Overview of instrumental methods used in the field of food analysis
https://doi.org/10.21323/2618-9771-2024-7-4-523-534
Abstract
The emergence of new technologies for food production and current trends in the use of alternative sources of raw materials require improved approaches to the analysis of the chemical composition of food products. In the course of planning work to carry out analytical research, a number of challenges arise: identification of the research objects themselves; selection of research methods and tools; ensuring the representativeness and validity of the results obtained. When choosing and justifying research methods, it is necessary to rely on a large number of factors, which include both confirmation of the actual composition of food products, including the determination of unintentionally present substances, and the reliability of the data obtained, taking into account the selected instrumental methods. The purpose of this work is to generalize and systematize the essence and characteristics of the main methods of food analysis and evaluate existing approaches to the justification and application of instrumental methods of analysis in relation to new types of food products. This paper reviews the literature on instrumental research methods used to obtain values in the most representative international databases on the composition of food products (FAO/INFOODS Food Composition Databases, USDA NDL, Fineli, Frida), as well as databases of the chemical composition of food products in Russia, Japan and Australia. To search for descriptions and features of the use of analytical equipment and analytical methods, electronic library systems Web of Science, Scopus, Elibrary, ResearchGate, Google Scholar, Microsoft Academic, Science Direct were used. This review highlights the role of various research methods: photometric and electrophoretic, titrimetric, extraction, chromatographic, spectroscopic, immunoenzymatic, as well as those based on the polymerase chain reaction and the use of nuclear magnetic resonance, lateral flow and electropheresis.
About the Authors
L. N. RozhdestvenskayaRussian Federation
Lada N. Rozhdestvenskaya, Candidate of Economic Sciences, Head of the Department of Technology and Organization of Food Production; Leading Researcher, Department of Hygienic Research with a Laboratory of Physical Factors
20, Karl Marx Ave., Novosibirsk, 630073; 7, Parkhomenko str., Novosibirsk, 630108
Tel.: +7–913–907–36–62
S. P. Romanenko
Russian Federation
Sergey P. Romanenko, Candidate of Medical Sciences, Deputy Director for Science
7, Parkhomenko str., Novosibirsk, 630108
Tel.: +7–961–215–38–18
I. O. Lomovsky
Russian Federation
Igor O. Lomovkiy, Candidate of Chemical Sciences, Senior Researcher, laboratory of mechanochemistry
18, Kutateladze str., Novosibirsk, 630090
Tel.: +7–923–249–61–31
A. P. Lachugin
Russian Federation
Alexey P. Lachugin, Junior Research Assistant, Department of Hygienic Research with a Laboratory of Physical Factors
7, Parkhomenko str., Novosibirsk, 630108
Tel.: +7–913–908–32–32
References
1. Derossi, A., Husain, A., Caporizzi, R., Severini, C. (2019). Manufacturing personalized food for people uniqueness. An overview from traditional to emerging technologies. Critical Reviews in Food Science and Nutrition, 60(7), 1141–1159. https://doi.org/10.1080/10408398.2018.1559796
2. Anzani, C., Boukid, F., Drummond, L., Mullen, A. M., Álvarez, C. (2020). Optimising the use of proteins from rich meat co-products and non-meat alternatives: Nutritional, technological and allergenicity challenges. Food Research International, 137, Article 109575. https://doi.org/10.1016/j.foodres.2020.109575
3. Valoppi, F., Agustin, M., Abik, F., Morais de Carvalho, D., Sithole, J., Bhattarai, M. et al. (2021). Insight on current advances in food science and technology for feeding the world population. Frontiers in Sustainable Food Systems, 5, Article 626227. https://doi.org/10.3389/fsufs.2021.626227
4. Hassoun, A., Aït-Kaddour, A., Abu-Mahfouz, A. M., Rathod, N. B., Bader, F., Barba, F. J. et al. (2022). The fourth industrial revolution in the food industry — part I: Industry 4.0 technologies. Critical Reviews in Food Science and Nutrition, 63(23), 6547–6563. https://doi.org/10.1080/10408398.2022.2034735
5. Liu, F., Li, M., Wang, Q., Yan, J., Han, S., Ma, C. et al. (2022). Future foods: Alternative proteins, food architecture, sustainable packaging, and precision nutrition. Critical Reviews in Food Science and Nutrition, 63(23), 6423–6444. https://doi.org/10.1080/10408398.2022.2033683
6. Onwezen, M. C., Bouwman, E. P., Reinders, M. J., Dagevos, H. (2021). A systematic review on consumer acceptance of alternative proteins: Pulses, algae, insects, plant-based meat alternatives, and cultured meat. Appetite, 159, Article 105058. https://doi.org/10.1016/j.appet.2020.105058
7. Sim, S. Y. J., SRV, A., Chiang, J. H., Henry, C. J. (2021). Plant proteins for future foods: A roadmap. Foods, 10(8), Article 1967. https://doi.org/10.3390/foods10081967
