Колориметрический метод оценки интенсивности тепловой нагрузки при пастеризации молока
https://doi.org/10.21323/2618-9771-2024-7-3-481-490
Аннотация
Предложен метод определения интенсивности тепловой нагрузки при пастеризации молока основанный на преобразовании содержащихся в молоке продуктов начальной стадии реакции Майяра (лактозилированных аминокислот) в интенсивно окрашенные продукты финальной стадии реакции Майяра (меланоды). Интенсивность окраски продуктов измеряют колориметрически. Для проведения анализа из молока изготавливают очищенный от свободной лактозы препарат казеина, высушивают его и измельчают до частиц размером 500–800 мкм. Препарат казеина выдерживают при 100°C в течение 5 ч для формирования меланоидов. Измеряют интенсивность окрашивания препаратов казеина по цветовой шкале CIE L* a* b* и вычисляют критерий общего цветового отличия ΔE по величине цветовых критериев L* a* b* до и после тепловой обработки препаратов казеина. Проведенные исследования образцов пастеризованного молока подтвердили физическую природу окрашивания порошков казеина, состоящую в наличии в них меланоидов, содержание которых было пропорционально интенсивности пастеризации образцов молока.
Об авторах
Е. В. ТопниковаРоссия
Топникова Елена Васильевна — доктор технических наук, заместитель директора по научной работе, Всероссийский научно-исследовательский
институт маслоделия и сыроделия
152613, Ярославская обл., Углич, Красноармейский бульвар, 19
Тел.: +7–910–666–93–93
Д. С. Мягконосов
Россия
Мягконосов Дмитрий Сергеевич — кандидат технических наук, старший научный сотрудник, руководитель направления исследований по
прикладной биохимии и энзимологии
152613, Ярославская область, Углич, Красноармейский бульвар, 19
Teл.: +7–915–973–63–13
Д. В. Абрамов
Россия
Абрамов Дмитрий Васильевич — кандидат биологических наук, старший научный сотрудник, руководитель направления биохимических исследований по сыроделию и маслоделию
152613, Ярославская область, Углич, Красноармейский бульвар, 19
Teл.: +7–910–970–42–97
О. Г. Кашникова
Россия
Кашникова Ольга Геннадьевна — младший научный сотрудник, отдел физической химии
152613, Ярославская обл., Углич, Красноармейский бульвар, 19
Тел.: + 7–962–200–14–15
Список литературы
1. Lorenzen, P. C., Clawin-Räadecker, I., Einhoff, K., Hammer, P., Hartmann, R., Hoffmann, W. et al. (2011). A survey of the quality of extended shelf life (ESL) milk in relation to HTST and UHT milk. International Journal of Dairy Technology, 64(2), 166–178. https://doi.org/10.1111/j.1471-0307.2010.00656.x
2. Deeth, H. (2017). Optimum thermal processing for Extended Shelf-Life (ESL) milk. Foods, 6(11), Article 102. https://doi.org/10.3390/foods6110102
3. IDF (2022). Heat treatment of milk. Bulletin of the IDF No. 516/2022. Retrieved from https://shop.fil-idf.org/products/bulletin-of-the-idf-n-515–2022-heat-treatment-of-milk Accessed December 01, 2023
4. Elliott, A. J., Datta, N., Amenu, B., Deeth, H. C. (2005). Heat-induced and other chemical changes in commercial UHT milk. Journal of Dairy Research, 72(4), 442– 446. https://doi.org/10.1017/S002202990500138X
5. Hinrichs, J., Atamer, Z. (2011). Sterilisation of milk and other products. Chapter in a book: Encyclopedia of Dairy Sciences (Second Edition) Academic Press, 2011. http://doi.org/10.1016/B978-0-12-374407-4.00218-1
6. Raynes, J. K., Vincent, D., Zawadzki, J. L., Savin, K., Mertens, D., Logan, A. et al. (2018). Investigation of age gelation in UHT milk. Beverages, 4(4), Article 95. https://doi.org/10.3390/beverages4040095
7. Deeth, H. C., Datta, N. (2011). Ultra-High Temperature Treatment (UHT): Heating Systems. Chapter in a book: Encyclopedia of Dairy Sciences (Second Edition). Academic Press, 2011. http://doi.org/10.1016/B978-0-12-374407-4.00216-8
8. van Asselt, A. J., Sweere, A. P. J., Rollema, H. S., de Jong, P. (2008). Extreme hightemperature treatment of milk with respect to plasmin inactivation. International Dairy Journal, 18(5), 531–538. https://doi.org/10.1016/j.idairyj.2007.11.019
9. Claeys, W. L., Van Loey, A. M., Hendrickx, M. E. (2002). Intrinsic time temperature integrators for heat treatment of milk. Trends in Food Science and Technology, 13(9–10), 293–311. https://doi.org/10.1016/S0924-2244(02)00164-4
