including production of domestic enzyme preparations, is based on experimental studies on the search for new producer strains and improvement of methods for isolation, purification and stabilization of enzymes. All studies by national and foreign authors support the topicality and good prospects of increasing a range of the use of enzymatic hydrolysates obtained from the grain raw material and secondary products of its processing in various areas of the feedstuff production, food industry and pharmacology.

About the Authors

I. S. Vitol
All-Russian Scientific and Research Institute for Grain and Products of its Processing
Russian Federation

Irina S. Vitol - Candidate of Biological Sciences, Docent, Senior Researcher

11, Dmitrovskoye Shosse, Moscow, 127434

Tel.: +7–926–709–02–07



E. P. Meleshkina
All-Russian Scientific and Research Institute for Grain and Products of its Processing
Russian Federation

Elena P. Meleshkina - Doctor of Technical Sciences, Director

11, Dmitrovskoye Shosse, Moscow, 127434

Теl.: +7–499–976–23–23



References

1. Choi, J.-M., Han, S.-S., Kim, H.-S. (2015). Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnology Advances, 33(7), 1443–1454. http://doi.org/10.1016/j.biotechadv.2015.02.014

2. Bilal, M., Iqbal, H. M. N. (2020). State-of-the-art strategies and applied perspectives of enzyme biocatalysis in the food sector — current status and future trends. Critical Reviews. Food Science and Nutrition, 60(12), 2052–2066. https://doi.org/10.1080/ 10408398.2019.1627284

3. Tolkacheva, A. A., Cherenkov, D. A., Korneeva, O. S., Ponomarev, P. G. (2017). Enzymes of industrial purpose — review of the market of enzyme preparations and prospects for its development. Proceedings of the Voronezh State University of Engineering Technologies, 79(4), 197–203. (In Russian) https://doi.org/10.20914/2310-1202–2017-4-197-203

4. Rimareva, L. V., Serba E. M., Sokolova E. N., Borshcheva Yu. A., Ignatova N. I. (2017). Enzyme preparations and biocatalytic processes in the food industry. Problems of Nutrition, 86(5), 63–74. (In Russian) https://doi.org/10.24411/0042-8833-2017-00078

5. Болтовский, В. С. (2021). Ферментативный гидролиз растительного сырья: состояние и перспективы. Известия Национальной академии наук Беларуси. Серия химических наук, 57(4), 502–512. [Boltovsky, V. S. Enzymatic hydrolysis of plant raw materials: State and prospects. Proceedings of the National Academy of Sciences of Belarus. Chemical Series, 57(4), 502–512 (In Russian) https://doi.org/10.29235/1561-8331-2021-57-4-502-512

6. Volchok, A. A., Bushina, E. V., Rozhkova, A. M., Zorov, I. N., Shcherbakov, S. S., Sinitsyn, A. P. (2013). New generation enzyme complexes for juice production. Biotekhnologiya, 5, 78–89. (In Russian)

7. Volchok, A. A., Rozhkova, A. M., Zorov, I. N., Sinitsyn, A. P., Bushina, E. V., Shcherbakov, S. S. (2014). Pretreatment of grape pulp by enzymes of new generation in the table wines manufacturing. Winemaking and Viticulture, 1, 36–39. (In Russian)

8. Abramova, I. M., Serba, E. M. (2019). Biotechnological processes in the production of food and feed. Food Industry, 4, 12–14. (In Russian) https://doi.org/10.24411/0235-2486-2019-10001

9. Niyazov, N. S.-A., Kerzhner, M. A., Moseev, P. A., Zorov, I. N., Zhkova A. M., Sinitsyn, A. P. (2018). The effectiveness of the use of the enzyme preparation Agroxyll Premium in compound feeds for pigs during rearing. Pigbreeding, 5, 25–27. (In Russian)

10. Velikoretskaya, I. A, Sereda, A. S., Kostyleva, E. V., Veselkina, T. N., Tsurikova, N. V., Sinitsyn, A. P. (2016). Efficacy of the complex enzyme preparation PENICILLOPEPSIN as an additive for grain-based feed. Storage and Processing of Farm Products, 1, 27–31. (In Russian)