8. Jiménez-Munoz, L. M., Tavares, G. M., Corredig, M. (2021). Design future foods using plant protein blends for best nutritional and technological functionality. Trends in Food Science and Technology, 113, 139–150. https://doi.org/10.1016/j.tifs.2021.04.049
9. Kapsokefalou, M., Roe, M., Turrini, A., Costa, H. S., Martinez-Victoria, E., Marletta, L. et al. (2019). Food composition at present: New challenges. Nutrients, 11(8), Article 1714. https://doi.org/10.3390/nu11081714
10. Villamiel, M., Méndez-Albiñana, P. (2022). Update of challenges for food quality and safety management. Journal of Agriculture and Food Research, 10, Article 100393. https://doi.org/10.1016/j.jafr.2022.100393
11. Shur, P. Z., Suvorov, D. V., Zelenkin, S. E., Lir, D. N. (2023). Identification of potential hazard of consumption of novel products to public health (systematic review). Hygiene and Sanitation, 102(5), 495–501. (In Russian). https://doi.org/10.47470/0016-9900-2023-102-5-495-501
12. Boisen, S., Hvelplund, T., Weisbjerg, M. R. (2000). Ideal amino acid profiles as a basis for feed protein evaluation. Livestock Production Science, 64(2), 239–251. https://doi.org/10.1016/s0301-6226(99)00146-3
13. Trott, J. F., Young, A. E., McNabb, B. R., Yang, X., Bishop, T. F., van Eenennaam, A. L. (2022). Animal health and food safety analyses of six offspring of a genomeedited hornless bull. GEN Biotechnology, 1(2), 192–206. https://doi.org/10.1089/genbio.2022.0008
14. Torkashvand, F., Vaziri, B., Maleknia, S., Heydari, A., Vossoughi, M., Mahboudi, F. (2020). Designed amino acid feed in improvement of production and quality targets of a therapeutic monoclonal antibody. PLOS ONE, 10(10), Article e0140597. https://doi.org/10.1371/journal.pone.0140597
15. Salazar, A., Keusgen, M., von Hagen, J. (2016). Amino acids in the cultivation of mammalian cells. Amino Acids, 48(5), 1161–1171. https://doi.org/10.1007/s00726-016-2181-8
16. D’Este, M., Alvarado-Morales, M., Angelidaki, I. (2018). Amino acids production focusing on fermentation technologies — A review. Biotechnology Advances, 36(1), 14–25. https://doi.org/10.1016/j.biotechadv.2017.09.001
17. EFSA Scientific Committee. (2015). Risk profile related to production and consumption of insects as food and feed. EFSA Journal, 13(10), Article 4257. https://doi.org/10.2903/j.efsa.2015.4257
18. Pan, J., Xu, H., Cheng, Y., Mintah, B. K., Dabbour, M., Yang, F. et al. (2022). Recent insight on edible insect protein: Extraction, functional properties, allergenicity, bioactivity, and applications. Foods, 11(19), Article 2931. https://doi.org/10.3390/foods11192931
19. David-Birman, T., Raften, G., Lesmes, U. (2018). Effects of thermal treatments on the colloidal properties, antioxidant capacity and in-vitro proteolytic degradation of cricket flour. Food Hydrocolloids, 79, 48–54. https://doi.org/10.1016/j.foodhyd.2017.11.044
20. Codex Alimentarius (2019). Guidelines for rapid risk analysis following instances of detection of contaminants in food where there is no regulatory level. CXG 92–2019. Retrieved from https://www.fao.org/fao-who-codexalimentarius/shproxy/en/?lnk=1&url=https%3A%2F%2Fworkspace.fao.org%2Fsites%2Fcodex%2FStandards%2FCXG+92–2019%2FCXG_092e.pdf Accessed March 03,2024
21. Shur, P. Z., Zaitseva, N. V. (2018). Health risk assessment when giving grounds for hygienic criteria of food products safety. Health Risk Analysis, 4, 43–56. https://doi.org/10.21668/health.risk/2018.4.05.eng
22. Shur, P. Z., Zaitseva, N. V., Khotimchenko, S. A., Fedorenko, E. V., Sychik, S. I., Fokin, V. A. et al. (2019). On the issue of establishing acceptable daily intake of chemical substances in food products according to health risk criteria. Hygiene and Sanitation, 98(2), 189–195. (In Russian) https://doi.org/10.18821/0016-9900-2019-98-2-189-195
23. Zaitseva, N. V., Khotimchenko, S. A., Shur, P. Z., Suvorov, D. V., Zelenkin, S. E., Bessonov, V. V. (2023). The modification of methodological approaches for potential hazard identification of inadvertent chemicals in food. Voprosy Pitaniia, 92 (1), 26–35. (In Russian) https://doi.org/10.33029/0042-8833-2023-92-1-26-35
24. Giusti, A. M., Bignetti, E., Cannella, C. (2008). Exploring new frontiers in total food quality definition and assessment: From chemical to neurochemical properties. Food and Bioprocess Technology, 1(2),130–142. https://doi.org/10.1007/s11947-007-0043-9
25. Sabaté, J., Harwatt, H., Soret S. (2016). Environmental nutrition: A new frontier for public health. American Journal of Public Health, 106(5), 815–821. https://doi.org/10.2105/ajph.2016.303046
26. Combs, G. F., Trumbo, P. R., McKinley, M. C., Milner, J., Studenski, S., Kimura, T. et al. (2013). Biomarkers in nutrition: New frontiers in research and application. Annals of the New York Academy of Sciences. 1278(1), 1–10. https://doi.org/10.1111/nyas.12069
