Протеомные методы разделения и идентификации белков молока
https://doi.org/10.21323/2618-9771-2024-7-4-560-567
Аннотация
В обзоре представлены наиболее распространенные методы протеомики, основанные на разделении и идентификации белков, с примерами их использования для исследования белковой системы молока и молочных продуктов. Описана сущность электрофоретических и хроматографических методов разделения белков и пептидов и их идентификации с помощью вестерн-блоттинга и масс-спектрометрии. Приведены основные разновидности методов электрофореза (нативный, двумерный, в полиакриламидном геле с мочевиной, иммуноэлектрофорез, капиллярный) и методов хроматографии (газовая, жидкостная, ионообменная, гель-фильтрация, аффинная). Отмечено, что основным направлением исследований с применением указанных методов, имеющим как научное, так и прикладное значение, является выявление фальсификаций состава молока и молочных продуктов. Такие фальсификации связаны с преднамеренным добавлением сухого молока и подсырной сыворотки, а также с подменой молока-сырья на молоко других животных, что недопустимо при производстве сыров с защищенным наименованием места происхождения (PDO) или с защищенным географическим указанием (PGI). Другим важным направлением исследований является изучение протеолитических процессов, протекающих при созревании сыров. На основании этих процессов можно устанавливать степень зрелости сыра и его видовую принадлежность, которая зависит от технологии изготовления. Учитывая многообразный ассортимент сыров разных стран, таких исследований явно недостаточно.
Ключевые слова
Об авторах
О. В. ЛепилкинаРоссия
Лепилкина Ольга Валентиновна — доктор технических наук, главный научный сотрудник, отдел физической химии
152613, Ярославская обл., Углич, Красноармейский бульвар, 19
Tel.: +7–910–965–51–61
А. И. Григорьева
Россия
Григорьева Анастасия Игоревна — младший научный сотрудник, отдел физической химии
152613, Ярославская обл., Углич, Красноармейский бульвар, 19
Tel.: +7–901–051–62–46
Список литературы
1. Goulding, D. A., Fox, P. F., O’ Mahony, J. A. (2020). Milk proteins: An overview. Chapter in a book: Milk Proteins (Third Edition). Academic Press, 2020. https://doi.org/10.1016/b978-0-12-815251-5.00002-5
2. Buzás, H., Székelyhidi, R., Szafner, G., Szabó, K., Süle, J., Bukovics, S. et al. (2022). Developed rapid and simple RP-HPLC method for simultaneous separation and quantification of bovine milk protein fractions and their genetic variants. Analytical Biochemistry, 658, Article 114939. https://doi.org/10.1016/j.ab.2022.114939
3. Caroli, A. M., Savino, S., Bulgari, O., Monti, E. (2016). Detecting β-casein variation in bovine milk. Molecules, 21(2), Article 141. https://doi.org/10.3390/molecules21020141
4. Xiao, J., Wang, J., Gan, R., Wu, D., Xu, Y., Peng, L. et al. (2022). Quantitative Nglycoproteome analysis of bovine milk and yogurt. Current Research in Food Science, 5, 182–190. https://doi.org/10.1016/j.crfs.2022.01.003
5. Stastna, M. (2024). Advances in separation and identification of biologically important milk proteins and peptides. Electrophoresis, 45(1–2), 101–119. https://doi.org/10.1002/elps.202300084
6. Baptista, D. P., Gigante, M. L. (2021). Bioactive peptides in ripened cheeses: Release during technological processes and resistance to the gastrointestinal tract. Journal of the Science of Food and Agriculture, 101(10), 4010–4017. https://doi.org/10.1002/jsfa.11143
7. Lorieau, L., Halabi, A., Ligneul, A., Hazart, E., Dupont, D., Floury, J. (2018). Impact of the dairy product structure and protein nature on the proteolysis and amino acid bioaccessiblity during in vitro digestion. Food Hydrocolloids, 82, 399–411. https://doi.org/10.1016/j.foodhyd.2018.04.019