11. Sokolova, E. N., Sharikov, A. Yu., Yuraskina, T. V., Serba, E. M. (2022). Protein components proteolysis of plant raw materials with high allergenic potential. Bulliten KSAU, 10, 207–214. (In Russian) https://doi.org/10.36718/1819-4036-2022-10-207-214

12. Зорин, С. Н. (2019). Ферментативные гидролизаты пищевых белков для специализированных пищевых продуктов диетического (лечебного и профилактического) питания. Вопросы питания, 88(3), 23–31. Zorin, S. N. (2019). Enzymatic hydrolysates of foods for therapeutic and prophylactic nutrition. Problems of Nutrition, 88(3), 23–31. (In Russian) https://doi.org/10.24411/0042-8833-2019-10026

13. Асланова, М. А., Дыдыкин, А. С., Солдатова, Н. Е. (2018). Получение белкового гидролизата из сырья животного происхождения для обогащения продуктов. Пищевая промышленность, 2, 16–18. Aslanova, M. A., Dydykin, A. S., Soldatova, N. E. (2018). Preparation of protein hydrolyzate from raw materials of animal origin for the enrichment of products. Food Industry, 2, 16–18. (In Russian)

14. Samoylov, A. V., Suraeva, N. M., Zaytseva, M. V., Dydykin, A. S., Aslanova, M. A., Derevitskaya, O. K. (2023). Approaches to the evaluation of the antioxidant properties of food enzymatic protein hydrolyzate of animal origin with bioassay. Food Industry, 10, 90–95. (In Russian) https://doi.org/10.52653/PPI.2023.10.10.019

15. Ye, H., Tao, X., Zhang, W., Chen, Y., Yu, Q., Xie, J. (2022). Food-derived bioactive peptides: production, biological activities, opportunities and challenges. Journal of Future Foods, 2(4), 294–306. https://doi.org/10.1016/j.jfutfo.2022.08.002

16. Borrajo, P., Pateiro, M., Gagaoua, M., Franco, D., Zhang, W., Lorenzo, J. M. (2020). Evaluation of the antioxidant and antimicrobial activities of porcine liver protein hydrolysates obtained using alcalase, bromelain, and papain. Applied Sciences, 10(7), Article 2290. https://doi.org/10.3390/app10072290

17. Serba, E. M., Overchenko, M. B., Ignatova, N. I., Tadzhibova, P. Yu., Rimareva, L. V. (2019). On the issue about quality control of enzyme preparations for the food industry. Food Industry, 4, 87–88. (In Russian) https://doi.org/10.24411/0235-2486-2019-10044

18. Rimareva, L. V., Overchenko, М. B., Ignatova, N. I., Tadzhibova, P. Yu., Serba, Е. M. (2020). Some aspects of the methodology for controlling the safety, quality and authenticity of enzyme preparations for the food industry. Food Industry, 4, 48–55. (In Russian) https://doi.org/1024411/0235-2486-2020-10044

19. Nadaroglu, H., Polat, М. S. (2022). Microbial extremozymes: Novel sources and industrial applications. Chapter in a book: Microbial Extremozymes. Academic Press, 2022. https://doi.org/10.1016/B978-0-12-822945-3.00019-1

20. Zorin, S. N., Sidorova, Yu. S., Mazo, V. K. (2020). Enzymatic hydrolysates of whey protein and chicken egg ppotein: production, physical-chemicaland immunochemical characteristics. Problems of Nutrition, 89 (1), 64–68. (in Russian) https://doi.org/10.24411/0042-8833-2020-10007

21. John, A. J., Ghosh, B. C. (2020). Production of whey protein hydrolyzates and its incorporation into milk. Food Production, Processing and Nutrition, 3, Article 9. https://doi.org/10.1186/s43014-021-00055-z

22. Semenova, E. S., Simonenko, E. S., Simonenko, S. V., Zorin, S. N., Mazo, V. K. (2024). Hydrolysates of mare’s milk proteins. Immunochemical and physicochemical characteristics. Food Systems, 7(3), 466–472. (In Russian) https://doi.org/10.21323/2618-9771-2024-7-3-466-472

