Preview

Food systems

Advanced search

MODERN ANALYSIS METHODS USE IN ORDER TO ESTABLISH THE GEOGRAPHIC ORIGIN OF FOOD PRODUCTS

https://doi.org/10.21323/2618-9771-2020-3-1-4-9

Full Text:

Abstract

Food products with controlled geographical origin place are in special demand among consumers because of their specific properties, due to climatic, soil characteristics or other factors. The article provides an analysis of regulatory framework for legal goods protection with an indication of their origin place on the territory of the Russian Federation and in other countries. Existing authentication methods for this type of product are reviewed.

Based on the analysis of scientific literature, the authors noted the most significant works aimed at confirming the authenticity of food products’ origin place on the example of honey and meat products, which were carried out in the countries of the European Union, Australia, China, Brazil, South Africa, the USA and other countries.

It is shown that the most widespread researches aimed at studying values of isotopic ratios of hydrogen (2H/1H), carbon (13C/12C), oxygen (18O/16O), nitrogen (15N/14N) and sulfur (34S/32S) in compounds contained in products that reflect the distribution of «light» and «heavy» isotopes during biological and geochemical processes within a single region. The analysis of the works aimed at studying the qualitative and quantitative composition of trace elements and rare earth metals (As, B, Ba, Cd, Li, Mn, Pd, Rb, Se, Te, Tl, Dy, U, etc.), as well as research of isotopic relations values of some elements (87Sr/86Sr, 207Pb/206Pb, etc.) in product samples and soils of studied region. The advantages of an integrated research approach, which includes the creation of data array of various indicators values and its in-depth analysis using chemometric algorithms and mathematical modeling methods, are shown.

About the Authors

L. A. Oganesyants
All-Russian Scientific Research Institute of the Brewing, Non-Alcoholic and Wine Industry — Branch of the V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences
Russian Federation

Lev A. Oganesyants —  doctor of technical sciences, professor, academician of RAS, Director, All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry —  Branch of V. M. Gorbatov Federal Research Center for Food Systems of RAS.

119021, Moscow, Rossolimo str., 7.

Tel.: +7–499–246–67–69



A. L. Panasyuk
All-Russian Scientific Research Institute of the Brewing, Non-Alcoholic and Wine Industry — Branch of the V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences
Russian Federation

Alexander L. Panasyuk —  doctor of technical sciences, professor, deputy Director, All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry —  Branch of V. M. Gorbatov Federal Research Center for Food Systems of RAS.

119021, Moscow, Rossolimo str., 7.

Tel.: +7–499–246–76–38 



E. I. Kuzmina
All-Russian Scientific Research Institute of the Brewing, Non-Alcoholic and Wine Industry — Branch of the V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences
Russian Federation

Elena I. Kuzmina —  candidate of technical sciences, head of the laboratory of technology of grape and fruit wines, All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry —  Branch of V. M. Gorbatov Federal Research Center for Food Systems of RAS.

119021, Moscow, Rossolimo str., 7.

Теl.: +7–499–246–62–75



D. A. Sviridov
All-Russian Scientific Research Institute of the Brewing, Non-Alcoholic and Wine Industry — Branch of the V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences
Russian Federation

Dmitriy A. Sviridov — candidate of technical sciences, scientist of the laboratory of technology of grape and fruit wines, All-Russian Scientific Research Insti-tute of Brewing, Beverage and Wine Industry —  Branch of V. M. Gorbatov Federal Research Center for Food Systems of RAS.

119021, Moscow, Rossolimo str., 7.