8. Beil, Е, Holland J. W., Boland, М. (2020). Post-translational modifications of caseins. Chapter in a book: Milk Proteins (Third Edition). Academic Press, 2020. https://doi.org/10.1016/b978-0-12-815251-5.00005-0
9. Rout, Р. К., Verma, М. (2021). Post translational modifications of milk proteins in geographically diverse goat breeds. Scientific Reports, 11(1), Article 5619. https://doi.org/10.1038/s41598-021-85094-9
10. Leduc, A., Le Guillou, S., Bianchi, L., Correia, L. O., Gelé, M., Pires, J. et al. (2022). Milk proteins as a feed restriction signature indicating the metabolic adaptation of dairy cows. Scientific Reports, 12(1), Article 18886. https://doi.org/10.1038/S41598-022-21804-1
11. Lu, J., Antunes Fernandes, E., Páez Cano, A. E., Vinitwatanakhun, J., Boeren, S., van Hooijdonk, T. et al. (2013). Changes in milk proteome and metabolome associated with dry period length, energy balance, and lactation stage in postparturient dairy cows. Journal of Proteome Research, 12(7), 3288–3296. https://doi.org/10.1021/pr4001306
12. Olumee-Shabon, Z., Boehmer, J. L. (2018). Proteomic analysis of goat milk.Chapter in a book: Goat Science. InTech, 2018. https://doi.org/10.5772/intechopen.70082
13. Ceciliani, F., Eckersall, D., Burchmore, R., Lecchi, C. (2014). Proteomics in veterinary medicine: Applications and trends in disease pathogenesis and diagnostics. Veterinary Pathology, 51(2), 351–362. https://doi.org/10.1177/0300985813502819
14. Aalaei, K., Rayner, M., Sjöholm, I. (2019). Chemical methods and techniques to monitor early Maillard reaction in milk products; A review. Critical Reviews in Food Science and Nutrition, 59(12), 1829–1839. https://doi.org/10.1080/10408398.2018.1431202
15. Башаева, Д. В., Хаертдинов, Р. Р. (2008). Изменение белков молока при тепловой обработке. Молочная промышленность, 7, 74–75.
16. Балакирева, Ю. В., Зайцев, С. Ю., Каримова, Ф. Г., Акулов, А. Н., Ахмадуллина, Ф. Ю. (2012). Влияние режима пастеризации на полипептидный состав молока. Фундаментальные исследования, 2–1, 170–173.
17. Щербакова, Ю. В., Акулов, А. Н., Ахмадуллина, Ф. Ю., Каримова, Ф. Г. (2015). Электрофоретические исследования влияния тепловой обработки на полипептидный состав молока. Фундаментальные исследования, 2–16, 3544– 3548
18. Vasbinder, A. J., de Kruif, C. G. (2003). Casein–whey protein interactions in heated milk: The influence of pH. International Dairy Journal, 13(8), 669–677. https://doi.org/10.1016/s0958-6946(03)00120-1
19. Банникова, А. В., Евдокимов, И. А. (2015). Функционально-технологические свойства сывороточных белковых продуктов: влияние изменений условий среды и вида обработки. Молочная промышленность, 2, 42–44.
20. Лепилкина, О. В., Григорьева, А. И. (2023). Ферментативный протеолиз при преобразовании молока в сыр. Пищевые системы, 6(1), 36–45. https://doi.org/10.21323/2618-9771-2023-6-1-36-45
21. Ardö, Y. (2021). Enzymes in cheese ripening. Chapter in a book: Agents of Change. Food Engineering Series. Springer, Cham, 2021. https://doi.org/10.1007/978-3-030-55482-8_15
22. Кручинин, А. Г., Агаркова, Е. Ю. (2020). Биологически активные пептиды молока: обзор. Пищевая промышленность, 12, 92–96. https://doi.org/10.24411/0235-2486-2020-10151
23. Милентьева, И. С, Давыденко, Н. И., Расщепкин, А. Н. (2020). Подбор рабочих параметров для проведения направленного протеолиза казеина с целью получения биопептидов. Техника и технология пищевых производств, 50(4), 726–735. https://doi.org/10.21603/2074-9414-2020-4-726-735