23. Serba, E. M., Rimareva, L. V., Overchenko, M. V., Ignatova, N. I., Pogorzhel’skaya, N. S. (2022). The role of biocatalysis in grain processing technologies. Food Industry, 5, 13–15. (In Russian) https://doi.org/10.52653/PPI.2022.5.5.003

24. Vitol, I. S., Igoryanova, N. A., Meleshkina, E. P. (2019). Bioconversion of secondary products of processing of grain cereals crops. Food Systems, 2(4), 18–24. https://doi.org/10.21323/2618-9771-2019-2-4-18-24

25. Krikunova, L. N., Meleshkina, E. P., Vitol, I. S., Dubinina, E. V., Obodeeva, O. N. (2023). Grain bran hydrolysates in the production of fruit distillates. Foods and Raw Materials, 11(1), 35–42. https://doi.org/10.21603/2308-4057-2023-1-550

26. Sokolov, D. V., Bolkhonov, B. A., Zhamsaranova, S. D., Lebedeva, S. N., Bazhenova, B. A. (2023). Enzymatic hydrolysis of soy protein. Food Processing: Techniques and Technology, 53(1), 86–96. (In Russian) https://doi.org/10.21603/2074-9414-2023-1-2418

27. Vitol, I. S., Meleshkina, E. P. (2021). Enzymatic transformation of wheat-flax bran. Food Industry, 9, 20–22. (In Russian) https://doi.org/10.52653/PPI.2021.9.9.004

28. Vitol, I. S. (2022). Structurally modified bran is an innovative product of deep grain processing. Food Industry, 5, 27–29. (In Russian) https://doi.org/10.52653/PPI.2022.5.5.008

29. Alekseenko, Ye. V. (2012). Enzymatic bioconversion of fruit and berries: biochemical aspects and practical application. Storage and Processing of Farm Products, 3, 49–52. (In Russian)

30. Cingöz, A., Yildirim, M. (2023). Effects of hydrolysis degree on the functional properties of hydrolysates from sour cherry kernel protein concentrate. Foods and Raw Materials, 11(2), 197–205. https://doi.org/10.21603/2308-4057-2023-2-566

31. Serba, E. M., Rimareva, L. V., Kurbatova, E. I., Volkova, G. S., Polyakov, V. A., Varlamov, V. P. (2017). The study of the process of enzymatic hydrolysis of yeast biomass to generate food ingredients with the specified fractional composition of protein substances. Problems of Nutrition, 86(2), 76–83. (In Russian)

32. Pourmohammadi, K., Abedi, E. (2021). Hydrolytic enzymes and their directly and indirectly effects on gluten and dough properties: An extensive review. Foo d Science Nutrition, 9(7), 3988–4006. https://doi.org/10.1002/fsn3.2344

33. Udalova, L. P., Dogaeva, L. A., Yurikova, E. V. (2016). Innovative types of soft drinks for functional food. Advances in Current Natural Sciences, 11(part 1), 33–37. (In Russian)

34. Tang, T., Wu, N., Tang, S., Xiao, N., Jiang, Y., Tu, Y. et al. (2023). Industrial application of protein hydrolysates in food. Journal of Agricultural and Food Chemistry, 71(4), 1788–1801. https://doi.org/10.1021/acs.jafc.2c06957

35. Tultabayeva, T., Tokysheva, G., Zhakupova, G., Konysbaeva, D., Mukhtarkhanova, R., Matibayeva, A. et al. (2023). Enhancing nutrition and palatability: The development of cooked sausages with protein hydrolysate from secondary raw materials for the elderly. Applied Sciences, 13(18), Article 10462. https://doi.org/10.3390/app131810462

36. John, J. A., Ghosh, B. C. (2021). Production of whey protein hydrolyzates and its incorporation into milk. Food Production, Processing and Nutrition, 3(1), Article 9. https://doi.org/10.1186/s43014-021-00055-z