Теl.: +7–499–246–62–75



References

1. Civil code of the Russian Federation. Part four: Federal law No. 230-FZ of 18.12.2006 / SOBR. legislation of the Russian Federation. 2006. Article 1516. (in Russian)

2. Camin, F., Dordevic, N., Wehrens, R., Neteler, M., Delucchi, L., Postma, G., Buydens, L. (2015). Climatic and geographical dependence of the H, C and O stable isotope ratios of Italian wine. Analytica Chimica Acta, 853(1), 384–390. https://doi.org/10.1016/j.aca.2014.09.049

3. Dutra, S.V., Adami, L., Marcon, A.R., Carnieli, G.J., Roani, C.A., Spinelli, F.R., Leonardelli, S., Vanderlinde, R. (2013). Characterization of wines ac-cording the geographical origin by analysis of isotopes and minerals and the influence of harvest on the isotope values. Food Chemistry, 141(3), 2148–2153. https://doi.org/10.1016/j.foodchem.2013.04.106

4. Dordevic, N., Wehrens, R., Postma, G.J., Buydens, L.M.C., Camin, F. (2012). Statistical methods for improving verification of claims of origin for Italian wines based on stable isotope ratios. Analytica Chimica Acta, 757, 19–25. https://doi.org/10.1016/j.aca.2012.10.046

5. Camin, F., Bontempo, L., Perini, M., Tonon, A., Breas, O., Guillou, C., Moreno-Rojas, J.M., Gagliano, G. (2013). Control of wine vinegar authenticity through ´18O analysis. Food Control, 29(1), 107–111. https://doi.org/10.1016/j.foodcont.2012.05.055

6. Scheidegger, Y., Saurer, M., Bahn, M., Siegwolf, R. (2000). Linking stable oxygen and carbon isotopes with stomatal conductance and photo-synthetic capacity: A conceptual model. Oecologia, 125(3), 350–357. https://doi.org/10.1007/s004420000466

7. Gorlenko, S.A. (2010). Protection of appellations of origin: actual issues. Patents and Licenses, 3, 2–9. (in Russian)

8. Eremenko, V.I. (2012). On the legal aspects of the protection of appellations of origin of goods in the Russian Federation. Intellectual Property Exchange, 11(2), 8–18. (in Russian)

9. Galimov, E.M. (1981). The nature of the biological fractionation of iso-topes. Мoscow: The science. —247 p. (in Russian)

10. 10.Erasmus, S.W., Muller, M., Van Der Rijst, M., Hoffman, L.C. (2016). Stable isotope ratio analysis: A potential analytical tool for the authentication of South African lamb meat. Food Chemistry, 192, 997–1005. https://doi.org/10.1016/j.foodchem.2015.07.121

11. Nečemer, M., Potočnik, D., Ogrinc, N. (2016). Discrimination between Slovenian cow, goat and sheep milk and cheese according to geographical origin using a combination of elemental content and stable isotope data. Journal of Food Composition and Analysis, 52, 16–23. https://doi.org/10.1016/j.jfca.2016.07.002

12. Chung, I.-M., Park, I., Yoon, J.-Y., Yang, Y.-S., Kim, S.-H. (2014). Determi-nation of organic milk authenticity using carbon and nitrogen natural isotopes. Food Chemistry, 160, 214–218. https://doi.org/10.1016/j.food-chem.2014.01.061

13. Oganesyants, L. A., Panasyuk, A. L., Kuzmina, E. I., Yalanetskii, A. Ya., Zagorouiko, V. A. (2017). Ratio variations of ethanol carbon isotopes in wines based on vineyard geographical location. Magarach. Viticulture and Winemaking, 4, 38–40. (in Russian)

14. Jyoti, V., Saini-Eidukat, B., Hopkins, D., DeSutter, T. (2015). Naturally elevated metal contents of soils in northeastern North Dakota, USA, with a focus on cadmium. Journal of Soils and Sediments, 15(7), 1571–1583. https://doi.org/10.1007/s11368–015–1122–6

15. Chudzinska, M., Baralkiewicz, D. (2010). Estimation of honey authenticity by multielements characteristics using inductively coupled plasma-mass spectrometry (ICP-MS) combined with chemometrics. Food and Chemical Toxicology, 48(1), 284–290. https://doi.org/10.1016/j.fct.2009.10.011

16. Madejczyk, M., Baralkiewicz, D. (2008). Characterization of Polish rape and honeydew honey according to their mineral contents using ICP-MS and F-AAS/AES. Analytica Chimica Acta, 617(1–2), 11–17. https://doi.org/10.1016/j.aca.2008.01.038

17. Chudzinska, M., Baralkiewicz, D. (2011). Application of ICP-MS method of determination of 15 elements in honey with chemometric approach for the verification of their authenticity. Food and Chemical Toxicology, 49(11), 2741–2749. https://doi.org/10.1016/j.fct.2011.08.01418.