27. LanguaL™ — the International Framework for Food Description. Retrieved from http://www.langual.org/Accessed March 20, 2024
28. Ispirova, G., Cenikj, G., Ogrinc, M., Valenčič, E., Stojanov, R., Korošec, P. et al. (2022). Cafeteria FCD Corpus: Food consumption data annotated with regard to different food semantic resources. Foods, 11(17), Article 2684. https://doi.org/10.3390/foods11172684
29. European Food Safety Authority (2015). Food classification standardisation — The FoodEx2 system (Revision 2). Retrieved from http://www.efsa.europa.eu/en/datex/datexfoodclass.htm Accessed March 20, 2024
30. Kapsokefalou, M., Roe, M., Turrini, A., Costa, H. S., Martinez-Victoria, E., Marletta, L. et al. (2019). Food composition at present: New challenges. Nutrients, 11(8), Article 1714. https://doi.org/10.3390/nu11081714
31. Hinojosa-Nogueira, D., Pérez-Burillo, S., Navajas-Porras, B., Ortiz-Viso, B., de la Cueva, S. P., Lauria, F. et al. (2021). Development of an unified food composition database for the European project "Stance4Health". Nutrients, 13(12), Article 4206. https://doi.org/10.3390/nu13124206
32. Murphy, S. P., Charrondiere, U. R., Burlingame, B. (2016). Thirty years of progress in harmonizing and compiling food data as a result of the establishment of INFOODS. Food Chemistry, 193, 2–5. https://doi.org/10.1016/j.foodchem.2014.11.097
33. Nielsen, S. S. (2017). Food analysis laboratory manual. Springer International Publishing, 2017. https://doi.org/10.1007/978-3-319-44127-6
34. Nielsen, S. S. (2017). Food Analysis. Springer International Publishing, 2017. https://doi.org/10.1007/978-3-319-45776-5
35. Nielsen, S. S. (2018). Food Analysis. Springer Cham, 2018.
36. Oliveri, P., Forina, M. (2012). Data analysis and chemometrics. Chapter in a book: Chemical Analysis of Food: Techniques and Applications. Academic Press, 2012. https://doi.org/10.1016/b978-0-12-384862-8.00002-9
37. Latimer, G. W. J. (2023). Official Methods of Analysis of AOAC INTERNATIONAL (22nd Edition). Oxford University Press, 2023. https://doi.org/10.1093/9780197610145.001.0001
38. Sarkar, T., Salauddin, M., Kirtonia, K., Pati, S., Rebezov, M., Khayrullin, M. et al. (2022). A review on the commonly used methods for analysis of physical properties of food materials. Applied Science, 12(4), Article 2004. https://doi.org/10.3390/app12042004
39. Igual, M., Martínez-Monzó, J. (2022). Physicochemical properties and structure changes of food products during processing. Foods, 11, Article 2365. https://doi.org/10.3390/foods11152365
40. Johnson, G. (2005). Encyclopedia of Analytical Science (2nd edition). Amsterdam: Elsevier Academic Press, 2005. http://doi.org/10.1108/09504120510632723
41. Martínez, S., Carballo, J. (2021). Physicochemical, sensory and nutritional properties of foods affected by processing and storage. Foods, 10(12), Article 2970. https://doi.org/10.3390/foods10122970
42. Büttner, J., Borth, R., Boutwell, J., Broughton, P., Bowyer, R. (1975). Provisional recommendation on quality control in clinical chemistry. Part 1. General principles and terminology. Journal of Clinical Chemistry and Clinical Biochemistry, 13, 523–531.
43. Rodríguez-Carrasco, Y. (2022). Foodomics: Current and future perspectives in food analysis. Foods, 11(9), Article 1238. https://doi.org/10.3390/foods11091238
44. FAO/INFOODS. Food composition databases. Retrieved from https://www.fao.org/ infoods/infoods/tables-and-databases/faoinfoods-databases/en/ Accessed March 03, 2024
45. Scrimshaw, N.S. (1997). INFOODS: The international network of food data systems. The American Journal of Clinical Nutrition, 65(4 Suppl), 1190S1193S. https://doi.org/10.1093/ajcn/65.4.1190S
46. Charrondiere, U.R., Rittenschober, D., Nowak, V., Stadlmayr, B., Wijesinha-Bettoni, R., Haytowitz D. (2016). Improving food composition data quality: Three new FAO/INFOODS guidelines on conversions, data evaluation and food matching. Food Chemistry, 193, 75–81. https://doi.org/10.1016/j.foodchem.2014.11.055
47. USDA FoodData Central. Retrieved from https://www.ars.usda.gov/northeastarea/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/methods-and-application-of-food-composition-laboratory/mafcl-site-pages/database-resources/ Accessed March 03, 2024
48. FoodStandarts Australian Food Composition Database — Release 2. Retrieved from https://www.foodstandards.gov.au/science/monitoringnutrients/afcd/Pages/downloadableexcelfiles.aspx Accessed March 05, 2024.
49. Fineli. Retrieved from https://fineli.fi/fineli/en/tietoa-palvelusta Accessed March 05, 2024
50. DTU. Frida. Retrieved from https://frida.fooddata.dk Accessed March 05, 2024.
51. Chemical composition of food products used in the Russian Federation. Retrieved from http://web.ion.ru/food/FD_tree_grid.aspx Accessed March 05, 2024 (In Russian)
52. MEXT Standard tables of food composition in Japan. Retrieved from https://www.mext.go.jp/en/policy/science_technology/policy/title01/detail01/1374030.html Accessed March 05, 2024.