37. Sereda, A. S., Kostyleva, E. V., Kurbatova, E. I., Tsurikova, N. V., Velikoretskaya, I. A., Ivanov, V. V. et al. (2024). Hydrolysis of whey proteins using domestic proteolytic enzyme preparations. Food Industry, 9, 49–52. (In Russian) https://doi.org/10.52653/ PPI.2024.9.9.009

38. Abd El-Salam, M. H., El-Shibiny, S. (2017). Preparation, properties and uses of enzymatic milk protein hydrolysates. Critical Reviews in Food Science Nutrition, 57(6), 1119–1132. https://doi.org/10.1080/10408398.2014.899200

39. Bogdanova, S. A., Sysoeva, M. A., Shigabieva, Yu. A. (2023). Physico-chemical properties of collagen hydrolysates and their application in skin care cosmetics. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki, 165(3), 345–356. (In Russian) https://doi.org/10.26907/2542-064X.2023.3.345-356

40. Chen, H.-J., Dai, F.-J., Chen, C.-Y., Fan, S.-L., Zheng, J.-H., Huang, Y.-C. et al. (2021). Evaluating the antioxidants, whitening and antiaging properties of rice protein hydrolysates. Molecules, 26(12), Article 3605. https://doi.org/10.3390/molecules26123605

41. Hou. Y., Wu, Z., Dai, Z., Wang, G., Wu, G. (2017). Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance. Journal of Animal Science and Biotechnology, 8(1), Article 24. https://doi.org/10.1186/s40104-017-0153-9

42. Xu, Y., Sun, M., Zong, X., Yang, H., Zhao, H. (2018). Potential yeast growth and fermentation promoting activity of wheat gluten hydrolysates and soy protein hydrolysates during high-gravity fermentation. Industrial Crops and Products, 127, 179–184. https://doi.org/10.1016/j.indcrop.2018.10.077

43. Epishkina, J. M., Baurina, A. V., Baurin, D. V., Shakir, I. V., Panfilov, V. I. (2019). Sunflower protein hydrolysates as a source of organic nitrogen for nutrient medium. Successes in Chemistry and Chemical Technology, 33(5(215)), 22–24. (In Russian)

44. Serba, E. M., Rimareva, L. V., Overchenko, M. B., Ignatova, N. I., Medrish, M. E., Pavlova, A. A. et al. (2021). Selecting multi-enzyme composition and preparation conditions for strong wort. Proceedings of Universities. Applied Chemistry and Biotechnology, 11(3), 384–392. (In Russian) https://doi.org/10.21285/2227-2925-2021-11-3-384-392

45. Sverdlova, O. P., Sharova, N. Yu., Printseva, A. A., Garicheva, A. V. (2023). Lipolytic and proteolytic activity of bacterial culture of acinetobacter radioresistens during cultivation on rapeseed oilcake. Food Industry, 5, 10–12. (In Russian) https://doi.org/10.52653/PPI.2023.5.5.002

46. Aleksanochkin, D. I., Fomenko, I. A., Alekseeva, E. A., Chernukha, I. M., Mashentseva, N. G. (2024). Production of plant protein from seeds and cake of industrial hemp: Overview of processing methods for food industry. Food Systems, 7(2), 188–197. (In Russian) https://doi.org/10.21323/2618-9771-2024-7-2-188-197

47. Kolpakova, V. V., Byzov, V. A. (2024). Functional characteristics and molecular structural modification of plant proteins. Review.Food Systems, 7(3), 324–335. (In Russian) https://doi.org/10.21323/2618-9771-2024-7-3-324-335

48. Vitol, I. S., Meleshkina, E. P., Krikunova, L. N. (2023). Compositions of enzyme preparations for targeted modification of bran. Food Systems, 6(4), 45–462. (In Russian) https://doi.org/10.21323/2618-9771-2023-6-4-457-462

49. Serba, E. M. Sharikov, A. Y., Overchenko, M. B., Rimareva, L. V., Ignatova, N. I., Serba, V. V. et al. (2023). Obtaining concentrated enzyme preparations for the conversion of protein and polysaccharides of agricultural raw materials in biotechnological industries. Food Industry, 4, 46–50. (In Russian) https://doi.org/10.52653/PPI.2023.4.4.008

