Preview

Food systems

Advanced search

Assessment of the prospects of using chelated forms of zinc to create new types of food products

https://doi.org/10.21323/2618-9771-2024-7-4-568-574

Abstract

The prospects of using some chelated forms of zinc to develop new enriched food products are substantiated in the work. The authors give a brief description of the synthesis of chelated double forms: Zn diglycinate, Zn pantothenate-glycinate, Zn thiaminate-glycinate, Zn citrate, Zn cysteinate-glycinate. Synthesis of chelates included the stages of treatment of Zn compounds with amino acids and vitamins with partial heating, as well as ultrasound treatment at a frequency of 25 kHz to create micro-nanoparticles and to accelerate formation of chelates. Authenticity of obtained compounds was determined using IR spectroscopy by comparison with reference databases. The ability of chelates not to form insoluble compounds when adding to food systems was examined on several food groups: bakery products, multi-fruit juice-containing beverages, fermented food products (kefir and whey-containing beverages), products of meat processing and sugary confectionary products. Preservation of the soluble forms of Zn was determined by the method of direct extractive titration with the use of metallochromic indicator dithizone with the following photocolorimetry in the visible spectrum (530–550 nm) in the medium of carbon tetrachloride or hexane. The ability to be extracted from a food system for chelated compounds of Zn increased in the following order: whey-based beverages < bread and products containing phytic acids < juice-containing beverage < yogurt, including yogurt with fruit filling < marmalade based on agar-agar and other sugary confectionery products with the similar consistency < products from meat raw materials. The data obtained indicate significant prospects of developing food products enriched with chelated compounds of Zn to satisfy the needs of some groups of the population in this microelement.

About the Authors

V. V. Gorbachev
Plekhanov Russian University of Economics
Russian Federation

Victor V. Gorbachev, Junior Researcher, Research Laboratory «Biotechnology of Food Systems»

36, Stremyanny lane, 115054, Moscow

Tel: +7–914–034–72–54



I. A. Nikitin
Plekhanov Russian University of Economics
Russian Federation

Igor A. Nikitin, Doctor of Technical Sciences, Docent, Head of the Department of Food Technology and Bioengineering

36, Stremyanny lane, 115054, Moscow

Tel: +7–929–644–36–26



S. L. Tikhonov
Ural State Agricultural University; Ural State Forestry University
Russian Federation

Sergey L. Tikhonov, Doctor of Technical Sciences, Professor, Director of the Scientific and Educational Center «Applied Nanobiotechnology»; Professor, Department of Chemical Technology of Wood, Biotechnology and Nanomaterials

42, Karl Liebknecht str., 620000, Yekaterinburg; 37 Sibirskiy Trakt, 620100, Yekaterinburg

Tel.: +7–912–276–98–95



M. S. Balashova
I. M. Sechenov First Moscow State Medical University (Sechenovskiy University)
Russian Federation

Maria S. Balashova, Candidate of Medical Sciences, Docent, Department of Medical Genetics, N. V. Sklifosovsky ICM

8/2, Trubetskaya str., 119991, Moscow

Tel: +7–917–522–67–86



S. N. Tefikova
Plekhanov Russian University of Economics
Russian Federation

Svetlana N. Tefikova, Candidate of Technical Sciences, Docent, Department of Food Technology and Bioengineering

36, Stremyanny lane, 115054, Moscow

Тel.: +7–964–728–35–79



D. M. Ziborov
Plekhanov Russian University of Economics
Russian Federation

Dmitrii M. Ziborov, Candidate of Technical Sciences, Docent, Department of Food Technology and Bioengineering

36, Stremyanny lane, 115054, Moscow

Тel.: +7–910–415–44–67



D. A. Velina
Plekhanov Russian University of Economics
Russian Federation

Daria A. Velina, Junior Researcher, Research Laboratory «Biotechnology of Food Systems»

36, Stremyanny lane, 115054, Moscow

Tel: +7–985–256–89–87



E. E. Kleyn
Plekhanov Russian University of Economics
Russian Federation

Evgenia E. Kleyn, Laboratory Assistant, Department of Food Technology and Bioengineering

36, Stremyanny lane, 115054, Moscow

Tel: +7–953–669–18–73



References

1. Koliaki, C., Liatis, S., Kokkinos, A. (2019). Obesity and cardiovascular disease: Revisiting an old relationship. Metabolism, 92, 98–107. https://doi.org/10.1016/j.metabol.2018.10.011

2. López-Sobaler, A. M., Aparicio, A., Aranceta-Bartrina, J., Gil, Á., GonzálezGross, M., Serra-Majem, L. et al. (2016). Overweight and general and abdominal obesity in a representative sample of Spanish adults: Findings from the ANIBES study. BioMed Research International, 2016, Article 8341487. https://doi.org/10.1155/2016/8341487

3. Zhong, P., Tan, S., Zhu, Z., Zhu, Z., Liang, Y., Huang, W. et al. (2023). Normalweight central obesity and risk of cardiovascular and microvascular events in adults with prediabetes or diabetes: Chinese and British cohorts. Diabetes/ Metabolism Research and Reviews, 39(8), Article e3707. https://doi.org/10.1002/dmrr.3707