18. Tochilina, R. P., Goncharova, S. A., Horosheva, E. V., Semipjatnyj, V. K. (2016). Characteristic of the Mineral Composition Don Wines and Wine Materials Identification as an Indicator of the Place of Origin. Wine-Making Industry and Viticulture, 3,14–17. (in Russian)

19. 19.Tochilina, R. P. (2017). Characteristic of the Wines Mineral Composition as an Indicator of the Place of Origin (Krasnodar Region). Beer and beverages, 5, 28–32. (in Russian)

20. Drivelos, S.A., Georgiou, C.A. (2012). Multi-element and multiisotoperatio analysis to determine the geographical origin of foods in the European Union. TrAC — Trends in Analytical Chemistry, 40, 38–51. https://doi.org/10.1016/j.trac.2012.08.003

21. Paleologos, E. K., Kontominas, M. G. (2007). Effect of processing and storage conditions on the generation of acrylamide in precooked breaded chicken products. Journal of Food Protection, 70(2), 466–470. https://doi.org/10.4315/0362–028x-70.2.466

22. Parati, K., Bongioni, G., Aleandri, R., Galli, A. (2006). Sex ratio determination in bovine semen: A new approach by quantitative real time PCR. Theriogenology, 66(9), 2202–2209. https://doi.org/10.1016/j.theriogenology.2006.07.007

23. Oganesyants, L. A., Panasyuk, A. L., Kuzmina, E. I., Sviridov D. A. (2019). Use of the modern instrumental analysis methods for establishing geographical place of wine product origin. Beer and beverages, 4, 59–64. https://doi.org/10.24411/2072–9650–2019–10002 (in Russian)

24. Ayaz, Y., Ayaz, N.D., Erol, I. (2006). Detection of species in meat and meat products using enzyme-linked immunosorbent assay. Journal of Muscle Foods, 17(2), 214–220. https://doi.org/10.1111/j.1745–4573.2006.00046.x

25. Bahar, B., Schmidt, O., Moloney, A.P., Scrimgeour, C.M., Begley, I.S., Monahan, F.J. (2008). Seasonal variation in the C, N and S stable isotope composition of retail organic and conventional Irish beef. Food Chem-istry, 106(3), 1299–1305. https://doi.org/10.1016/j.foodchem.2007.07.053

26. Ballin, N.Z., Lametsch, R. (2008). Analytical methods for authentication of fresh vs. thawed meat — A review. Meat Science, 80(2), 151–158. https://doi.org/10.1016/j.meatsci.2007.12.024

27. Ballin, N.Z., Madsen, K.G. (2007). Sex determination in beef by melting curve analysis of PCR amplicons from the amelogenin locus. Meat Science, 77(3), 384–388. https://doi.org/10.1016/j.meatsci.2007.04.029

28. Ballin, N.Z., Vogensen, F.K., Karlsson, A.H. (2009). Species determination — Can we detect and quantify meat adulteration? Meat Science, 83(2), 165–174. https://doi.org/10.1016/j.meatsci.2009.06.003

29. Chernukha, I., Yurchak, Z., Kuzmina, E. (2018). Study on the meat isoto-pick composition for origin identification. Potravinarstvo Slovak Journal of Food Sciences, 12(1), 262–266. https://doi.org/10.5219/906

30. Gorbunova, N.A. (2018). Possibilities of using stable isotopes for identification of geographical origin of meat and meat products. A re-view. Theory and Practice of Meat Processing, 3(1), 46–58. https://doi.org/10.21323/2414–438X-2018–3–1–46–58 (in Russian)