50. Sinitsyn, A. P., Sinitsyna, O. A., Rozhkova, A. M., Rubtsova, E. A., Shashkov I. A., Satrutdinov, A. D. et al. (2023). Possibilities of industrial production of enzymes: The creation of microorganisms — producers of technical enzymes. Food Industry, 5, 26–30. (In Russian) https://doi.org/10.52653/PPI.2023.5.5.007

51. Sinitsyn, A. P., Sinitsyna O. A., Zorov I. N., Rozhkova, A. M. (2020). Capabilities of the Fungus Penicillium verruculosum Expression System for Producing of Enzymes Providing Effective Destruction of Renewable Plant Biomass (Review). Applied Biochemistry and Microbiology, 56(6), 551–560. (In Russian) https://doi.org/10.31857/ S0555109920060161

52. Asrarkulova, A. S., Bulushova, N. V. (2018). Wheat gluten and its hydrolysates. Possible fields of practical use. Biotekhnologiya, 34(4), 6–17. (In Russian) https://doi.org/10.21519/0234-2758-2018-34-4-6-17

53. Bozkurt, F., Bekiroglu, H., Dogan, K., Karasu, S., Sagdic, O. (2021). Technological and bioactive properties of wheat glutenin hydrolysates prepared with various commercial proteases. LWT–Food Science and Technology, 149, Article 111787. https://doi.org/10.1016/j.lwt.2021.111787

54. Kostyleva, E. V., Sereda, A. S., Velikoretskaya, I. A., Kurbatova, E. I., Fursova, E. A., Tsurikova, N. V. et al. (2023). The use of a new complex enzyme preparation from aspergillus oryzae in the hydrolysis of wheat gluten. Food Industry, 85, 116–120. (In Russian) https://doi.org/10.52653/PPI.2023.8.8.022

55. Dunaevsky, Y. E., Tereshchenkova, V. F., Belozersky, M. A., Filippova, I. Y., Oppert, B., Elpidina, E. N. (2021). Effective degradation of gluten and its fragments by gluten-specific peptidases: A review on application for the treatment of patients with gluten sensitivity. Pharmaceutics, 13(10), Article 1603. https://doi.org/10.3390/pharmaceutics13101603

56. Vogelsang-O’Dwyer M., Sahin, A.W., Arendt, E.K., Zannini, E. (2022). Enzymatic hydrolysis of pulse proteins as a tool to improve techno-functional properties.Foods, 11(9), Article 1307. https://doi.org/10.3390/foods11091307

57. Kolpakova, V. V., Chumikina, L. V., Vasiliev, A. V., Arabova, L. I., Topunov, A. F. (2011). A special effect of endo- and exoproteinase enzyme preparations on wheat gluten proteins. Biotekhnologiya, 3, 63–73. (In Russian)

58. Krasnoshtanova, A. A., Shul’ts, L. V. (2022). Preparation and evaluation of the functional properties of protein isolates and hydrolysates from plant raw materials. Khimiya Rastitel’nogo Syr’ya, 4, 299–309. (In Russian) https://doi.org/10.14258/jcprm.20220410952

59. Zheng, Z., Wang, M., Li, J., Lia, J., Liu, Y. (2020). Сomparative assessment of physicochemical and antioxidative properties of mung bean protein hydrolysates. RSC Advances, 10(5), 2634–2645. https://doi.org/10.1039/c9ra06468k

60. Kostyleva, E. V., Sereda, A. S., Velikoretskaya, I. A., Kurbatova, E. I., Tsurikova, N. V. (2023). Proteases for obtaining of food protein hydrolysates from proteinaceous by-products. Problems of Nutrition, 92(1), 116–132. (In Russian) https://doi.org/10.33029/0042-8833-2023-92-1-116-132

61. Klost, M., Drusch, S. (2019). Functionalisation of pea protein by tryptic hydrolysis — characterisation of interfacial and functional properties. Food Hydrocolloids, 86(1), 134–140. https://doi.org/10.1016/j.foodhyd.2018.03.013