4. Parnell, L. D., Noel, S. E., Bhupathiraju, S. N., Smith, C. E., Haslam, D. E., Zhang, Z. et al (2021). Metabolite patterns link diet, obesity, and type 2 diabetes in a Hispanic population. Metabolomics, 17(10), Article 88. https://doi.org/10.1007/s11306-021-01835-x

5. Singh, R., Devi, S., Gollen, R. (2015). Role of free radical in atherosclerosis, diabetes and dyslipidaemia: Larger-than-life. Diabetes/Metabolism Research and Reviews, 31(2), 113–126. https://doi.org/10.1002/dmrr.2558

6. Darenskaya, M. A., Kolesnikova, L. I., Kolesnikov, S. I. (2021). Oxidative Stress: Pathogenetic role in diabetes mellitus and its complications and therapeutic approaches to correction. Bulletin of Experimental Biology and Medicine, 171(2), 179–189. https://doi.org/10.1007/s10517-021-05191-7

7. Mladenovic-Djordjevic, A., Loncarevic-Vasiljkovic, N., Gonos, E. S. (2021). Dietary restriction and oxidative stress: Friends or enemies? Antioxidants and Redox Signaling, 34(5), 421–438. https://doi.org/10.1089/ars.2019.7959

8. Hübner, C., Haase, H. (2021). Interactions of zinc- and redox-signaling pathways. Redox Biology, 41, Article 101916. https://doi.org/10.1016/j.redox.2021.101916

9. Day, K. J., Adamski, M. M., Dordevic, A. L., Murgia, C. (2017). Genetic variations as modifying factors to dietary zinc requirements–a systematic review. Nutrients, 9(2), Article 148. https://doi.org/10.3390/nu9020148

10. Grzeszczak, K., Kwiatkowski, S., Kosik-Bogacka, D. (2020). The Role of Fe, Zn, and Cu in pregnancy. Biomolecules, 10(8), Article 1176. https://doi.org/10.3390/biom10081176

11. Pecora, F., Persico, F., Argentiero, A., Neglia, C., Esposito, S. (2020). The Role of micronutrients in support of the immune response against viral infections. Nutrients, 12(10), Article 3198. https://doi.org/10.3390/nu12103198

12. Grüngreiff, K., Gottstein, T., Reinhold, D. (2020). Zinc Deficiency — An independent risk factor in the pathogenesis of Haemorrhagic stroke? Nutrients, 12(11), Article 3548. https://doi.org/10.3390/nu12113548

13. Nasiadek, M., Stragierowicz, J., Klimczak, M., Kilanowicz, A. (2020). The role of Zinc in selected female reproductive system disorders. Nutrients, 12(8), Article 2464. https://doi.org/10.3390/nu12082464

14. Sheibak, V. M. (2015). Synthesis and secretion of insulin: Role of zinc cations. Journal of the Grodno State Medical University, 1(49), 5–8. (In Russian)

15. Gibson, R. S. (2006). Zinc: The missing link in combating micronutrient malnutrition in developing countries. Proceedings of the Nutrition Society, 65(1), 51–60. https://doi.org/10.1079/PNS2005474

16. Sriram, K., Lonchyna, V. A. (2009). Micronutrient supplementation in adult nutrition therapy: Practical considerations. Journal of Parenteral and Enteral Nutrition, 33(5), 548–562. https://doi.org/10.1177/0148607108328470

17. Haase, H., Ellinger, S., Linseisen, J., Neuhäuser-Berthold, M., Richter, M. (2020). Revised D-A-CHreference values for the intake of zinc. Journal of Trace Elements in Medicine and Biology, 61, Article 126536. https://doi.org/10.1016/j.jtemb.2020.126536

18. Gorbachev, V.V., Nikitin, I.A., Velina, D.A., Mutallibzoda, S., Balashova, M.S. (2022). Assessment of consumer preferences of Russians: «Average ration trap». Izvestiya Vuzov. Food Technology, 6(390), 90–98. (In Russian)

19. Likuski, H. J., Forbes, R. M. (1964). Effect of phytic acid on the availability of zinc in amino acid and casein diets fed to chicks. The Journal of Nutrition, 84(2), 145–148. https://doi.org/10.1093/jn/84.2.145

20. Hall, A. G., King, J. C. (2022). Zinc fortification: Current trends and strategies. Nutrients, 14(19), Article 3895. https://doi.org/10.3390/nu14193895

21. Li, Y., Shi, P., Zheng, Y., Guo, M., Zhuang, Y., Huo, X. (2023). Millet bran protein hydrolysates derived peptides-zinc chelate: Structural characterization, security prediction in silico, zinc transport capacity and stability against different food processing conditions. Journal of Food Science, 88(1), 477–490. https://doi.org/10.1111/1750-3841.16384

