Proteomic methods for separation and identification of milk proteins
https://doi.org/10.21323/2618-9771-2024-7-4-560-567
Abstract
The review presents the most common proteomics methods based on separation and identification of proteins, with examples of their use for studying the protein system of milk and dairy products. The essence of electrophoretic and chromatographic methods for separating proteins and peptides and their identification using Western blotting and mass spectrometry is described. The main types of electrophoresis methods (native, two-dimensional, in polyacrylamide gel with urea, immunoelectrophoresis, capillary) and chromatography methods (gas, liquid, ion exchange, gel filtration, affinity) are given. It is noted that the main direction of research using these methods, which has both scientific and applied significance, is the detection of falsifications in the composition of milk and dairy products. Such falsifications are associated with the deliberate addition of dry milk and cheese whey, as well as with the replacement of raw milk by milk from other animals, which is unacceptable in the production of cheeses with a protected designation of origin (PDO) or a protected geographical indication (PGI). Another area is research into the proteolytic processes that occur during the maturation of cheeses, on the basis of which their degree of maturity and species can be determined depending on the manufacturing technology. Given the wide range of cheeses from different countries, such research is clearly insufficient.
Keywords
About the Authors
O. V. LepilkinaRussian Federation
Olga. V. Lepilkina, Doctor of Technical Sciences, Leading Scientific Worker, Department of Physical Chemistry
19, Krasnoarmeysky Boulevard, 152613, Yaroslavl Region, Uglich
Tel.: +7–910–965–51–61
A. I. Grigorieva
Russian Federation
Anastasija I. Grigorieva, Junior Researcher, Department of Physical Chemistry
19, Krasnoarmeysky Boulevard, 152613, Yaroslavl Region, Uglich
Tel.: +7–901–051–62–46
References
1. Goulding, D. A., Fox, P. F., O’ Mahony, J. A. (2020). Milk proteins: An overview. Chapter in a book: Milk Proteins (Third Edition). Academic Press, 2020. https://doi.org/10.1016/b978-0-12-815251-5.00002-5
2. Buzás, H., Székelyhidi, R., Szafner, G., Szabó, K., Süle, J., Bukovics, S. et al. (2022). Developed rapid and simple RP-HPLC method for simultaneous separation and quantification of bovine milk protein fractions and their genetic variants. Analytical Biochemistry, 658, Article 114939. https://doi.org/10.1016/j.ab.2022.114939
3. Caroli, A. M., Savino, S., Bulgari, O., Monti, E. (2016). Detecting β-casein variation in bovine milk. Molecules, 21(2), Article 141. https://doi.org/10.3390/molecules21020141
4. Xiao, J., Wang, J., Gan, R., Wu, D., Xu, Y., Peng, L. et al. (2022). Quantitative Nglycoproteome analysis of bovine milk and yogurt. Current Research in Food Science, 5, 182–190. https://doi.org/10.1016/j.crfs.2022.01.003
5. Stastna, M. (2024). Advances in separation and identification of biologically important milk proteins and peptides. Electrophoresis, 45(1–2), 101–119. https://doi.org/10.1002/elps.202300084
6. Baptista, D. P., Gigante, M. L. (2021). Bioactive peptides in ripened cheeses: Release during technological processes and resistance to the gastrointestinal tract. Journal of the Science of Food and Agriculture, 101(10), 4010–4017. https://doi.org/10.1002/jsfa.11143
7. Lorieau, L., Halabi, A., Ligneul, A., Hazart, E., Dupont, D., Floury, J. (2018). Impact of the dairy product structure and protein nature on the proteolysis and amino acid bioaccessiblity during in vitro digestion. Food Hydrocolloids, 82, 399–411. https://doi.org/10.1016/j.foodhyd.2018.04.019