24. Patterson, S. D., Aebersold, R. H. (2003). Proteomics: The first decade and beyond. Nature Genetics, 33(S3), 311–323. https://doi.org/10.1038/ng1106
25. Anderson, N. L., Anderson, N. G. (1998). Proteome and proteomics: New technologies, new concepts, and new words. Electrophoresis, 19(11), 1853–1861. https://doi:10.1002/elps.1150191103
26. Lund, M., Jönsson, B. (2005). On the charge regulation of proteins. Biochemistry, 44(15), 5722–5727. https://doi.org/10.1021/bi047630o
27. Sharma, N., Sharma, R., Rajput, Y. S., Mann, B., Singh, R., Gandhi, K. (2021). Separation methods for milk proteins on polyacrylamide gel electrophoresis: Critical analysis and options for better resolution. International Dairy Journal, 114, Article 104920. https://doi.org/10.1016/j.idairyj.2020.104920
28. Pesic, M., Barac, M., Vrvic, M., Ristic, N., Macej, O., Stanojevic, S. (2011). Qualitative and quantitative analysis of bovine milk adulteration in caprine and ovine milks using native-PAGE. Food Chemistry, 125(4), 1443–1449. https://doi.org/10.1016/j.foodchem.2010.10.045
29. Pesic, M. B., Barac, M. B., Stanojevic, S. P., Ristic, N. M., Macej, O. D., Vrvic, M. M. (2012). Heat induced casein–whey protein interactions at natural pH of milk: A comparison between caprine and bovine milk. Small Ruminant Research, 108(1–3), 77–86. https://doi.org/10.1016/j.smallrumres.2012.06.013
30. O’Farrell, P. H. (1975). High resolution two-dimensional electrophoresis of proteins. Journal of Biological Chemistry, 250(10), 4007–4021. https://doi.org/10.1016/S0021-9258(19)41496-8
31. Rabilloud, T., Chevallet, M., Luche, S., Lelong, C. (2010). Two-dimensional gel electrophoresis in proteomics: Past, present and future. Journal of Proteomics, 73(11), 2064–2077. https://doi.org/10.1016/j.jprot.2010.05.016
32. Wilkins, M. R., Sanchez, J.-C., Gooley, A. A., Appel, R. D., Humphery-Smith, I., Hochstrasser, D. F. et al. (1996). Progress with proteome projects: Why all proteins expressed by a genome should be identified and how to do it. Biotechnology and Genetic Engineering Reviews, 13(1), 19–50. https://doi.org/10.1080/02648725.1996.10647923
33. Klose, J., Kobalz, U. (1995). Two-dimensional electrophoresis of proteins: An updated protocol and implications for a functional analysis of the genome. Electrophoresis, 16(1), 1034–1059. https://doi.org/10.1002/elps.11501601175
34. Westermeier, R. (2014). Looking at proteins from two dimensions: A review on five decades of 2D electrophoresis. Archives of Physiology and Biochemistry, 120(5), 168–172. https://doi.org/10.3109/13813455.2014.945188
35. Roy, S., Kumar, V. (2014). A practical approach on SDS PAGE for separation of protein. International Journal of Science and Research, 3(8), 955–960.
36. Boehmer, J. L., Bannerman, D. D., Shefcheck, K., Ward, J. L. (2008). Proteomic analysis of differentially expressed proteins in bovine milk during experimentally induced Escherichia coli mastitis. Journal of Dairy Science, 91(11), 4206–4218. https://doi.org/10.3168/Jds.2008-1297
37. Van Hekken, D. L., Thompson, M. P. (1992). Application of PhastSystem® to the resolution of bovine milk proteins on urea-polyacrylamide gel electrophoresis. Journal of Dairy Science, 75(5), 1204–1210. https://doi.org/10.3168/Jds.S0022-0302(92)77868-0
38. Mane, A., McSweeney, P. L. H. (2019). Proteolysis in Irish farmhouse Camembert cheese during ripening. Journal of Food Biochemistry, 44(1), Article e13101. https://doi.org/10.1111/jfbc.13101
39. Gentile, F., Veneziani, B. M., Sellitto, C. (1997). Polyacrylamide gel electrophoresis in discontinuous transverse urea-gradient gels. Analytical Biochemistry, 244(2), 228–232. https://doi.org/10.1006/abio.1996.9863