62. Brückner-Gühmann, M., Heiden-Hecht, T., Sözer, N., Drusch, S. (2018). Foaming characteristics of oat protein and modification by partial hydrolysis. European Food Research and Technology, 244(12), 2095–2106. https://doi.org/10.1007/s00217-018-3118-0

63. García Arteaga, V., Apéstegui Guardia, M., Muranyi, I., Eisner, P., Schweiggert-Weisz, U. (2020). Effect of enzymatic hydrolysis on molecular weight distribution, techno-functional properties and sensory perception of pea protein isolates. Innovative Food Science and Emerging Technologies, 65, Article 102449. https://doi.org/10.1016/j.ifset.2020.102449

64. Esfandi, R., Willmore, W. G., Tsopmo, A. (2019). Peptidomic analysis of hydrolyzed oat bran proteins and their in vitro antioxidant and metal chelating properties. Food Chemistry, 279, 49–57. https://doi.org/10.1016/j.foodchem.2018.11.110

65. Chen, L., Chen, J., Yu, L., Wu, K., Zhao, M. (2018). Emulsification performance and interfacial properties of enzymically hydrolyzed peanut protein isolate pretreated by extrusion cooking. Food Hydrocolloids, 77, 607–616. https://doi.org/10.1016/j.foodhyd.2017.11.002

66. Schlegel, K., Leidigkeit, A., Eisner, P., Schweiggert–Weisz, U. (2019). Technofunctional and sensory properties of fermented lupin protein isolates. Foods, 8(12), Article 678. https://doi.org/10.3390/foods8120678

67. Eckert, E., Han, J., Swallow, K., Tian, Z., Jarpa-Parra, M., Chen, L. (2019). Effects of enzymatic hydrolysis and ultrafiltration on physicochemical and functional properties of faba bean protein. Cereal Chemistry, 96(4), 725–741. https://doi.org/10.1002/cche.10169

68. Felix, M., Cermeño, M., FitzGerald, R. J. (2020). Influence of hydrolysis on the bioactive properties and stability of chickpea-protein-based o/w emulsions. Journal of Agricultural and Food Chemistry, 68(37), 10118–10127. https://doi.org/10.1021/acs.jafc.0c02427

69. Balaban, N. P., Sharipova, M. R. (2011). Practical use of bacillary proteases. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 153(2), 29–40. (In Russian)

70. FitzGerald, R. J., O’Cuinn, G. O. (2006). Enzymatic debittering of food protein hydrolysates. Biotechnology Advances, 24(2), 234–237. https://doi.org/10.1016/j.biotechadv.2005.11.002

71. Meinlschmidt, P., Sussmann, D., Schweiggert-Weisz, U., Eisner, P. (2015). Enzymatic treatment of soy protein isolates: Effects on the potential allergenicity, techno-functionality, and sensory properties. Food Science Nutrition, 4(1), 11–23. https://doi.org/10.1002/fsn3.253

72. Xu, Y., Zhao, J., Hu, R., Wang, W., Griffin, J., Li, Y. et al. (2021). Effect of genotypeon the physicochemical, nutritional, and antioxidant properties of hempseed. Journal of Agriculture and Food Research, 3, Article 100119. https://doi.org/10.1016/j.jafr.2021.100119

73. Girgih, A. T., He, R., Malomo, S., Offengenden, M., Wu, J., Aluko, R. E. (2014). Structural and functional characterization of hemp seed (Cannabis sativa L.) protein-derived antioxidant and antihypertensive peptides. Journal of Functional Foods, 6, 384–394. https://doi.org/10.1016/j.jff.2013.11.005

74. Cai, L., Wu, S., Jia, C., Cui, C. (2023). Hydrolysates of hemp (Cannabis sativa L.) seed meal: Characterization and their inhibitory effect on α-glucosidase activity and glucose transport in Caco‑2 cells. Industrial Crops and Products, 205, Article 117559. https://doi.org/10.1016/j.indcrop.2023.117559