53. Rozhdestvenskaya, L. N. (2022). Modern trends and challenges in the food industry. Chapter in a book: Socio-economic processes: new vision, challenges, trends. Petrozavodsk: New Science, 2022. (In Russian). https://doi.org/10.46916/04032022-2-978-5-00174-490-0
54. Langyan, S., Bhardwaj, R., Radhamani, J., Yadav, R., Gautam, R.K., Kalia, S., et al. (2022). A quick analysis method for protein quantification in oilseed crops: a comparison with standard protocol. Frontiers in Nutrition, 9, Article 892695. https://doi.org/10.3389/fnut.2022.892695
55. AOAC976.05–1977. (1996). Protein (Crude) in animal feed and pet food. Retrieved from http://aoacofficialmethod.org/index.php?main_page=product_info&cPath=1&products_id=2265 Accessed March 05, 2024
56. Sáez-Plaza, P., Navas, M. J., Wybraniec, S., Michałowski, T., Asuero, A. G. (2013). An overview of the Kjeldahl method of nitrogen determination. Part II. Sample preparation, working scale, instrumental finish and quality control. Critical Review in Analytical Chemistry, 43, 224–272. https://doi.org/10.1080/10408347.2012.751787
57. Miller, E. L., Bimbo, A. P., Barlow, S. M., SHeridan, B., Burks, L. B. W., Barrins, T. et al. (2007). Repeatability and reproducibility of determination of the nitrogen content of fishmeal by the combustion (Dumas) method and comparison with the Kjeldahl method: Interlaboratory study. Journal of AOAC International, 90(1), 6–20. https://doi.org/10.1093/jaoac/90.1.6
58. Mariotti, F., Tomé, D., Mirand, P. P. (2008). Converting nitrogen into protein–beyond 6.25 and Jones’ factors. Critical Reviews in Food Science and Nutrition, 48(2), 177–184. https://doi.org/10.1080/10408390701279749
59. Determination of Crude Protein in Grain and Grain Products for Food and Feed by the Dumas Combustion Principle. Retrieved from https://icc.or.at/store/167-determination-of-crude-protein-in-grain-and-grain-products-for-food-andfeed-by-the-dumas-combustion-principle-pdf Accessed March 05, 2024
60. Shea, F., Watts, C. E. (1939). Dumas method for organic nitrogen. Industrial and Engineering Chemistry Analytical Edition, 11(6), 333–334. https://doi.org/10.1021/ac50134a013
61. Hayes, M. (2020). Measuring protein content in food: An overview of methods. Foods, 9(10), Article 1340. https://doi.org/10.3390/foods9101340
62. Moore, J.C., DeVries, J.W., Lipp, M., Griffiths, J.C., Abernethy, D.R. (2010) Total protein methods and their potential utility to reduce the risk of food protein adulteration. Comprehensive Reviews in Food Science and Food Safety, 9(4), 330– 357. https://doi.org/10.1111/j.1541-4337.2010.00114.x
63. Zheng, K., Wu, L., He, Z., Yang, B., Yang, Y. (2017). Measurement of the total protein in serum by biuret method with uncertainty evaluation. Measurement, 112, 16–21. http://doi.org/10.1016/j.measurement.2017.08.013
64. Kruger, N.J. (2009). The Bradford Method for Protein Quantitation. Chapter in a book: The Protein Protocols Handbook. Springer Protocols Handbooks. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-198-7_4
65. Nakayama, Y., Yamaguchi, H., Einaga, N., Esumi, M. (2016). Pitfalls of DNA quantification using DNAbinding fluorescent dyes and suggested solutions. PLoS ONE, 11(3), Article e0150528. https://doi.org/10.1371/journal.pone.0150528
66. Lakiza, N. V., Neudachina, L. K. (2015). Analysis of food products. Yekaterinburg: Ural Federal University named after the first President of Russia B. N. Yeltsin, 2015. (In Russian)
67. Arroyo-Maya, I. J., McClements, D. J. (2016). Application of ITC in foods: A powerful tool for understanding the gastrointestinal fate of lipophilic compounds. Biochimica et Biophysica Acta (BBA) — General Subjects, 1860(5), 1026–1035. https://doi.org/10.1016/j.bbagen.2015.10.001
68. Khalef, N., Campanella, O., Bakri, A. (2016). Isothermal calorimetry: Methods and applications in food and pharmaceutical fields. Current Opinion in Food Science, 9, 70–76. https://doi.org/10.1016/j.cofs.2016.09.004
69. Velázquez-Campoy, A., Ohtaka, H., Nezami, A., Muzammil, S., Freire, E. (2004). Isothermal Titration Calorimetry. Current Protocols in Cell Biology, 23(1), Chapter 17. Unit 17.8. https://doi.org/10.1002/0471143030.cb1708s23
70. Zaitseva, N. V., Khotimchenko, S. A., Shur, P. Z., Suvorov, D. V., Zelenkin, S. E., Bessonov, V. V. (2023). The modification of methodological approaches for potential hazard identification of inadvertent chemicals in food. Voprosy Pitaniia, 92(1), 26–35. (In Russian) https://doi.org/10.33029/0042-8833-2023-92-1-26-35