40. Kalnine, N. N., Schachman, H. K. (2002). Quantitative urea gradient gel electrophoresis for studies of dissociation and unfolding of oligomeric proteins. Biophysical Chemistry, 101–102, 133–144. https://doi.org/10.1016/s0301-4622(02)00154-0
41. Aurand, L. W., Brown, J. W., Lecce, J. G. (1963). Effect of heat on the proteins of milk as revealed by gel and immunoelectrophoresis. Journal of Dairy Science, 46(11), 1177–1182. https://doi.org/10.3168/Jds.S0022-0302(63)89241-3
42. Martinez-Resa, P., Alvarez-Moreno, C., Hermida, F., Chordi, A. (1969). Identification by immunoelectrophoresis of bovine milk proteins. Journal of Dairy Science, 52(1), 1–7. https://doi.org/10.3168/jds.s0022-0302(69)86490-8
43. Bjerrum, O. J. (1975). Quantitative immunoelectrophoresis for comparative analysis of membrane proteins from various mammalian species. International Journal of Biochemistry, 6(7), 513–519. https://doi.org/10.1016/0020-711x(75)90032-4
44. Nielsen, C. S., Bjerrum, O. J. (1977). Crossed immunoelectrophoresis of bovine milk fat globule membrane protein solubilized with non-ionic detergent. Biochimica et Biophysica Acta (BBA)-Biomembranes, 466(3), 496–509. https://doi.org/10.1016/0005-2736(77)90342-x
45. Mather, I. H., Tamplin, C. B., Irving, M. G. (1980). Separation of the proteins of bovine milk-fat-globule membrane by electrofocusing with retention of enzymatic and immunological activity. European Journal of Biochemistry, 110(2), 327–336. https://doi.org/10.1111/J.1432-1033.1980.tb04871.x
46. Крюченко, Е. В., Замула, В. С., Кузлякина, Ю. А., Чернуха, И. М. (2020). Обзор современных методов обнаружения аллергенов в пищевой продукции. Все о мясе, 5S, 169–172. https://doi.org/10.21323/2071-2499-2020-5S169-172
47. Зипаев, Д. В., Тулина, А. А., Кожухов, А. Н. (2020). Использование метода капиллярного электрофореза в оценке пищевых продуктов и напитков. Вестник Воронежского государственного университета инженерных технологий, 82(1), 82–87. https://doi.org/10.20914/2310-1202-2020-1-82-87
48. Карцова, Л. А., Макеева, Д. В., Бессонова, Е. А. (2020). Современное состояние метода капиллярного электрофореза. Журнал аналитической химии, 75(12), 1059–1079. https://doi.org/10.31857/S0044450220120087
49. De Jong, N., Visser, S., Olieman, C. (1993). Determination of milk proteins by capillary electrophoresis. Journal of Chromatography A, 652(1), 207–213. https://doi.org/10.1016/0021-9673(93)80661-q
50. Cartoni, G., Coccioli, F., Jasionowska, R., Masci, M. (1999). Determination of cows’ milk in goats’ milk and cheese by capillary electrophoresis of the whey protein fractions. Journal of Chromatography A, 846(1–2), 135–141. https://doi.org/10.1016/s0021–9673(98)01032–2
51. Chen, F.-T. A., Zang, J.-H. (1992). Determination of milk proteins by capillary electrophoresis. Journal of AOAC International, 75(5), 905–909. https://doi.org/10.1093/jaoac/75.5.905
52. D’Incecco, P., Limbo, S., Hogenboom, J., Rosi, V., Gobbi, S., Pellegrino, L. (2020). Impact of extending hard-cheese ripening: A multiparameter characterization of parmigiano reggiano cheese ripened up to 50 months. Foods, 9(3), Article 268. https://doi.org/10.3390/foods9030268
53. Masotti, F., De Noni, I., Cattaneo, S., Brasca, M., Rosi, V., Stuknyte, M. et al. (2013). Occurrence, origin and fate of pyroglutamyl-γ3-casein in cheese. International Dairy Journal, 33(2), 90–96. https://doi.org/10.1016/j.idairyj.2013.06.002
54. Alves, L. S., Merheb-Dini, C., Gomes, E., da Silva, R., Gigante, M. L. (2013). Yield, changes in proteolysis, and sensory quality of Prato cheese produced with different coagulants. Journal of Dairy Science, 96(12), 7490–7499. https://doi.org/10.3168/jds.2013-7119