8. Beil, Е, Holland J. W., Boland, М. (2020). Post-translational modifications of caseins. Chapter in a book: Milk Proteins (Third Edition). Academic Press, 2020. https://doi.org/10.1016/b978-0-12-815251-5.00005-0
9. Rout, Р. К., Verma, М. (2021). Post translational modifications of milk proteins in geographically diverse goat breeds. Scientific Reports, 11(1), Article 5619. https://doi.org/10.1038/s41598-021-85094-9
10. Leduc, A., Le Guillou, S., Bianchi, L., Correia, L. O., Gelé, M., Pires, J. et al. (2022). Milk proteins as a feed restriction signature indicating the metabolic adaptation of dairy cows. Scientific Reports, 12(1), Article 18886. https://doi.org/10.1038/S41598-022-21804-1
11. Lu, J., Antunes Fernandes, E., Páez Cano, A. E., Vinitwatanakhun, J., Boeren, S., van Hooijdonk, T. et al. (2013). Changes in milk proteome and metabolome associated with dry period length, energy balance, and lactation stage in postparturient dairy cows. Journal of Proteome Research, 12(7), 3288–3296. https://doi.org/10.1021/pr4001306
12. Olumee-Shabon, Z., Boehmer, J. L. (2018). Proteomic analysis of goat milk.Chapter in a book: Goat Science. InTech, 2018. https://doi.org/10.5772/intechopen.70082
13. Ceciliani, F., Eckersall, D., Burchmore, R., Lecchi, C. (2014). Proteomics in veterinary medicine: Applications and trends in disease pathogenesis and diagnostics. Veterinary Pathology, 51(2), 351–362. https://doi.org/10.1177/0300985813502819
14. Aalaei, K., Rayner, M., Sjöholm, I. (2019). Chemical methods and techniques to monitor early Maillard reaction in milk products; A review. Critical Reviews in Food Science and Nutrition, 59(12), 1829–1839. https://doi.org/10.1080/104083 98.2018.1431202
15. Bashaeva, D. V., Khaerdinov, R. R. (2008). Changes in milk proteins at heat treatment. Dairy Industry, 7, 74–75. (In Russian)
16. Balakireva J. V., Zaitsev C. Y., Karimova F. G., Akulov A. N., Ahmadullina F. U. (2012). Influence of treatment pasteurization to polypeptide composition of milk. Fundamental Research, 2–1, 170–173. (In Russian)
17. Scherbakova, Y. V., Akulov, A. N., Akhmadullina, F. Y., Karimova, F. G. (2015). Electrophoretic research of influence heart treatment to cow milk’s polypeptides. Fundamental Research, 2–16, 3544–3548. (In Russian)
18. Vasbinder, A. J., de Kruif, C. G. (2003). Casein–whey protein interactions in heated milk: The influence of pH. International Dairy Journal, 13(8), 669–677. https://doi.org/10.1016/s0958-6946(03)00120-1
19. Bannikova, A. V., Evdokimov, I. A. (2015). Functional and technological properties of whey protein products: Effects of the changes of environmental conditions and type of treatment. Dairy Industry, 2, 42–44. (In Russian)
20. Lepilkina, O. V., Grigorieva, A. I. (2023). Enzymatic proteolysis during the conversion of milk into cheese. Food Systems, 6(1), 36–45. (In Russian) https://doi.org/10.21323/2618-9771-2023-6-1-36-45
21. Ardö, Y. (2021). Enzymes in cheese ripening. Chapter in a book: Agents of Change. Food Engineering Series. Springer, Cham, 2021. https://doi.org/10.1007/978-3-030-55482-8_15
22. Kruchinin A. G., Agarkova E. Yu. (2020). Biologically active peptides of milk: A review. Food Industry, 12, 92–96. (In Russian) https://doi.org/10.24411/0235-2486-2020-10151
23. Milentyeva, I. S., Davydenko, N. I., Rasshchepkin, A. N. (2020). Casein proteolysis in bioactive peptide production: Optimal operating parameters. Food Processing: Techniques and Technology, 50(4), 726–735. (In Russian) https://doi.org/10.21603/2074-9414-2020-4-726-735