71. Mishina K. A. (2023). Metrological support in the field of isothermal titration calorimetry: Prospects for the development of reference materials. Measurement Standards. Reference Materials, 19(3), 31–43. (In Russian) https://doi.org/10.20915/2077-1177-2023-19-3-31-43
72. Hewavitharana, G. G., Perera, D. N., Navaratne, S. B., Wickramasinghe, I. (2020). Extraction methods of fat from food samples and preparation of fatty acid methyl esters for gas chromatography: а review. Arabian Journal of Chemistry, 13(8), 6865–6875. https://doi.org/10.1016/j.arabjc.2020.06.039
73. Señoráns, F. J., Luna, P. (2012). Sample preparation techniques for the determination of fats in food. Comprehensive Sampling and Sample Preparation, 4, 203–211. https://doi.org/doi/10.1016/B978-0-12-381373-2.00134-4
74. Zhou, X., Zhang, Z., Liu, X., Wu, D., Ding, Y., Li, G. et al. (2020). Typical reactive carbonyl compounds in food products: Formation, influence on food quality, and detection methods. Comprehensive Reviews in Food Science and Food Safety, 19(2), 503–529. https://doi.org/10.1111/1541-4337.12535
75. Wagner, K.-H., Plasser, E., Proell, C., Kanzler, S. (2008). Comprehensive studies on the trans fatty acid content of Austrian foods: Convenience products, fast food and fats. Food Chemistry, 108(3), 1054–1060. https://doi.org/10.1016/j.foodchem.2007.11.038
76. Shin, J.-M., Hwang, Y.-O., Tu, O.-J., Jo, H.-B., Kim, J.-H., Chae, Y.-Z. et al. (2013). Comparison of different methods to quantify fat classes in bakery products. Food Chemistry, 136 (2), 703–709. https://doi.org/10.1016/j.foodchem.2012.08.033
77. Servaes, K., Maesen, M., Prandi, B., Sforza, S., Elst, K. (2015). Polar lipid profile of nannochloropsis oculata determined using a variety of lipid extraction procedures. Journal of Agricultural and Food Chemistry, 63(15), 3931–3941, 1https://doi.org/10.1021/acs.jafc.5b00241
78. Fakirov, S. (2006). Modified Soxhlet apparatus for high-temperature extraction. Journal of Applied Polymer Science, 102 (2), 2013–2014. https://doi.org/10.1002/app.23397
79. López-Bascón, M. A., Luque de Castro, M. D. (2020). Soxhlet extraction. Chapter in a book: Liquid-Phase Extraction. Elsevier, 2020. https://doi.org/10.1016/B978-0-12-816911-7.00011-6
80. Cheng, H., Erichsen, H., Soerensen, J., Petersen, M. A., Skibsted, L. H. (2019). Optimizing water activity for storage of high lipid and high protein infant formula milk powder using multivariate analysis. International Dairy Journal, 93, 92–98. https://doi.org/10.1016/j.idairyj.2019.02.008
81. Liu, Z., Ezernieks, V., Rochfort, S., Cocks, B. (2018). Comparison of methylation methods for fatty acid analysis of milk fat. Food Chemistry, 261, 210–215. https://doi.org/10.1016/j.foodchem.2018.04.053
82. Shinn, S. E., Proctor, A. (2013). Rapid lipid extraction from egg yolks. Journal of the American Oil Chemists' Society, 90(2), 315–316, https://doi.org/10.1007/s11746-012-2155-2
83. Kato, S., Iseki, T., Hanzawa, Y., Otoki, Y., Ito, J., Kimura, F. et al. (2017). Evaluation of the mechanisms of mayonnaise phospholipid oxidation. Journal of Oleo Science, 66(4), 369–374. https://doi.org/10.5650/jos.ess16187
84. Bligh, E. G., Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917. https://doi.org/10.1139/o59-099
85. Iverson, S. J., Lang, S. L. C., Cooper, M. H. (2001). Comparison of the Bligh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue. Lipids, 36 (11), 1283–1287. https://doi.org/10.1007/s11745-001-0843-0
86. Breil, C., Abert Vian, M., Zemb, T., Kunz, W., Chemat, F. (2017). “Bligh and Dyer” and Folch methods for solid–liquid–liquid extraction of lipids from microorganisms. Comprehension of solvatation mechanisms and towards substitution with alternative solvents. International Journal of Molecular Sciences, 18(4), Article 708. https://doi.org/10.3390/ijms18040708
87. Destandau, E., Michel, T., Elfakir, C. (2013). Microwave-assisted extraction. Chapter in a book: Green Chemistry Series. RSC Publishing, 2013. https://doi.org/10.1039/9781849737579–00113
88. Costa, D. dos S. V., Bragagnolo, N. (2016). Development and validation of a novel microwave assisted extraction method for fish lipids. European Journal of Lipid Science and Technology, 119(3), Article 1600108. https://doi.org/10.1002/ejlt.201600108
89. Akanda, M. J. H., Sarker, M. Z. I., Ferdosh, S., Manap, M. Y. A., Ab Rahman, N. N. N., Ab Kadir, M. O. (2012). Applications of supercritical fluid extraction (SFE) of palm oil and oil from natural sources. Molecules, 17(2), 1764– 1794. https://doi.org/10.3390/molecules17021764
90. Sahena, F., Zaidul, I. S. M., Jinap, S., Karim, A. A., Abbas, K. A., Norulaini, N. A. N. et al. (2009). Application of supercritical CO2 in lipid extraction — a review. Journal of Food Engineering, 95(2), 240–253. https://doi.org/10.1016/j.jfoodeng.2009.06.026