22. Chheang, L., Khachornsakkul, K., Del-Rio-Ruiz, R., Zeng, W., Thongkon, N., Thanasupsin, S. P. et al. (2024). Simple distance-based thread analytical device integrated with ion imprinted polymer for Zn2+ quantification in human urine samples. The Analyst, 149(11), 3161–3168. https://doi.org/10.1039/D4AN00076E

23. Low, S. C., Azmi, N. A. B., Ong, C. S., Lim, J. K. (2022). Environmental monitoring of trace metal pollutants using cellulosic-paper incorporating color change of azo-chromophore. Environmental Science and Pollution Research, 29(47), 71614– 71631. https://doi.org/10.1007/s11356-022-20706-z

24. Iwantscheff, V. G. (1958). Das dithizon und seine anwendung in der mikro -und spurenanalyse. Verlag Chemie, Weinheiml/ Bergstr., 450.

25. Lu, J., Zhang, H., Cao, W., Jiang, S., Fang, H., Yu, D. et al. (2023). Study on the zinc nutritional status and risk factors of Chinese 6–18-year-old children. Nutrients, 15(7), Article 1685. https://doi.org/10.3390/nu15071685

26. Sui, L., Du, Q., Romer, A., Su, Q., Chabosseau, P. L., Xin, Y. et al. (2023). ZnT8 loss of function mutation increases resistance of human embryonic stem cellderived beta cells to apoptosis in low zinc condition. Cells, 12(6), Article 903. https://doi.org/10.3390/cells12060903

27. Uddin, M. N., Kaczmarczyk, A., Vincze, E. (2014). Effects of Zn fertilization on hordein transcripts at early developmental stage of barley grain and correlation with increased Zn concentration in the mature grain. PLoS ONE, 9(9), Article e108546. https://doi.org/10.1371/journal.pone.0108546

28. Dionisio, G., Uddin, M. N., Vincze, E. (2018). Enrichment and identification of the most abundant zinc binding proteins in developing barley grains by Zinc-IMAC capture and nano LC–MS/MS. Proteomes, 6(1), Article 3. https://doi.org/10.3390/proteomes6010003

29. Mou, L., Martini, P., Pupillo, G., Cieszykowska, I., Cutler, C. S., Mikołajczak, R. (2022). 67Cu production capabilities: A mini review. Molecules, 27(5), Ar ticle 1501. https://doi.org/10.3390/molecules27051501

30. Blinov, A.V., Serov, A.V., Kravtsov, A.A., Kaznacheev, Ya.V. (2018). The structure of zinc lysinate — riboflavinate colloid particles. Modern Science and Innovations, 1, 67–72. (In Russian)

31. Gorbachev, V., Nikitin, I., Velina, D., Klokonos, M., Mutallibzoda, S., Tefikova, S. et al. (2024). Rosebay willowherb (Chamerion angustifolium) in food products: Evaluation of the residual anti-radical activity of polyphenol compounds and Nacetylcystein. Current Nutrition and Food Science, 20(2), 220–226. https://doi.org/10.2174/1573401319666230330095521

32. Lindon, J. C. (2000). Encyclopedia of Spectroscopy and Spectrometry. Academic Press, 2000.

33. Miller, W. J. (1970). Zinc nutrition of cattle: A review. Journal of Dairy Science, 53(8), 1123–1135. https://doi.org/10.3168/jds.S0022-0302(70)86355-X

34. Saper, R. B., Rash, R. (2009). Zinc: An essential micronutrient. American Family Physician, 79(9), 768–772.

35. Tsang, B. L., Holsted, E., McDonald, C. M., Brown, K. H., Black, R., Mbuya, M. N. N. et al. (2021). Effects of foods fortified with Zinc, alone or cofortified with multiple micronutrients, on health and functional outcomes: A systematic review and meta-analysis. Advances in Nutrition, 12(5), 1821–1837. https://doi.org/10.1093/advances/nmab065

36. Udechukwu, M. C., Collins, S. A., Udenigwe, C. C. (2016). Prospects of enhancing dietary zinc bioavailability with food-derived zinc-chelating peptides. Food Function, 7(10), 4137–4144. https://doi.org/10.1039/c6fo00706f

37. Gandia, P., Bour, D., Maurette, J.-M., Donazzolo, Y., Duchène, P., Béjot, M. et al. (2007). A bioavailability study comparing two oral formulations containing zinc (Zn Bis-Glycinate vs. Zn Gluconate) after a single administration to twelve healthy female volunteers. International Journal for Vitamin and Nutrition Research, 77(4), 243–248. https://doi.org/10.1024/0300-9831.77.4.243


Review

For citations:


Gorbachev V.V., Nikitin I.A., Tikhonov S.L., Balashova M.S., Tefikova S.N., Ziborov D.M., Velina D.A., Kleyn E.E. Assessment of the prospects of using chelated forms of zinc to create new types of food products. Food systems. 2024;7(4):568-574. (In Russ.) https://doi.org/10.21323/2618-9771-2024-7-4-568-574

Views: 958


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)