24. Patterson, S. D., Aebersold, R. H. (2003). Proteomics: The first decade and beyond. Nature Genetics, 33(S3), 311–323. https://doi.org/10.1038/ng1106
25. Anderson, N. L., Anderson, N. G. (1998). Proteome and proteomics: New technologies, new concepts, and new words. Electrophoresis, 19(11), 1853–1861. https://doi:10.1002/elps.1150191103
26. Lund, M., Jönsson, B. (2005). On the charge regulation of proteins. Biochemistry, 44(15), 5722–5727. https://doi.org/10.1021/bi047630o
27. Sharma, N., Sharma, R., Rajput, Y. S., Mann, B., Singh, R., Gandhi, K. (2021). Separation methods for milk proteins on polyacrylamide gel electrophoresis: Critical analysis and options for better resolution. International Dairy Journal, 114, Article 104920. https://doi.org/10.1016/j.idairyj.2020.104920
28. Pesic, M., Barac, M., Vrvic, M., Ristic, N., Macej, O., Stanojevic, S. (2011). Qualitative and quantitative analysis of bovine milk adulteration in caprine and ovine milks using native-PAGE. Food Chemistry, 125(4), 1443–1449. https://doi.org/10.1016/j.foodchem.2010.10.045
29. Pesic, M. B., Barac, M. B., Stanojevic, S. P., Ristic, N. M., Macej, O. D., Vrvic, M. M. (2012). Heat induced casein–whey protein interactions at natural pH of milk: A comparison between caprine and bovine milk. Small Ruminant Research, 108(1–3), 77–86. https://doi.org/10.1016/j.smallrumres.2012.06.013
30. O’Farrell, P. H. (1975). High resolution two-dimensional electrophoresis of proteins. Journal of Biological Chemistry, 250(10), 4007–4021. https://doi.org/10.1016/S0021-9258(19)41496-8
31. Rabilloud, T., Chevallet, M., Luche, S., Lelong, C. (2010). Two-dimensional gel electrophoresis in proteomics: Past, present and future. Journal of Proteomics, 73(11), 2064–2077. https://doi.org/10.1016/j.jprot.2010.05.016
32. Wilkins, M. R., Sanchez, J.-C., Gooley, A. A., Appel, R. D., Humphery-Smith, I., Hochstrasser, D. F. et al. (1996). Progress with proteome projects: Why all proteins expressed by a genome should be identified and how to do it. Biotechnology and Genetic Engineering Reviews, 13(1), 19–50. https://doi.org/10.1080/02648725.1996.10647923
33. Klose, J., Kobalz, U. (1995). Two-dimensional electrophoresis of proteins: An updated protocol and implications for a functional analysis of the genome. Electrophoresis, 16(1), 1034–1059. https://doi.org/10.1002/elps.11501601175
34. Westermeier, R. (2014). Looking at proteins from two dimensions: A review on five decades of 2D electrophoresis. Archives of Physiology and Biochemistry, 120(5), 168–172. https://doi.org/10.3109/13813455.2014.945188
35. Roy, S., Kumar, V. (2014). A practical approach on SDS PAGE for separation of protein. International Journal of Science and Research, 3(8), 955–960.
36. Boehmer, J. L., Bannerman, D. D., Shefcheck, K., Ward, J. L. (2008). Proteomic analysis of differentially expressed proteins in bovine milk during experimentally induced Escherichia coli mastitis. Journal of Dairy Science, 91(11), 4206–4218. https://doi.org/10.3168/Jds.2008-1297
37. Van Hekken, D. L., Thompson, M. P. (1992). Application of PhastSystem® to the resolution of bovine milk proteins on urea-polyacrylamide gel electrophoresis. Journal of Dairy Science, 75(5), 1204–1210. https://doi.org/10.3168/Jds.S0022- 0302(92)77868-0
38. Mane, A., McSweeney, P. L. H. (2019). Proteolysis in Irish farmhouse Camembert cheese during ripening. Journal of Food Biochemistry, 44(1), Article e13101. https://doi.org/10.1111/jfbc.13101
39. Gentile, F., Veneziani, B. M., Sellitto, C. (1997). Polyacrylamide gel electrophoresis in discontinuous transverse urea-gradient gels. Analytical Biochemistry, 244(2), 228–232. https://doi.org/10.1006/abio.1996.9863