55. Ardö, Y., McSweeney, P. L. H., Magboul, A. A. A., Upadhyay, V. K., Fox, P. F. (2017). Biochemistry of cheese ripening: Proteolysis. Chapter in a book: Cheese: Chemistry, Physics and Microbiology. Academic Press, 2017. https://doi.org/10.1016/b978-0-12-417012-4.00018-1
56. Pellegrino, L., Hogenboom, J. A., Rosi, V., D’Incecco, P. (2021). Evaluating the authenticity of the raw-milk cheese fontina (PDO) with respect to similar cheeses. Foods, 10(2), Article 350. https://doi.org/10.3390/foods10020350
57. Ghafoori, Z., Tehrani, T., Pont, L., Benavente, F. (2022). Separation and characterization of bovine milk proteins by capillary electrophoresis-mass spectrometry. Journal of Separation Science, 45(18), 3614–3623. https://doi.org/10.1002/Jssc.202200423
58. Maslov, B. L. (2023). Biochemistry of aroma compounds in cheese. Mljekarstvo, 73(4), 211–224. https://doi.org/10.15567/Mljekarstvo.2023.0401
59. McSweeney, P. L. H., Sousa, M. J. (2000). Biochemical pathways for the production of flavour compounds in cheeses during ripening: A review. Le Lait, 80(3), 293–324. https://doi.org/10.1051/Lait:2000127
60. Henke, H. (1999). Liquid Chromatography. Vogel Business Media, 1999. (In German)
61. Рудаков, О. Б., Рудакова, Л. В. (2019). Аминокислотный анализ белков молока. Переработка молока, 12(242), 32–35. https://doi.org/10.33465/2222-5455-2019-12-32-35
62. Волнин, А. А., Шералиев, Ф. Д., Шапошников, М. Н., Зайцев, С. Ю., Багиров, В. А. (2017). Применение ионообменной хроматографии при оценке биологической ценности белков молока овец. Актуальные вопросы биологической физики и химии, 2(1), 494–498.
63. Мягконосов, Д. С., Мордвинова, В. А., Абрамов, Д. В., Делицкая, И. Н. (2014). Особенности протеолиза у сыров различных видовых групп. Сыроделие и маслоделие, 2, 24–27. [
64. Метель, В. С., Куликова, И. К., Анисимов, Г. С. (2018). Анализ современных методов фракционирования молочного сырья. Вестник Северо-Кавказского федерального университета, 2(65), 27–32.
65. Насибулин, Р. Р., Николаев, А. А. (2021). Разработка способа выделения лактоферрина верблюда. Международный журнал прикладных и фундаментальных исследований, 6, 11–16.
66. Öztürk, S., Demir, N. (2021). Development of a novel IMAC sorbent for the identification of melamine in dairy products by HPLC. Journal of Food Composition and Analysis, 100, Article 103931. https://doi.org/10.1016/j.jfca.2021.103931
67. Moritz, C. P. (2020). 40 years Western blotting: A scientific birthday toast. Journal of Proteomics, 212, Article 103575. https://doi.org/10.1016/J.jprot.2019.103575
68. Naryzhny, S. N. (2009). Blue Dry Western: Simple, economic, informative, and fast way of immunodetection. Analytical Biochemistry, 392(1), 90–95. https://doi.org/10.1016/J.ab.2009.05.037
69. Kurien B. T., Scofield, R. H. (2006). Western blotting. Methods, 38(4), 283–293. https://doi.org/10.1016/j.ymeth.2005.11.007
70. Omondi, C., Chou, A., Fond, K. A., Morioka, K., Joseph, N. R., Sacramento, J. A. et al. (2024). Improving rigor and reproducibility in western blot experiments with the blotRig analysis Scientific Reports, 14(1), Article 21644. https://doi.org/10.1038/s41598-024-70096-0
71. Towbin, H., Staehelin, T., Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proceedings of the National Academy of Sciences, 76(9), 4350–4354. https://doi.org/10.1073/pnas.76.9.4350
72. Burnette, W. N. (1981). «Western blotting»: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Analytical Biochemistry, 112(2), 195–203. https://doi.org/10.1016/0003-2697(81)90281-5