31. Piasentier, E., Valusso, R., Camin, F., Versini, G. (2003). Stable isotope ratio analysis for authentication of lamb meat. Meat Science, 64(3), 239– 247. https://doi.org/10.1016/S0309–1740(02)00183–3

32. Liu, X., Guo, B., Wei, Y., Shi, J., Sun, S. (2013). Stable isotope analysis of cattle tail hair. A potential tool for verifying the geographical origin of beef. Food Chemistry, 140(1–2), 135–140. https://doi.org/10.1016/j.food-chem.2013.02.020

33. Kim, K.S., Kim, J.S., Hwang, I.M., Jeong, I.S., Khan, N., Lee, S.I., Jeon, D.B., Song, Y.H., Kim, K.S., (2013). Application of stable isotope ratio analysis for origin authentication of pork. Korean Journal for Food Science of Ani-mal Resources, 33(1), 39–44. https://doi.org/10.5851/kosfa.2013.33.1.39

34. Ballin, N.Z. (2010). Authentication of meat and meat products. Meat Science, 86(3), 577–587. https://doi.org/10.1016/j.meatsci.2010.06.001

35. Monahan, F.J., Schmidt, O., Moloney, A.P. (2018). Meat provenance: Authentication of geographical origin and dietary background of meat. Meat Science, 144, 2–14. https://doi.org/10.1016/j.meatsci.2018.05.008

36. Horacek, M., Eisinger, E., Papesch, W. (2010). Reliability of stable iso-tope values from meat juice for the determination of the meat origin. Food Chemistry, 118(4), 910–914. https://doi.org/10.1016/j.food-chem.2009.03.090

37. Franke, B.M., Hadorn, R., Bosset, J.O., Gremaud, G., Kreuzer, M. (2008). Is authentication of the geographic origin of poultry meat and dried beef improved by combining multiple trace element and oxygen isotope analysis? Meat Science, 80(3), 944–947. https://doi.org/10.1016/j.meat-sci.2008.03.018

38. Franke, B.M., Haldimann, M., Gremaud, G., Bosset, J. O., Hadorn, R., Kreuzer, M. (2008). Element signature analysis: its validation as a tool for geographic uthentication of the origin of dried beef and poultry meat. European Food Research and Technology, 227(3), 701–708. https://doi.org/10.1007/s00217–007–0776–8

39. Dawson, T. E., Brooks, P. D. (2001). Fundamentals of stable isotopic chemistry and measurement. In book: Stable isotope techniques in the study of biological processes and functioning of ecosystems. Springer Science+Business Media B. V. 1–18 ISBN: 978–90–481–5736–5

40. Capuano, E., Rademaker, J., van den Bijgaart, H., M. van Ruth, S. (2014). Verification of fresh grass feeding, pasture grazing and organic farming by FTIR spectroscopy analysis of bovine milk. Food Research International, 60, 59–65. https://doi.org/10.1016/j.foodres.2013.12.024

41. Liu, N., Koot, A., Hettinga, K., de Jong, J., van Ruth, S.M. (2018). Por-traying and tracing the impact of different production systems on the volatile organic compound composition of milk by PTR-(Quad)MS and PTR-(ToF)MS. Food Chemistry, 239, 201–207. https://doi.org/10.1016/j.foodchem.2017.06.099

42. Soyeurt, H., Dardenne, P., Dehareng, F., Lognay, G., Veselko, D., Marlier, M., Bertozzi, C., Mayeres, P., Gengler, N. (2006). Estimating fatty acid content in cow milk using midinfrared spectrometry. Journal of Dairy Science, 89(9), 3690–3695. https://doi.org/10.3168/jds.S0022–0302(06)72409–2

43. Coppa, M., Ferlay, A., Chassaing, C., Agabriel, C., Glasser, F., Chilliard, Y., Borreani, G., Barcarolo, R., Baars, T., Kusche, D., Harstad, O.M., Verbič, J., Golecký, J., Martin, B. (2013). Prediction of bulk milk fatty acid com-position based on farming practices collected through onfarm surveys. Journal of Dairy Science, 96(7), 4197–4211. https://doi.org/10.3168/jds.2012–6379