40. Kalnine, N. N., Schachman, H. K. (2002). Quantitative urea gradient gel electrophoresis for studies of dissociation and unfolding of oligomeric proteins. Biophysical Chemistry, 101–102, 133–144. https://doi.org/10.1016/s0301-4622(02)00154-0
41. Aurand, L. W., Brown, J. W., Lecce, J. G. (1963). Effect of heat on the proteins of milk as revealed by gel and immunoelectrophoresis. Journal of Dairy Science, 46(11), 1177–1182. https://doi.org/10.3168/Jds.S0022-0302(63)89241-3
42. Martinez-Resa, P., Alvarez-Moreno, C., Hermida, F., Chordi, A. (1969). Identification by immunoelectrophoresis of bovine milk proteins. Journal of Dairy Science, 52(1), 1–7. https://doi.org/10.3168/jds.s0022-0302(69)86490-8
43. Bjerrum, O. J. (1975). Quantitative immunoelectrophoresis for comparative analysis of membrane proteins from various mammalian species. International Journal of Biochemistry, 6(7), 513–519. https://doi.org/10.1016/0020-711x(75)90032-4
44. Nielsen, C. S., Bjerrum, O. J. (1977). Crossed immunoelectrophoresis of bovine milk fat globule membrane protein solubilized with non-ionic detergent. Biochimica et Biophysica Acta (BBA)-Biomembranes, 466(3), 496–509. https://doi.org/10.1016/0005-2736(77)90342-x
45. Mather, I. H., Tamplin, C. B., Irving, M. G. (1980). Separation of the proteins of bovine milk-fat-globule membrane by electrofocusing with retention of enzymatic and immunological activity. European Journal of Biochemistry, 110(2), 327–336. https://doi.org/10.1111/J.1432-1033.1980.tb04871.x
46. Kryuchenko, E. V., Zamula, V. S., Kuzlyakina, Yu. A., Chernukha, I. M. (2020). Overview of modern methods for detecting allergens in food. Vsyo o Myase, 5S, 169–172. (In Russian) https://doi.org/10.21323/2071-2499-2020-5S169-172
47. Zipaev, D. V., Tulina, A. A., Kozhukhov, A. N. (2020). The use of capillary electrophoresis in the evaluation of food and beverages. Proceedings of the Voronezh State University of Engineering Technologies, 82(1), 82–87. (In Russian) https://doi.org/10.20914/2310-1202-2020-1-82-87
48. Kartsova, L. A., Makeeva, D. V., Bessonova, E. A. (2020). Current status of capillary electrophoresis. Journal of Analytical Chemistry, 75(12), 1497–1513. (In Russian). https://doi.org/10.31857/S0044450220120087
49. De Jong, N., Visser, S., Olieman, C. (1993). Determination of milk proteins by capillary electrophoresis. Journal of Chromatography A, 652(1), 207–213. https://doi.org/10.1016/0021-9673(93)80661-q
50. Cartoni, G., Coccioli, F., Jasionowska, R., Masci, M. (1999). Determination of cows’ milk in goats’ milk and cheese by capillary electrophoresis of the whey protein fractions. Journal of Chromatography A, 846(1–2), 135–141. https://doi.org/10.1016/s0021–9673(98)01032–2
51. Chen, F.-T. A., Zang, J.-H. (1992). Determination of milk proteins by capillary electrophoresis. Journal of AOAC International, 75(5), 905–909. https://doi.org/10.1093/jaoac/75.5.905
52. D’Incecco, P., Limbo, S., Hogenboom, J., Rosi, V., Gobbi, S., Pellegrino, L. (2020). Impact of extending hard-cheese ripening: A multiparameter characterization of parmigiano reggiano cheese ripened up to 50 months. Foods, 9(3), Article 268. https://doi.org/10.3390/foods9030268
53. Masotti, F., De Noni, I., Cattaneo, S., Brasca, M., Rosi, V., Stuknyte, M. et al. (2013). Occurrence, origin and fate of pyroglutamyl-γ3-casein in cheese. International Dairy Journal, 33(2), 90–96. https://doi.org/10.1016/j.idairyj.2013.06.002