91. Brunner, G. (2005). Supercritical fluids: Technology and application to food processing. Journal of Food Engineering, 67(1–2), 21–33. https://doi.org/10.1016/j.jfoodeng.2004.05.060
92. Berg, H., Turner, C., Dahlberg, L., Mathiasson, L. (2000). Determination of food constituents based on SFE: Applications to vitamins A and E in meat and milk. Journal of Biochemical and Biophysical Methods, 43(1–3), 391–401. https://doi.org/10.1016/S0165-022X(00)00063-4
93. Chemat, F., Rombaut, N., Sicaire, A.-G., Meullemiestre, A., Fabiano-Tixier, A.-S., Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540–560. https://doi.org/10.1016/j.ultsonch.2016.06.035
94. Liu, L., Na, L., Niu, Y., Guo, F., Li, Y., Sun, C. (2013). An ultrasonic assisted extraction procedure to free fatty acids from the liver samples of mice. Journal of Chromatographic Science, 51(4), 376–382. https://doi.org/10.1093/chromsci/bms151
95. Pérez, R. A., Albero, B. (2023). Ultrasound-assisted extraction methods for the determination of organic contaminants in solid and liquid samples. TrAC Trends in Analytical Chemistry, 166, Article 117204. https://doi.org/10.1016/j.trac.2023.117204
96. Power, A. C., Chapman, J., Chandra, S., Cozzolino, D. (2019). Ultraviolet-visible spectroscopy for food quality analysis. Chapter in a book: Evaluation Technologies for Food Quality. Woodhead Publishing, 2019. https://doi.org/10.1016/b978-0-12-814217-2.00006-8
97. Cavdaroglu, C., Ozen, B. (2023). Applications of UV–Visible, fluorescence and mid-infrared spectroscopic methods combined with chemometrics for the authentication of apple vinegar. Foods, 12(6), Article 1139. https://doi.org/10.3390/foods12061139
98. Stoscheck, C. M. (1990). Quantitation of Protein. Chapter in a book: Me thods in Enzymology.Academic Press, 1990. https://doi.org/10.1016/0076-6879(90)82008-p
99. Nawrocka, A., Lamorsk, J. (2013). Determination of food quality by using spectroscopic methods. Chapter in a book: Advances in Agrophysical Research. InTech, 2013. https://doi.org/10.5772/52722
100. Feng, L., Wu, B., Zhu, S., He, Y., Zhang, C. (2021). Application of visible/infrared spectroscopy and hyperspectral imaging with machine learning techniques for identifying food varieties and geographical origins. Frontiers in Nutrition, 8, Article 680357. https://doi.org/10.3389/fnut.2021.680357
101. Mendes, E., Duarte, N. (2021). Mid-infrared spectroscopy as a valuable tool to tackle food analysis: A literature review on coffee, dairies, honey, olive oil and wine. Foods, 10(2), Article 477. https://doi.org/10.3390/foods10020477
102. Mohd Fairulnizal, M. N., Vimala, B., Rathi, D. N., Mohd Naeem, M. N. (2019). Atomic absorption spectroscopy for food quality evaluation. Chapter in a book: Technology and Nutrition, Evaluation Technologies for Food Quality. Woodhead Publishing, 2019. https://doi.org/10.1016/B978-0-12-814217-2.00009-3
103. El Youssfi, M., Sifou, A., Ben Aakame, R., Mahnine, N., Arsalane, S., Halim, M. et al. (2023). Trace elements in foodstuffs from the Mediterranean basin — occurrence, risk assessment, regulations, and prevention strategies: A review. Biological Trace Element Research, 201(5), 2597–2626. https://doi.org/10.1007/s12011-022-03334-z
104. Filatova, D. G., Es'kina, V. V., Baranovskaya, V. B., Karpov, Y. A. (2020). Presentday possibilities of high-resolution continuous-source electrothermal atomic absorption spectrometry. Journal of Analytical Chemistry. 75(5), 563–568. https://doi.org/10.1134/S1061934820050044
105. Pupyshev, A. A. Surikov, V. T. (2012). Inductively coupled plasma mass spectrometry. The formation of ions. LAP Lambert Academic Publishing, 2012. (In Russian)
106. Tetiana, M. Derkach, Olga P. Baula. (2017). Pharmacopoeia methods for elemental analysis of medicines: A comparative study. Bulletin of Dnipropetrovsk University. Series Chemistry, 25(2), 73–83. https://doi.org/10.15421/081711
107. Santos, A. D. C., Fonseca, F. A., Lião, L. M., Alcantara, G. B., Barison, A. (2015). High-resolution magic angle spinning nuclear magnetic resonance in foodstuff analysis. TrAC Trends in Analytical Chemistry, 73, 10–18. https://doi.org/10.1016/j.trac.2015.05.003
108. Kirtil, E., Cikrikci, S., McCarthy, M. J., Oztop, M. H. (2017). Recent advances in time domain NMR and MRI sensors and their food applications. Current Opinion in Food Science, 17, 9–15. https://doi.org/10.1016/j.cofs.2017.07.005
109. Sobolev, A. P., Ingallina, C., Spano, M., Di Matteo, G., Mannina, L. (2022). NMRbased approaches in the study of foods. Molecules, 27(22), Article 7906. https://doi.org/10.3390/molecules27227906