44. Delgadillo-Puga, C., Sánchez-Muñoz, B., Nahed-Toral, J., Cuchillo-Hilario, M., Díaz-Martínez, M., Solis-Zabaleta, R. Reyes-Hernández, A., Castillo-Domíguez, R.M. (2014). Fatty acid content, health and risk indices, physicochemical composition, and somatic cell counts of milk from organic and conventional farming systems in tropical south-eastern Mexico. Tropical Animal Health and Production, 46(5), 883–888. https://doi.org/10.1007/s11250–014–0581-x

45. Rossmann, A., Haberhauer, G., Hölzl, S., Horn, P., Pichlmayer, F., Voerke-lius, S. (2000). The potential of multielement stable isotope analysis for regional origin assignment of butter. European Food Research and Tech-nology, 211(1), 32–40. https://doi.org/10.1007/s002170050585

46. Crittenden, R.G., Andrew, A.S., LeFournour, M., Young, M.D., Middle-ton, H., Stockmann, R. (2007). Determining the geographic origin of milk in Australasia using multielement stable isotope ratio analysis. International Dairy Journal, 17(5), 421–428. https://doi.org/10.1016/j.idairyj.2006.05.012

47. Scampicchio, M., Eisenstecken, D., De Benedictis, L., Capici, C., Ballabio, D., Mimmo, T., Robatscher, P., Kerschbaumer, L., Oberhuber, M., Kaser, A., Huck, C.W., Cesco, S. (2016). Multimethod Approach to Trace the Geographical Origin of Alpine Milk: a Case Study of Tyrol Region. Food Analytical Methods, 9(5), 1262–1273. https://doi.org/10.1007/s12161–015–0308–2

48. Huang, J., Norgbey, E., Nkrumah, P.N., Appiah-Sefah, G., Michel, R. (2017). Elucidating the origin of milk products on the Chinese market using hydrogen and oxygen stable isotope technique. Integrative Food, Nutrition and Metabolism, 4(3). https://doi.org/10.15761/IFNM.1000184

49. Camin, F., Perini, M., Colombari, G., Bontempo, L., Versini, G. (2008) In-fluence of dietary composition on the carbon, nitrogen, oxygen and hydrogen stable isotope ratios of milk. Rapid Communications in Mass Spectrometry, 22(11), 1690–1696. https://doi.org/10.1002/rcm.3506

50. Potočnik, D., Nečemer, M., Mazej, D., Jaćimović, R., Ogrinc, N. (2016). Multi-elemental composition of Slovenian milk: Analytical approach and geographical origin determination. Acta IMEKO, 5(1), 15–21.

51. Chung, I.-M., Kim, J.-K., Yang, Y.-J., An, Y.-J., Kim, S.-Y., Kwon, C., Kim, S.-H. (2020). A case study for geographical indication of organic milk in Korea using stable isotope ratios-based chemometric analysis. Food Control, 107, 106755. https://doi.org/10.1016/j.foodcont.2019.106755

52. Roshan, A.-R.A., Gad, H.A., El-Ahmady, S.H., Abou-Shoer, M.I., Khanbash, M.S., Al-Azizi, M.M. (2017). Characterization and discrimination of the floral origin of sidr honey by physicochemical data combined with multivariate analysis. Food Analytical Methods, 10(1), 137–146. https://doi.org/10.1007/s12161–016–0563-x

53. Bastías, J.M., Jambon, P., Muñoz, O., Manquián, N., Bahamonde, P., Neira, M. (2013): Honey as a bioindicator of arsenic contamination due to volca-nic and mining activities in Chile. Chilean Journal of Agricultural Research, 73(2), 147–153. https://doi.org/10.4067/S0718–58392013000200010

54. Benedetti, S., Mannino, S., Sabatini, A.G., Marcazzan, G.L. (2004). Electronic nose and neural network use for the classification of honey. Apidologie, 35(4), 397–402. https://doi.org/10.1051/apido:2004025

55. Cordella, C., Faucon, J.-P., Cabrol-Bass, D., Sbirrazzuoli, N. (2003). Ap-plication of DSC as a tool for honey floral species characterization and adulteration detection. Journal of Thermal Analysis and Calorimetry, 71(1), 279–290.