54. Alves, L. S., Merheb-Dini, C., Gomes, E., da Silva, R., Gigante, M. L. (2013). Yield, changes in proteolysis, and sensory quality of Prato cheese produced with different coagulants. Journal of Dairy Science, 96(12), 7490–7499. https://doi.org/10.3168/jds.2013-7119
55. Ardö, Y., McSweeney, P. L. H., Magboul, A. A. A., Upadhyay, V. K., Fox, P. F. (2017). Biochemistry of cheese ripening: Proteolysis. Chapter in a book: Cheese: Chemistry, Physics and Microbiology. Academic Press, 2017. https://doi.org/10.1016/ b978-0-12-417012-4.00018-1
56. Pellegrino, L., Hogenboom, J. A., Rosi, V., D’Incecco, P. (2021). Evaluating the authenticity of the raw-milk cheese fontina (PDO) with respect to similar cheeses. Foods, 10(2), Article 350. https://doi.org/10.3390/foods10020350
57. Ghafoori, Z., Tehrani, T., Pont, L., Benavente, F. (2022). Separation and characterization of bovine milk proteins by capillary electrophoresis-mass spectrometry. Journal of Separation Science, 45(18), 3614–3623. https://doi.org/10.1002/Jssc.202200423
58. Maslov, B. L. (2023). Biochemistry of aroma compounds in cheese. Mljekarstvo, 73(4), 211–224. https://doi.org/10.15567/Mljekarstvo.2023.0401
59. McSweeney, P. L. H., Sousa, M. J. (2000). Biochemical pathways for the production of flavour compounds in cheeses during ripening: A review. Le Lait, 80(3), 293–324. https://doi.org/10.1051/Lait:2000127
60. Henke, H. (1999). Liquid Chromatography. Vogel Business Media, 1999. (In German)
61. Rudakov, O. B., Rudakova, L. V. (2019). Amino acid analysis of milk proteins. Milk Processing, 12(242), 32–35. (In Russian) https://doi.org/10.33465/2222-5455-2019-12-32-35
62. Volnin, A. A., Sheraliev, F. D., Shaposhnikov, M. N., Zaitsev, S. Yu., Bagirov, V. A. (2017). Application of ion-exchange chromatography in assessing the biological value of sheep milk proteins. Russian Journal of Biological Physics and Chemisrty, 2(1), 494–498. (In Russian)
63. Myagkonosov, D. S., Mordvinova, V. A., Abramov, D. V., Delitskaya, I. N. (2014). Special features of proteolysis in different groups of cheese types. Cheese- and Buttermaking, 2, 24–27. (In Russian)
64. Metel’, V., Kulikova, I., Anisimov, G. (2018). Analysis of modern methods of milk protein fractionation. Newsletter of North-Caucasus Federal University, 2(65), 27–32. (In Russian)
65. Nasibulin, R. R., Nikolaev, A. A. (2021). Development of a method for isolation of camel lactoferrin. International Journal of Applied and Fundamental Research, 6, 11–16. (In Russian)
66. Öztürk, S., Demir, N. (2021). Development of a novel IMAC sorbent for the identification of melamine in dairy products by HPLC. Journal of Food Composition and Analysis, 100, Article 103931. https://doi.org/10.1016/j.jfca.2021.103931
67. Moritz, C. P. (2020). 40 years Western blotting: A scientific birthday toast. Journal of Proteomics, 212, Article 103575. https://doi.org/10.1016/J.jprot.2019.103575
68. Naryzhny, S. N. (2009). Blue Dry Western: Simple, economic, informative, and fast way of immunodetection. Analytical Biochemistry, 392(1), 90–95. https://doi.org/10.1016/J.ab.2009.05.037
69. Kurien B. T., Scofield, R. H. (2006). Western blotting. Methods, 38(4), 283–293. https://doi.org/10.1016/j.ymeth.2005.11.007
70. Omondi, C., Chou, A., Fond, K. A., Morioka, K., Joseph, N. R., Sacramento, J. A. et al. (2024). Improving rigor and reproducibility in western blot experiments with the blotRig analysis Scientific Reports, 14(1), Article 21644. https://doi.org/10.1038/s41598-024-70096-0
71. Towbin, H., Staehelin, T., Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proceedings of the National Academy of Sciences, 76(9), 4350–4354. https://doi.org/10.1073/pnas.76.9.4350