10. van den Oever, S. P., Mayer, H. K. (2021). Analytical assessment of the intensity of heat treatment of milk and dairy products. International Dairy Journal, 121, Article 105097. https://doi.org/10.1016/j.idairyj.2021.105097
11. Ritota, M., Di Costanzo, M., Mattera, M., Manzi, P. (2017). New trends for the evaluation of heat treatments of milk. Journal of Analytical Methods in Chemistry, 2017, Article 1864832. https://doi.org/10.1155/2017/1864832
12. Sakkas, L., Moutafi, A., Moschopoulou, E., Moatsou, G. (2014). Assessment of heat treatment of various types of milk. Food Chemistry, 159, 293–301. https://doi.org/10.1016/j.foodchem.2014.03.020
13. Mayer, H. K., Raba, B., Meier, J., Schmid, A. (2010). RP-HPLC analysis of furosine and acid-soluble beta-lactoglobulin to assess the heat load of extended shelf-life milk samples in Austria. Dairy Science and Technology, 90(4), 413–428. https://doi.org/10.1051/dst/2009058
14. Lan, X. Y., Wang, J. Q., Bu, D. P., Shen, J. S., Zheng, N., Sun, P. (2010). Effects of heating temperatures and addition of reconstituted milk on the heat indicators in milk. Journal of Food Science, 75(8), C653–C658. https://doi.org/10.1111/j.1750-3841.2010.01802.x
15. Resmini, P., Pellegino, L., Cattaneo, S. (2003). Furosine and other heat-treatment indicators for detecting fraud in milk and milk products. Italian Journal of Food Science, 4(15), 473–484.
16. Birlouez-Aragon, I., Nicolas, M., Metais, A., Marchond, N., Grenier, J., Calvo, D. (1998). A rapid fluorimetric method to estimate the heat treatment of liquid milk. International Dairy Journal, 8(9), 771–777. https://doi.org/10.1016/S0958-6946(98)00119-8
17. Birlouez-Aragon, I., Sabat, P., Gouti, N. (2002). A new method for discriminating milk heat treatment. International Dairy Journal, 12(1), 59–67. https://doi.org/10.1016/S0958-6946(01)00131-5
18. Guan, R., Liu, D., Ye, X., Yang, K. (2005). Use of fluorometry for determination of skim milk powder adulteration in fresh milk. Journal of Zhejiang UniversitySCIENCE B, 6(11), 1101–1106. https://doi.org/10.1631/jzus.2005.B1101
19. Schamberger, G. P., Labuza, T. P. (2006). Evaluation of front-face fluorescence for assessing thermal processing of milk. Journal of Food Science, 71(2), C69–C74. https://doi.org/10.1111/j.1365–2621.2006.tb08884.x
20. Myagkonosov, D. S., Topnikova, E. V., Abramov, D. V., Kashnikova, O. G. (2024). Use of turbidimetry for determination of heat treatment intensity applied at pasteurization of milk. Food Systems, 7(1), 105–113. https://doi.org/10.21323/2618-9771-2024-7-1-105-113
21. Serrano, M. A., Castillo, G., Muñoz, M. M., Hernández, A. (2002). Influence of hydrolysis, purification, and calibration method on furosine determination using ion-pair reversed-phase high-performance liquid chromatography. Journal of Chromatographic Science, 40(2), 87–91. https://doi.org/10.1093/chromsci/40.2.87
22. Tokuşoğlu, Ö., Akalin, A. S., Unal, K. (2006). Rapid high performance liquid chromatographic detection of furosine (epsilon-N-2-furoylmethyl-l-lysine) in yogurt and cheese marketed in Turkey. Journal of Food Quality, 29(1), 38–46. https://doi.org/10.1111/j.1745-4557.2006.00054.x
23. Vallejo-Córdoba, B., Mazorra-Manzano, M.A., González-Córdova, A.F. (2004). New capillary electrophoresis method for the determination of furosine in dairy products. Journal of Agricultural and Food Chemistry, 52(19), 5787–5790. https://doi.org/10.1021/jf049850e
24. Bignardi, C., Cavazza, A., Corradini, C. (2012). Determination of furosine in food products by capillary zone electrophoresis tandem mass spectrometry. Electrophoresis, 33(15), 2382–2389. https://doi.org/10.1002/elps.201100582
25. Gómez-Narváez, F., Pérez-Martínez, L., J. Contreras-Calderón, J. (2019). Usefulness of some Maillard reaction indicators for monitoring the heat damage of whey powder under conditions applicable to spray drying. International Dairy Journal, 99, Article 104553. https://doi.org/10.1016/j.idairyj.2019.104553
26. Rizzi, G. P. (1997) Chemical structure of colored Maillard reaction products. Food Reviews International, 13(1), 1–28. http://doi.org/10.1080/87559129709541096
27. Burton, H. (1994). Chemical and physical changes in milk at high temperatures. Chapter in a book: Ultra-high-temperature processing of milk and milk products. Springer, Boston, MA, 1994. https://doi.org/10.1007/978-1-4615-2157-0_3
