Ферментированный нут (Cicer arietinum L.) как функциональный продукт: не содержащие мясо «веганские» бургеры
https://doi.org/10.21323/2618-9771-2025-8-1-93-98
Аннотация
Глобальный спрос на этичные, экологичные и питательные пищевые продукты усилил интерес к растительным альтернативам мясу. Ученые и производители пищевых продуктов уделяют первостепенное внимание разработке превосходных альтернатив мясным и молочным продуктам из-за увеличивающейся популярности вегетарианских и веганских диет среди потребителей. Нут — бобовый источник белка, содержащий большое количество белка и пищевых волокон, а также грибы богаты химическими веществами «умами» и потенциально могут быть исключительно важными ингредиентами в растительных альтернативах мясным продуктам. Пищевой профиль и сенсорные характеристики растительных продуктов могут быть улучшены в результате ферментации — традиционного метода, широко используемого при производстве пищевых продуктов. Этот процесс может повысить привлекательность этих продук тов для потребителей. В этой связи, целью данного исследования было создание нового продукта из растительных источников, который заменил бы мясные продукты. Нут был ферментирован Aspergillus oryzae (AUMC B2) в течение различных периодов ферментации (7, 10 и 14 дней) для определения оптимального времени ферментации для усиления вкуса умами (мясного вкуса). Нут и грибы были основным растительным сырьем для растительных бургеров. Для приготовления бургеров был использован ферментированный нут с разным периодом ферментации (7 дней: FC7, 10 дней: FC10, и 14 дней: FC14). Сенсорые показатели веганских бургеров сравнивали с таковыми неферментированного контрольного образца. Результаты показали, что образцы не содержащих мясо бургеров FC10 получили наивысший балл вкуса и запаха по сравнению с контролем. На основании этих результатов был проведен химический анализ для не содержащих мясо продукта FC10 и контроля. Полученные данные показали, что процесс ферментации повышал содержание белка и снижал содержание жиров и углеводов в ферментированном, не содержащем мясо бургере.
Ключевые слова
Об авторах
Р. М. МохамедЕгипет
Мохамед Р. М. - адъюнкт-профессор
12613, Гиза, ул. Гамаа, 1
М. Р. Али
Египет
Али М. Р. - адъюнкт-профессор
12613, Гиза, ул. Гамаа, 1
Тел.: +2–0100–469–55–15
Список литературы
1. Llonch, P., Haskell, M. J., Dewhurst, R. J., Turner, S. P. (2017). Current available strategies to mitigate greenhouse gas emissions in livestock systems: An animal welfare perspective. Animal, 11(2), 274–284. https://doi.org/10.1017/s1751731116001440
2. Uwizeye, A., de Boer, I. J., Opio, C. I., Schulte, R. P. O., Falcucci, A., Tempio, G. et al. (2020). Nitrogen emissions along global livestock supply chains. Nature Food, 1(7), 437–446. https://doi.org/10.1038/s43016-020-0113-y
3. Andreani, G., Sogari, G., Marti, A., Froldi, F., Dagevos, H., Martini, D. (2023). Plant-based meat alternatives: Technological, nutritional, environmental, market, and social challenges and opportunities. Nutrients, 15(2), Article 452. https://doi.org/10.3390/nu15020452
4. Ojediran, T. K., Olofintuyi, O. S., Ojediran, T. J. (2024). Alternative feed resources in the era of climate change: A review. Aceh Journal of Animal Science, 9(3), 98–110. https://doi.org/10.13170/ajas.9.3.37655
5. Đekić, I., Tomašević, I. (October 1–4, 2017). Environmental footprints in the meat chain. IOP Conference Series: Earth and Environmental Science. 59th International Meat Industry Conference MEATCON2017, Zlatibor, Serbia. IOP Publishing, 2017. https://doi.org/10.1088/1755-1315/85/1/012015
6. Jiang, G., Ameer, K., Kim, H., Lee, E.-J., Ramachandraiah, K., Hong, G.-P. (2020). Strategies for sustainable substitution of livestock meat. Foods, 9(9), Article 1227. https://doi.org/10.3390/foods9091227
7. National Academies of Sciences, Engineering, and Medicin. (2019). Science breakthroughs to advance food and agricultural research by 2030. National Academies Press, 2019. https://doi.org/10.17226/25059
8. IARC Monographs. (2018). Red meat and processed meat / IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. International Agency for Research on Cancer, 2018.