75. Aluko, R. E. (2021). Food-derived acetylcholinesterase inhibitors as potential agents against Alzheimer’s Disease. EFood, 2(2), 49–58. https://doi.org/10.2991/efood.k.210318.001

76. Rimareva, L. V., Overchenko, M. B., Serba, E. M., Ignatova, N. I., Shelekhova, N. V. (2021). Influence of phytolytic and proteolytic enzymes on conversion of wheat and corn grain polymers. Agricultural Biology, 56(2), 374–383. (In Russian) https://doi.org/10.15389/agrobiology.2021.2.374rus

77. Pogorelova, N. A., Gavrilova, N. B., Rogachev, E. A., Schetinina, E. M. (2020). Determining the effectiveness of wheat bran conversion methods for use in food technology. Storage and Processing of Farm Products, 1, 48–57. (In Russian) https://doi.org/10.36107/spfp.2020.228

78. Kapreliants, L., Zhurlova, O. (2017). Technology of wheat and rye bran biotransformation into functional ingredients. International Food Research Journal, 24(5), 1975–1979.

79. Meleshkina, E. P., Vanina, L. V., Vitol, I. S. (2024). Current developments in grain science. Review. Food Systems, 7(3), 444–453. (In Russian) https://doi.org/10.21323/2618-9771-2024-7-3-444-453

80. Vitol, I. S., Meleshkina, E. P., Pankratov, G. N. (2022). Bran from composite grain mixture is an object of deep processing. Part 1. Protein-proteinase complex. Food Systems, 5(4), 282–288. (In Russian) https://doi.org/10.21323/2618-9771-2022-5-4-282-288

81. Vitol, I. S., Meleshkina, E. P., Pankratov, G. N. (2023). Bran from composite grain mixture as an object of deep processing. Part 2. Carbohydrate-amylase and lipid complexes. Food Systems, 6(1), 22–28. (In Russian) https://doi.org/10.21323/2618-9771-2023-6-1-22-28

82. Characteristics of products of enzymatic modification of legume seeds. Food Industry, 10, 73–76. (In Russian) https://doi.org/10.52653/PPI.2024.10.10.014

83. Mudryj, A. N., Yu, N., Aukema, H. M. (2014). Nutritional and health benefits of pulses. Applied Physiology, Nutrition, and Metabolism, 39(11), 1197–1204. https://doi.org/10.1139/apnm‑2013-0557

84. Vozijan, V. I., Taran, M. G., Jakobutsa, M. D., Avadeny, L. P. (2013). Nutritive value of varieties of soya, peas, dry beans and content of anti-nutritive substances in them. Legumes and Groat Crops, 1(5), 26–29. (In Russian)

85. Agarwal, S., Fulgoni, V. L. (2023). Effect of adding pulses to replace protein foods and refined grains in healthy dietary patterns. Nutrients, 15(20), Article 204355. https://doi.org/10.3390/nu15204355

86. Samtiya, M., Aluko, R. E., Dhewa, T. (2020). Plant food anti-nutritional factors and their reduction strategies: An overview. Food Production, Processing and Nutrition, 2(1), Article 6. https://doi.org/10.1186/s43014-020-0020-5

87. Hrčková, M., Rusňáková, M., Zemanovič, J. (2000). Enzymatic hydrolysis of defatted soy flоur by three different proteases and their effect оп the functional properties of resulting protein. Czech Journal of Food Sciences, 20(1), 7–14. https://doi.org/10.17221/3503-CJFS

88. Cherkashina, E. S., Lodygin D. N., Lodygin A. D. Enzymatic hydrolysates of secondary plant materials: Analysis of amino acid composition and prospects of their application. Newsletter of North-Caucasus Federal University, 3(42), 112–116. (In Russian)


Review

For citations:


Vitol I.S., Meleshkina E.P. Enzymatic hydrolysates of grain and products of its processing. A review of the subject field. Food systems. 2025;8(1):144-152. (In Russ.) https://doi.org/10.21323/2618-9771-2025-8-1-144-152

Views: 943


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)