28. Van Boekel M. A. J. S. (1998). Effect of heating on Maillard reactions in milk. Food Chemistry, 62(4), 403–414. https://doi.org/10.1016/S0308-8146(98)00075-2
29. Poltronieri, P., Rossi, F. (2017). Stabilization of milk quality by heat treatments. Chapter in a book: Microbiology in Dairy Processing: Challenges and Opportunities. 2018. John Wiley and Sons Ltd and the Institute of Food Technologists, 2018. https://doi.org/10.1002/9781119115007.ch4
30. Barraquio, V. L. (2014). Which milk is fresh? International Journal of Dairy Science and Processing, 1(201), 1–6. https://doi.org/10.19070/2379-1578-140002
31. Cattaneo, S., Masotti, F., Pellegrino, L. (2008). Effects of overprocessing on heat damage of UHT milk. European Food Research and Technology, 226(5), 1099– 1106. https://doi.org/10.1007/s00217-007-0637-5
32. Stoscheck, C. M. (1990). Quantitation of protein. Chapter in a book: Methods in Enzymology. Academic Press, 1990. https://doi.org/10.1016/0076-6879(90)82008-P
33. Mahmoud, R., Brown, R. J., Ernstrom, C. A. (1990). Factors affecting measurement of undenatured whey protein nitrogen in dried whey by a modified Harland-Ashworth test. Journal of Dairy Science, 73(7), 1694–1699. https://doi.org/10.3168/jds.S0022-0302(90)78845-5
34. Morales, F. J., Romero, C., Jiménez-Pérez, S. (1996). Fluorescence associated with Maillard reaction in milk and milk-resembling systems. Food Chemistry, 57(3), 423–428. https://doi.org/10.1016/0308–8146(95)00245–6
35. Skoog, D. A., Holler, F. J., Crouch, S. R. (2018). Molecular Luminescence Spectrometry. Chapter in a book: Principles of Instrumental Analysis. Seventh Edition. Cengage Learning. Boston, 2018.
36. Dufossé, L., Galaup, P. (2010). Color. Chapter in a book: Handbook of Dairy Foods Analysis. CRC Press, Boca Raton, Florida, USA, 2010. https://doi.org/10.1201/9781420046328
37. Wrolstad, R. E., Smith, D. E. (2017). Color Analysis. Chapter in a book: Food Analysis. Food Science Text Series. Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-45776-5_31
38. Švec, I., Hrušková, M., Vítová, M., Sekerová, H. (2008). Colour evaluation of different pasta samples. Czech Journal of Food Science, 26, 421–427.
39. Mandal, R., Bag, S. K., Singh, A. P. (2019). Thermal Processing of Milk. Chapter in a book: Recent Technologies in Dairy Science. Today and Tomorrow’s Printers and Publishers, New Delhi, 2019.
40. Jeanson, S., Dupont, D., Grattard, N., Rolet-Répécaud, O. (1999). Characterization of the heat treatment undergone by milk using two inhibition ELISAs for quantification of native and heat denatured α-lactalbumin. Journal of Agricultural and Food Chemistry, 47(6), 2249–2254. https://doi.org/10.1021/jf9809232
41. Van Boekel, M. A. J. S. (2001). Kinetic aspects of the Maillard reaction: a critical review. Food/Nahrung, 45(3), 150–159. http://doi.org/10.1002/1521-3803%2820010601%2945%3A3%3C150%3A%3AAID-FOOD150%3E3.0.CO%3B2-9
42. Leclère, J., Birlouez-Aragon, I. (2001). The fluorescence of advanced Maillard products is a good indicator of lysine damage during the Maillard reaction. Journal of Agricultural and Food Chemistry, 49(10), 4682–4687. https://doi.org/10.1021/jf001433o
43. Haghani-Haghighi, H., Mortazavian, A.M., Hosseini, H., Mohammadi, A., Shojaee-Aliabadi, S., Khosravi-Darani, K. et al. (2019). Method validation and determination of hydroxymethyl furfural (HMF) and furosine as indicators to recognize adulterated cow’s pasteurized and sterilized milks made by partial reconstitution of skim milk powder. Biointerface Research in Applied Chemistry, 9(2), 3842–3848. https://doi.org/10.33263/BRIAC92.842848
Рецензия
Для цитирования:
Топникова Е.В., Мягконосов Д.С., Абрамов Д.В., Кашникова О.Г. Колориметрический метод оценки интенсивности тепловой нагрузки при пастеризации молока. Пищевые системы. 2024;7(3):481-490. https://doi.org/10.21323/2618-9771-2024-7-3-481-490
For citation:
Topnikova E.V., Myagkonosov D.S., Abramov D.V., Kashnikova O.G. Colorimetric method for estimating the intensity of heat load during milk pasteurization. Food systems. 2024;7(3):481-490. (In Russ.) https://doi.org/10.21323/2618-9771-2024-7-3-481-490