9. Xiao, X., Zou, P.-R., Hu, F., Zhu, W., Wei, Z.-J. (2023). Updates on plant-based protein products as an alternative to animal protein: Technology, properties, and their health benefits. Molecules, 28(10), Article 4016. https://doi.org/10.3390/molecules28104016
10. Bohrer, B. M. (2019). An investigation of the formulation and nutritional composition of modern meat analogue products. Food Science and Human Wellness, 8(4), 320–329. https://doi.org/10.1016/j.fshw.2019.11.006
11. Bakhsh, A., Lee, S.-J., Lee, E.-Y., Sabikun, N., Hwang, Y.-H., Joo, S.-T. (2021). A novel approach for tuning the physicochemical, textural, and sensory characteristics of plant-based meat analogs with different levels of methylcellulose concentration. Foods, 10(3), Article 560. https://doi.org/10.3390/foods10030560
12. 12.Yegrem, L. (2021). Nutritional composition, antinutritional factors, and utilization trends of Ethiopian chickpea (Cicer arietinum L.). International Journal of Food Science, 2021(1), Article 5570753. https://doi.org/10.1155/2021/5570753
13. Semba, R. D., Ramsing, R., Rahman, N., Kraemer, K., Bloem, M. W. (2021). Legumes as a sustainable source of protein in human diets. Global Food Security, 28, Article 100520. https://doi.org/10.1016/j.gfs.2021.100520
14. Begum, N., Khan, Q. U., Liu, L. G., Li, W., Liu, D., Haq, I. U. (2023). Nutritional composition, health benefits and bio-active compounds of chickpea (Cicer arietinum L.). Frontiers in Nutrition, 10, Article 1218468. https://doi.org/10.3389/fnut.2023.1218468
15. Verni, M., Pontonio, E., Montemurro, M., Giuseppe Rizzello, C. (2022). Fermentation as strategy for improving nutritional, functional, technological, and sensory properties of legumes. Chapter in a book: Legumes Research-Volume 2. IntechOpen, 2022. https://doi.org/10.5772/intechopen.102523
16. Finnigan, T. J. A., Theobald, H. E., Bajka, B. (2024). Mycoprotein: A healthy and sustainable source of alternative protein-based foods. Annual Review of Food Science and Technology, 16. https://doi.org/10.1146/annurev-food‑111523-121802
17. Farid, M. S., Anjum, R., Yang, Y., Tu, M., Zhang, T., Pan, D. et al. (2024). Recent trends in fermented plant-based analogues and products, bioactive peptides, and novel technologies-assisted fermentation. Trends in Food Science and Technology, 149, Article 104529. https://doi.org/10.1016/j.tifs.2024.104529
18. Boukid, F., Hassoun, A., Zouari, A., Tülbek, M. Ç., Mefleh, M., Aït-Kaddour, A. et al. (2023). Fermentation for designing innovative plant-based meat and dairy alternatives. Foods, 12(5), Article 1005. https://doi.org/10.3390/foods12051005
19. Mohamed, D. E., Alian, A. M., Mohamed, R. M. (2024). Optimization of production and evaluation of Microbial kojic Acid obtained from Sugarcane Molasses (SCM) by Aspergillus sp. Food Systems, 7(1), 71–76. https://doi.org/10.21323/2618-9771-2024-7-1-71-76
20. AOAC (2019) Official Methods of Analysis of the Association of Official Analytical Chemists: Official Methods of Analysis of AOAC International. 21st Edition, AOAC, MD: Gaithersburg, MD, USA
21. Mohamed, R. M., Bazaraa, W. A., Alian, A. M., El-Shimi, N. M. (2021). New application of microbial l-glutaminase as a flavor enhancing agent in beef burgers. Theory and Practice of Meat Processing, 6(4), 375–380. https://doi.org/10.21323/2414-438x‑2021-6-4-375-380
22. El-Beltagi, H. S., El-Mogy, M. M., Parmar, A., Mansour, A. T., Shalaby, T. A., Ali, M. R. (2022). Phytochemical characterization and utilization of dried red beetroot (Beta vulgaris) peels extract in maintaining the quality of nile tilapia fish fillet. Antioxidants, 11(5), Article 906. https://doi.org/10.3390/antiox11050906