72. Burnette, W. N. (1981). «Western blotting»: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Analytical Biochemistry, 112(2), 195–203. https://doi.org/10.1016/0003-2697(81)90281-5
73. Recalde-Reyes, D. P., Calderon, J. L. (2023). Electroforesis de proteínas y Western blot DENV. protocols.io. https://doi.org/10.17504/protocols.io.kxygx963dg8j/v1
74. Chávez, N. A., Salinas, E., Jauregui, J., Palomares, L. A., Macías, K. (2008). Detection of bovine milk adulterated with cheese whey by western blot immunoassay. Food and Agricultural Immunology, 19(4), 265–272. https://doi.org/10.1080/09540100802381042
75. Vera-Bravo, R., Hernández, A. V., Peña, S., Alarcón, C., Loaiza, A. E., Celis, C. A. (2022). Cheese whey milk adulteration determination using casein glycomacropeptide as an indicator by HPLC. Foods, 11(20), Article 3201. https://doi.org/10.3390/foods11203201
76. Molina, E., Amigo, L., Ramos, M. (1998). Detection of bovine milk proteins in soymilk by western blotting. Journal of Food Protection, 61(12), 1691–1694. https://doi.org/10.4315/0362-028X61.12.1691
77. Molina, E., Fernández-Fournier, A., De Frutos, M., Ramos, M. (1996). Western blotting of native and denatured bovine β-lactoglobulin to detect addition of bovine milk in cheese. Journal of Dairy Science, 79(2), 191–197. https://doi.org/10.3168/Jds.S0022-0302(96)76350-6
78. Dişhan, A., Gönülalan, Z., Alparslan, Y. (2019). Comparative analysis of cow and water buffalo milk casein fractions by Western Blotting. Fırat University Veterinary Journal of Health Sciences, 33(2), 77–82.
79. Merkley, E. D., Kaiser, B. L. D., Kreuzer, Н. (2019). A proteomics tutorial. Chapter in a Вook: Applications in Forensic Proteomics: Protein Identification and Profiling. American Chemical Society, 2019. https://doi.org/10.1021/bk2019-1339.ch002
80. Gross, J. H. (2019). Massenspectrometrie: Spektroskopiekurs kompakt. Springer Spektrum, 2019.
81. Lebedev, A. T., Artemenko, K. A., Samgina, T. Yu., (2012). Fundamentals of mass spectrometry of proteins and peptides. Мoscow: Tekhnosfera, 2012. (In Russian)
82. Bouroutzika, Е., Proikakis, S., Anagnostopoulos, А. К., Katsafadou, А. I., Fthenakis, G. C., Tsangaris, G. Th. (2021). Proteomics analysis in dairy products: Cheese, a review. Applied Sciences, 11(16), Article 7622. https://doi.org/10.3390/app11167622
83. Mehrasbi, M. R., Peyda, M., Feizolahi, R., Taromi, A., Homayuni, P., Fathi, S. et al. (2023). Comparison of three digestion methods for determination of lead and cadmium in milk and dairy products. Environmental Health Engineering and Management, 10(2), 191–196. https://doi.org/10.34172/ehem.2023.21
84. Sibanda, T., Marole, T. A., Thomashoff, U., Thantsha, M., Buys, E. (2024). Bifidobacterium species viability in dairy-based probiotic foods: Challenges and innovative approaches for accurate viability determination and monitoring of probiotic functionality. Frontiers in Microbiology, 15, Article 1327010. https://doi.org/10.3389/fmicb.2024.1327010
85. Chang, J., Zhou, J., Gao, M., Zhang, H., Wang, T. (2022). Research advances in the analysis of estrogenic endocrine disrupting compounds in milk and dairy products. Foods, 11(19), Article 3057. https://doi.org/10.3390/Foods11193057
86. Calvano, C. D., Monopoli, A., Loizzo, P., Faccia, M., Zambonin, C. (2013). Proteomic approach based on MALDI-TOF MS to detect powdered milk in fresh cow’s milk. Journal of Agricultural and Food Chemistry, 61(8), 1609–1617. https://doi.org/10.1021/jf302999s
Review
For citations:
Lepilkina O.V., Grigorieva A.I. Proteomic methods for separation and identification of milk proteins. Food systems. 2024;7(4):560-567. (In Russ.) https://doi.org/10.21323/2618-9771-2024-7-4-560-567