56. Radovic, B.S., Goodacre, R., Anklam, E. (2001). Contribution of pyrolysis-mass spectrometry (Py-MS) to authenticity testing of honey. Journal of Analytical and Applied Pyrolysis, 60(1), 79–87. https://doi.org/10.1016/S0165–2370(00)00163–7

57. Goodacre, R., Radovic, B.S., Anklam, E. (2002). Progress toward the rapid nondestructive assessment of the floral origin of European honey using dispersive Raman spectroscopy. Applied Spectroscopy, 56(4), 521–527. https://doi.org/10.1366/0003702021954980

58. Davies, A.M.C., Radovic, B., Fearn, T., Anklam, E. (2002). A preliminary study on the characterisation of honey by near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 10(2), 121–135. https://doi.org/10.1255/jnirs.329

59. Kek, S.P., Chin, N.L., Tan, S.W., Yusof, Y.A., Chua, L.S. (2004). Classifi-cation of honey from its bee origin via chemical profiles and mineral content. Food Analytical Methods, 10(1), 19–30. https://doi.org/10.1007/s12161–016–0544–0

60. Tucak, Z., Periškić, M., Bešlo, D., Tucak, I. (2004). Influence of the beehive type on the quality of honey. Collegium Antropologicum, 28(1), 463–467.

61. Batelková, P., Borkovcová, I., Čelechovská, O., Vorlová, L., Bartáková, K. (2012): Polycyclic aromatic hydrocarbons and risk elements in honey from the South Moravian region (Czech Republic). Acta Veterinaria Brno, 81(2), 169–174. https://doi.org/10.2754/avb201281020169

62. Schellenberg, A., Chmielus, S., Schlicht, C., Camin, F., Perini, M., Bon-tempo, L., Heinrich, K., Kelly, S.D., Rossmann, A., Thomas, F., Jamin, E., Horacek, M. (2010) Multielement stable isotope ratios (H, C, N, S) of honey from different European regions. Food Chemistry, 121(3), 770–777. https://doi.org/10.1016/j.foodchem.2009.12.082

63. Wang, J., Kliks, M.M., Qu, W., Jun, S., Shi, G., Li, Q.X. (2009). Rapid deter-mination of the geographical origin of honey based on protein finger-printing and barcoding using MALDI TOF MS. Journal of Agricultural and Food Chemistry, 57(21), 10081–10088. https://doi.org/10.1021/jf902286p

64. Kropf, U., Korošec, M., Bertoncelj, J., Ogrinc, N., Nečemer, M., Kump, P., Golob, T. (2010). Determination of the geographical origin of Slovenian black locust, lime and chestnut honey. Food Chemistry, 121(3), 839–846. https://doi.org/10.1016/j.foodchem.2009.12.094

65. Bora, F.D., Donici, A., Rusu, T., Bunea, A., Popescu, D., Bunea, C.I. (2018). Elemental profile and 207Pb/206Pb, 208Pb/206Pb, 204Pb/206Pb, 87Sr/86Sr isotope ratio as fingerprints for geographical traceability of Romanian wines. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(1), 223–239. https://doi.org/10.15835/nbha46110853


For citation:


Oganesyants L.A., Panasyuk A.L., Kuzmina E.I., Sviridov D.A. MODERN ANALYSIS METHODS USE IN ORDER TO ESTABLISH THE GEOGRAPHIC ORIGIN OF FOOD PRODUCTS. Food systems. 2020;3(1):4-9. https://doi.org/10.21323/2618-9771-2020-3-1-4-9

Views: 297


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)