23. Grasso, N., Lynch, N. L., Arendt, E. K., O’Mahony, J. A. (2022). Chickpea protein ingredients: A review of composition, functionality, and applications. Comprehensive Reviews in Food Science and Food Safety, 21(1), 435–452. https://doi.org/10.1111/1541-4337.12878
24. Summo, C., De Angelis, D., Ricciardi, L., Caponio, F., Lotti, C., Pavan, S. et al. (2019). Nutritional, physico-chemical and functional characterization of a global chickpea collection. Journal of Food Composition and Analysis, 84, Article 103306. https://doi.org/10.1016/j.jfca.2019.103306
25. Ereifej, K. I., Al-Karaki, G. N., Hammouri, M. K. (2001). Seed chemical composition of improved chickpea cultivars grown under semiarid Mediterranean conditions. International Journal of Food Properties, 4(2), 239–246. https://doi.org/10.1081/jfp‑100105190
26. Xiao, S., Li, Z., Zhou, K., Fu, Y. (2023). Chemical composition of kabuli and desi chickpea (Cicer arietinum L.) cultivars grown in Xinjiang, China. Food Science and Nutrition, 11(1), 236–248. https://doi.org/10.1002/fsn3.3056
27. Krüzselyi, D., Kovács, D., Vetter, J. (2016). Chemical analysis of king oyster mushroom (Pleurotus eryngii) fruitbodies. Acta Alimentaria, 45(1), 20–27. https://doi.org/10.1556/066.2016.45.1.3
28. Oluwafemi, G. I., Seidu, K. T., Fagbemi, T. N. (2016). Chemical composition, functional properties and protein fractionation of edible oyster mushroom (Pleurotus ostreatus). Annals: Food Science and Technology, 17(1), 218–223.
29. Fukagawa, N. K., Yu, Y. -M. (2009). Nutrition and metabolism of proteins and amino acids. Chapter in a book: Introduction to Human Nutrition. A John Wiley and Sons, 2009.
30. Messina, V. (2014). Nutritional and health benefits of dried beans. The American Journal of Clinical Nutrition, 100, 437S‑442S. https://doi.org/10.3945/ajcn.113.071472
31. Melina, V., Craig, W., Levin, S. (2016). Position of the academy of nutrition and dietetics: Vegetarian diets. Journal of the Academy of Nutrition and Dietetics, 116(12), 1970–1980. https://doi.org/10.1016/j.jand.2016.09.025
32. Leser, S. (2013). The 2013 FAO report on dietary protein quality evaluation in human nutrition: Recommendations and implications. Nutrition Bulletin, 38(4), 421–428. https://doi.org/10.1111/nbu.12063
33. Senanayake, D., Torley, P. J., Chandrapala, J., Terefe, N. S. (2023). Microbial fermentation for improving the sensory, nutritional and functional attributes of legumes. Fermentation, 9(7), Article 635. https://doi.org/10.3390/fermentation9070635
34. Xing, Q., Dekker, S., Kyriakopoulou, K., Boom, R. M., Smid, E. J., Schutyser, M. A. (2020). Enhanced nutritional value of chickpea protein concentrate by dry separation and solid state fermentation. Innovative Food Science and Emerging Technologies, 59, Article 102269. https://doi.org/10.1016/j.ifset.2019.102269
35. De Pasquale, I., Verni, M., Verardo, V., Gómez-Caravaca, A. M., Rizzello, C. G. (2021). Nutritional and functional advantages of the use of fermented black chickpea flour for semolina-pasta fortification. Foods, 10(1), Article 182. https://doi.org/10.3390/foods10010182
36. Sáez, G. D., Sabater, C., Fara, A., Zárate, G. (2022). Fermentation of chickpea flour with selected lactic acid bacteria for improving its nutritional and functional properties. Journal of Applied Microbiology, 133(1), 181–199. https://doi.org/10.1111/jam.15401
37. Liu, Y., Zhu, S., Li, Y., Sun, F., Huang, D., Chen, X. (2023). Alternations in the multilevel structures of chickpea protein during fermentation and their relationship with digestibility. Food Research International, 165, 112453. https://doi.org/10.1016/j.foodres.2022.112453