110. Moughan, P. J. (2023). Use of isotope-labeled body or dietary proteins to determine dietary amino acid digestibility. The Journal of Nutrition, 153(7), 1858– 1865. https://doi.org/10.1016/j.tjnut.2023.05.018
111. Capitani, D., Mannina, L., Proietti, N., Sobolev, A. P., Tomassini, A., Miccheli, A. et al. (2010). Monitoring of metabolic profiling and water status of Hayward kiwifruits by nuclear magnetic resonance. Talanta, 82(5), 1826–1838. https://doi.org/10.1016/j.talanta.2010.07.080
112. Capitani, D., Mannina, L., Proietti, N., Sobolev, A. P., Tomassini, A., Miccheli, A. et al. (2013). Metabolic profiling and outer pericarp water state in zespri, CI. GI, and hayward kiwifruits. Journal of Agricultural and Food Chemistry. 61(8), 1727–1740. https://doi.org/10.1021/jf3028864
113. Maestrello, V., Solovyev, P., Bontempo, L., Mannina, L., Camin, F. (2022). Nuclear magnetic resonance spectroscopy in extra virgin olive oil authentication. Comprehensive Reviews in Food Science and Food Safety, 21(5), 4056–4075. https://doi.org/10.1111/1541-4337.13005
114. Candrian, U. (1995). Polymerase chain reaction in food microbiology. Journal of Microbiological Methods, 23(1), 89–103. https://doi.org/10.1016/0167–7012(95)00019-H
115. Klancnik, A., Kovač, M., Toplak, N., Piskernik, S., Jeršek, B. (2012). PCR in food analysis. Chapter in a book: Polymerase chain reaction. InTech, 2012. https://doi.org/10.5772/38551
116. Salihah, N. T., Hossain, M. M., Lubis, H., Ahmed, M. U. (2016). Trends and advances in food analysis by real-time polymerase chain reaction. Journal of Food Science and Technology, 53(5), 2196–2209. https://doi.org/10.1007/s13197-016-2205-0
117. Asensio, L., González, I., García, T., Martín, R. (2008). Determination of food authenticity by enzyme-linked immunosorbent assay (ELISA). Food Control, 19(1), 1–8. https://doi.org/10.1016/j.foodcont.2007.02.010
118. Koestel, C., Simonin, C., Belcher, S., Rösti, J. (2016). Implementation of an enzyme linked immunosorbent assay for the quantification of allergenic egg residues in red wines using commercially available antibodies. Journal of Food Science, 81(8), T2099–T2106. https://doi.org/10.1111/1750-3841.13378
119. Salimon, J., Omar, T. A., Salih, N. (2014). Comparison of two derivatization methods for the analysis of fatty acids and trans fatty acids in bakery products using gas chromatography. The Scientific World Journal, 1, Article 906407. https://doi.org/10.1155/2014/906407
120. Shantha, N. C., Napolitano, G. E. (1992). Gas chromatography of fatty acid. Journal of Chromatography A, 624(1–2), 37–51. https://doi.org/10.1016/0021-9673(92)85673-H
121. Salimon, J., Omar, T. A., Salih, N. (2017). An accurate and reliable method for identification and quantification of fatty acids and trans fatty acids in food fats samples using gas chromatography. Arabian Journal of Chemistry, 10, S1875– S1882. https://doi.org/10.1016/j.arabjc.2013.07.016
122. Mondal, D. D., Chakraborty, U., Bera, M., Ghosh, S., Kar, D. (2023). An overview of nutritional profiling in foods: Bioanalytical techniques and useful protocols. Frontiers in Nutrition, 10, Article 1124409. https://doi.org/10.3389/fnut.2023.1124409
123. Lehotay, S., Hajšlová, J. (2002). Application of gas chromatography in food analysis. Trends in Analytical Chemistry, 21(9–10), 686–697. https://doi.org/10.1016/S0165-9936(02)00805-1
124. Bradbury, A. G. W. (1990). Gas chromatography of carbohydrates in food. Chapter in a book: Principles and Applications of Gas Chromatography in Food Analysis. Springer, Boston, MA, 1990. https://doi.org/10.1007/978-1-4613-0681-8_4
125. Rutherfurd, S. M. (2009). Accurate determination of the amino acid content of selected feedstuffs. International Journal of Food Sciences and Nutrition, 60 (suppl 7), 53–62. https://doi.org/10.1080/09637480802269957
126. Nie, Q., Nie, S. (2019). High-performance liquid chromatography for food quality evaluation. Chapter in a book: Evaluation Technologies for Food Quality. Woodhead Publishing, 2019. https://doi.org/10.1016/B978-0-12-814217-2.00013-5
127. Sirhan, A. Y., Tan, G. H., Wong, R. C. S. (2011). Method validation in the determination of aflatoxins in noodle samples using the QuEChERS method (Quick, Easy, Cheap, Effective, Rugged and Safe) and high performance liquid chromatography coupled to a fluorescence detector (HPLC–FLD), Food Control, 22(12), 1807–1813. https://doi.org/10.1016/j.foodcont.2011.04.007
128. Ibáñez, A. B., Bauer, S. (2014). Analytical method for the determination of organic acids in dilute acid pretreated biomass hydrolysate by liquid chromatography-time-of-flight mass spectrometry. Biotechnology for Biofuels, 7(1), Article 145. https://doi.org/10.1186/s13068–014–0145–3