73. Recalde-Reyes, D. P., Calderon, J. L. (2023). Electroforesis de proteínas y Western blot DENV. protocols.io. https://doi.org/10.17504/protocols.io.kxygx963dg8j/v1
74. Chávez, N. A., Salinas, E., Jauregui, J., Palomares, L. A., Macías, K. (2008). Detection of bovine milk adulterated with cheese whey by western blot immunoassay. Food and Agricultural Immunology, 19(4), 265–272. https://doi.org/10.1080/09540100802381042
75. Vera-Bravo, R., Hernández, A. V., Peña, S., Alarcón, C., Loaiza, A. E., Celis, C. A. (2022). Cheese whey milk adulteration determination using casein glycomacropeptide as an indicator by HPLC. Foods, 11(20), Article 3201. https://doi.org/10.3390/foods11203201
76. Molina, E., Amigo, L., Ramos, M. (1998). Detection of bovine milk proteins in soymilk by western blotting. Journal of Food Protection, 61(12), 1691–1694. https://doi.org/10.4315/0362-028X61.12.1691
77. Molina, E., Fernández-Fournier, A., De Frutos, M., Ramos, M. (1996). Western blotting of native and denatured bovine β-lactoglobulin to detect addition of bovine milk in cheese. Journal of Dairy Science, 79(2), 191–197. https://doi.org/10.3168/Jds.S0022-0302(96)76350-6
78. Dişhan, A., Gönülalan, Z., Alparslan, Y. (2019). Comparative analysis of cow and water buffalo milk casein fractions by Western Blotting. Fırat University Veterinary Journal of Health Sciences, 33(2), 77–82.
79. Merkley, E. D., Kaiser, B. L. D., Kreuzer, Н. (2019). A proteomics tutorial. Chapter in a Вook: Applications in Forensic Proteomics: Protein Identification and Profiling. American Chemical Society, 2019. https://doi.org/10.1021/bk2019-1339.ch002
80. Gross, J. H. (2019). Massenspectrometrie: Spektroskopiekurs kompakt. Springer Spektrum, 2019.
81. Лебедев, А. Т., Артеменко, К. А., Самгина, Т. Ю. (2012). Основы масс-спектрометрии белков и пептидов. М.: Техносфера, 2012.
82. Bouroutzika, Е., Proikakis, S., Anagnostopoulos, А. К., Katsafadou, А. I., Fthenakis, G. C., Tsangaris, G. Th. (2021). Proteomics analysis in dairy products: Cheese, a review. Applied Sciences, 11(16), Article 7622. https://doi.org/10.3390/app11167622
83. Mehrasbi, M. R., Peyda, M., Feizolahi, R., Taromi, A., Homayuni, P., Fathi, S. et al. (2023). Comparison of three digestion methods for determination of lead and cadmium in milk and dairy products. Environmental Health Engineering and Management, 10(2), 191–196. https://doi.org/10.34172/ehem.2023.21
84. Sibanda, T., Marole, T. A., Thomashoff, U., Thantsha, M., Buys, E. (2024). Bifidobacterium species viability in dairy-based probiotic foods: Challenges and innovative approaches for accurate viability determination and monitoring of probiotic functionality. Frontiers in Microbiology, 15, Article 1327010. https://doi.org/10.3389/fmicb.2024.1327010
85. Chang, J., Zhou, J., Gao, M., Zhang, H., Wang, T. (2022). Research advances in the analysis of estrogenic endocrine disrupting compounds in milk and dairy products. Foods, 11(19), Article 3057. https://doi.org/10.3390/Foods11193057
86. Calvano, C. D., Monopoli, A., Loizzo, P., Faccia, M., Zambonin, C. (2013). Proteomic approach based on MALDI-TOF MS to detect powdered milk in fresh cow’s milk. Journal of Agricultural and Food Chemistry, 61(8), 1609–1617. https://doi.org/10.1021/jf302999s
Рецензия
Для цитирования:
Лепилкина О.В., Григорьева А.И. Протеомные методы разделения и идентификации белков молока. Пищевые системы. 2024;7(4):560-567. https://doi.org/10.21323/2618-9771-2024-7-4-560-567
For citation:
Lepilkina O.V., Grigorieva A.I. Proteomic methods for separation and identification of milk proteins. Food systems. 2024;7(4):560-567. (In Russ.) https://doi.org/10.21323/2618-9771-2024-7-4-560-567