38. Xiao, Y., Huang, L., Chen, Y., Zhang, S., Rui, X., Dong, M. (2016). Comparative study of the effects of fermented and non-fermented chickpea flour addition on quality and antioxidant properties of wheat bread. CyTA-Journal of Food, 14(4), 621–631. https://doi.org/10.1080/19476337.2016.1188157
39. Liu, Y., Zhu, S., Li, Y., Sun, F., Huang, D., Chen, X. (2023). Alternations in the multilevel structures of chickpea protein during fermentation and their relationship with digestibility. Food Research International, 165, Article 112453. https://doi.org/10.1016/j.foodres.2022.112453
40. Kumitch, H. M., Stone, A., Nosworthy, M. G., Nickerson, M. T., House, J. D., Korber, D. R. et al. (2020). Effect of fermentation time on the nutritional properties of pea protein-enriched flour fermented by Aspergillus oryzae and Aspergillus niger. Cereal Chemistry, 97(1), 104–113. https://doi.org/10.1002/cche.10234
41. Lee, Y. H., Lee, N. R., Lee, C. H. (2022). Comprehensive metabolite profiling of four different beans fermented by Aspergillus oryzae. Molecules, 27(22), Article 7917. https://doi.org/10.3390/molecules27227917
42. Verni, M., Pontonio, E., Montemurro, M., Giuseppe Rizzello, C. (2022). Fermentation as Strategy for Improving Nutritional, Functional, Technological, and Sensory Properties of Legumes. Chapter in a book: Legumes Research-Volume 2. IntechOpen, 2022. https://doi.org/10.5772/intechopen.102523
43. Alrosan, M., Tan, T. C., Koh, W. Y., Easa, A. M., Gammoh, S., Alu’datt, M. H. (2023). Overview of fermentation process: Structure-function relationship on protein quality and non-nutritive compounds of plant-based proteins and carbohydrates. Critical Reviews in Food Science and Nutrition, 63(25), 7677–7691. https://doi.org/10.1080/10408398.2022.2049200
44. Razavizadeh, S., Alencikiene, G., Salaseviciene, A., Vaiciulyte-Funk, L., Ertbjerg, P., Zabulione, A. (2021). Impact of fermentation of okara on physicochemical, techno-functional, and sensory properties of meat analogues. European Food Research and Technology, 247(9), 2379–2389. https://doi.org/10.1007/s00217-021-03798-8
45. Du, S., Jiang, H., Yu, X., Jane, J. (2014). Physicochemical and functional properties of whole legume flour. LWT-Food Science and Technology, 55(1), 308–313. https://doi.org/10.1016/j.lwt.2013.06.001
46. Akram, S., Afzal, M. F., Anwer, K., Farman, L., Zubair, M., Kousar, S. et al. (2024). Nutraceutical properties, biological activities, and industrial applications of chickpea protein. Cogent Food and Agriculture, 10(1), Article 2338653. https://doi.org/10.1080/23311932.2024.2338653
47. Kurek, M. A., Onopiuk, A., Pogorzelska-Nowicka, E., Szpicer, A., Zalewska, M., Półtorak, A. (2022). Novel protein sources for applications in meat-alternative products — Insight and challenges. Foods, 11(7), Article 957. https://doi.org/10.3390/foods11070957
48. Szenderák, J., Fróna, D., Rákos, M. (2022). Consumer acceptance of plant-based meat substitutes: A narrative review. Foods, 11(9), Article 1274. https://doi.org/10.3390/foods11091274
49. Cordelle, S., Redl, A., Schlich, P. (2022). Sensory acceptability of new plant protein meat substitutes. Food Quality and Preference, 98, Article 104508. https://doi.org/10.1016/j.foodqual.2021.104508
Рецензия
Для цитирования:
Мохамед Р.М., Али М.Р. Ферментированный нут (Cicer arietinum L.) как функциональный продукт: не содержащие мясо «веганские» бургеры. Пищевые системы. 2025;8(1):93-98. https://doi.org/10.21323/2618-9771-2025-8-1-93-98
For citation:
Mohamed R.M., Ali M.R. Fermented chickpea (Cicer arietinum L.) as a functional food: Meatless “vegan” burgers. Food systems. 2025;8(1):93-98. https://doi.org/10.21323/2618-9771-2025-8-1-93-98