129. Zeppa, G., Conterno, L., Gerbi, V. (2001). Determination of organic acids, sugars, diacetyl, and acetoin in cheese by high-performance liquid chromatography. Journal of Agricultural and Food Chemistry, 49(6), 2722–2726. https://doi.org/10.1021/jf0009403
130. Zaharova, A. M., Kartsova, L. A., Greenstein, I. L. (2013). Determination of organic acids, carbohydrates and sweeteners in food products and biologically active additives by HPLC. Analytics and Control, 17(2), 204–210. (In Russian)
131. Picazo, M., Rochera, C., Vicente, E., Miracle, M. R., Camacho, A. (2013). Spectrophotometric methods for the determination of photosynthetic pigments in stratified lakes: A critical analysis based on comparisons with HPLC determinations in a model lake. Limnetica, 32, 139–158. https://doi.org/10.23818/limn.32.13
132. Yuan, X., Kim, C. J., Lee, R., Kim, M., Shin, H. J., Kim, L. et al. (2022). Validation of a multi-residue analysis method for 287 pesticides in citrus fruits mandarin orange and grapefruit using liquid chromatography-tandem mass spectrometry. Foods, 11(21), Article 3522. https://doi.org/10.3390/foods11213522
133. Park, J., Kim, H., Hong, S., Suh, H.-J., Lee, C. (2019). High-performance liquid chromatography and gas chromatography to set the analysis method of stearoyl lactylate, a food emulsifier. Food Science and Biotechnology, 28(6), 1669–1677. https://doi.org/10.1007/s10068-019-00629-1
134. So, J. S., Lee, S. B., Lee, J. H., Nam, H. S., Lee, J. K. (2023). Simultaneous determination of dehydroacetic acid, benzoic acid, sorbic acid, methylparaben and ethylparaben in foods by high-performance liquid chromatography. Food Science and Biotechnology, 32(9), 1173–1183. https://doi.org/10.1007/s10068-023-01264-7
135. Pylypiw, H. M., Grether, M. T. (2000). Rapid high-performance liquid chromatography method for the analysis of sodium benzoate and potassium sorbate in foods. Journal of Chromatography A, 883(1–2), 299–304. https://doi.org/10.1016/S0021-9673(00)00404-0
136. Dong, Y. (1999). Capillary electrophoresis in food analysis. Trends in Food Science and Technology, 10(3), 87–93. https://doi.org/10.1016/S0924-2244(99)00031-X
137. Piñero, M., Bauza, R., Arce, L. (2011). Thirty years of capillary electrophoresis in food analysis laboratories: Potential applications. Electrophoresis, 32(11), 1379–1393. https://doi.org/10.1002/elps.201000541
138. Gao, Z., Zhong W. (2022). Recent (2018–2020) development in capillary electrophoresis. Analytical and Bioanalytical Chemistry, 414(1), 115–130. https://doi.org/10.1007/s00216-021-03290-y
139. Rio, D. C., Ares, M., Hannon, G. J., Nilsen, T. W. (2010). Nondenaturing agarose gel electrophoresis of RNA. Cold Spring Harbor Protocols, 2010(6), Article pdb. prot5445. https://doi.org/10.1101/pdb.prot5445
140. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685. https://doi.org/10.1038/227680a0
141. Francisco da Silva Neto, G., Luíza de Andrade Rodrigues, M., Fonseca, A. (2021). A new quantitative gel electrophoresis method with image-based detection for the determination of food dyes and metallic ions. Talanta, 221, Article 121602. https://doi.org/10.1016/j.talanta.2020.121602
142. Dario, G. (2012). Electrophoresis as a useful tool in studying the quality of meat products. Chapter in a book: Electrophoresis. InTech, 2012. https://doi.org/10.5772/45761
143. Kalogianni, D. P. (2021). Lateral flow assays for food authentication. Chapter in a book: Biosensors in Agriculture: Recent Trends and Future Perspectives. Springer, Cham, 2021. https://doi.org/10.1007/978-3-030-66165-6_16
144. Courtney, R. C., Taylor, S. L., Baumert, J. L. (2016). Evaluation of commercial milk-specific lateral flow devices. Journal of Food Protection, 79(10), 1767–1774. https://doi.org/10.4315/0362-028X.JFP16-127
145. Greenfield, H., Southgate, D. A. (2003). Food Composition Data: Production, management, and use. Elsevier Science Publishers, FAO, Rome, 2003. https://doi.org/10.1007/978-1-4615-3544-7
146. Md Noh, M. F., Gunasegavan, R. D.-N., Mustafa Khalid, N., Balasubramaniam, V., Mustar, S., Abd Rashed, A. (2020). Recent techniques in nutrient analysis for food composition database. Molecules, 25(19), Article 4567. https://doi.org/10.3390/molecules25194567
Review
For citations:
Rozhdestvenskaya L.N., Romanenko S.P., Lomovsky I.O., Lachugin A.P. Overview of instrumental methods used in the field of food analysis. Food systems. 2024;7(4):523-534. (In Russ.) https://doi.org/10.21323/2618-9771-2024-7-4-523-534