Preview

Food systems

Advanced search

Allergy to aquatic biological resources as food

https://doi.org/10.21323/2618-9771-2024-7-3-403-409

Abstract

The review reveals the problem of allergies to fish and other highly allergenic foods. First of all, the products obtained from aquatic organisms are considered. The world production of fish of various species is discussed with the presentation of FAO statistics for recent years in this article. The role of aquaculture in the production of fish, shellfish and crustaceans is considered. In particular, the trends of fishing in the Black Sea and the growth of aquaculture production in Russia are analyzed. Generalized data indicate an increase in the importance of aquatic biological resources (ABR) in a balanced human diet. The study demonstrates the role of parvalbumin in the mechanism of development of allergies to products from ABR. Examples of other allergenic proteins that contain epitopes that trigger allergic reactions in the human body are given. The mechanism of these reactions is briefly described. Attention is drawn to cross-allergic reactions. Anthropogenic factors that can exacerbate allergies to fish products are discussed. These are pesticides, herbicides, antibiotics, detergent components, changes in chemical composition, and food storage conditions. Pseudoallergens with the ability to cause allergic reactions are also mentioned. Allergy symptoms can range from skin rashes and itching to respiratory problems and anaphylaxis. Treatment of fish allergy is similar to treatment for allergies to other foods. It includes the use of antihistamines, corticosteroids and sorbents. Heredity plays a major role in the development of allergic reactions. It is important to pay attention to the purity and quality of products, cooking methods, and also follow a diet. Due to the potentially higher cumulative toxicity of freshwater species, it is recommended that marine fish be preferred.

About the Authors

S. A. Tsarin
A. O. Kovalevsky Institute of Biology of the Southern Seas of RAS
Russian Federation

Sergey A. Tsarin - Candidate of Biological Sciences, Senior Researcher, Leading Researcher, Head of the Scientific and Educational Center for Collective 
Use “Collection of hydrobionts of the World Ocean”

2, Nakhimov ave., Sevastopol, 299011



N. M. Stolyarchuk
Center for Additional Education “Minor Academy of Sciences”
Russian Federation

Nikita M. Stolyarchuk - Schoolboy

163, General Ostryakov ave., Sevastopol, 299055

Tel.: +7–978–629–73–02 



A. V. Kuznetsov
A. O. Kovalevsky Institute of Biology of the Southern Seas of RAS; Sevastopol State University
Russian Federation

Andrew V.  Kuznetsov - Doctor of Biological Sciences, Leading Researcher, 
Department of Aquaculture and Marine Pharmacology; Professor, Department of Physics

2, Nakhimov ave., Sevastopol, 299011

33, Universitetskaya street, 299053, Sevastopol

Tel.: +7–978–744–36–10



References

1. De Martinis, M., Sirufo, M. M., Suppa, M., Ginaldi, L. (2020). New perspectives in food allergy. International Journal of Molecular Sciences, 21(4), Article 1474. https://doi.org/10.3390/ijms21041474

2. Sicherer, S. H., Sampson, H. A. (2018) Food allergy: A review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. Journal of Allergy and Clinical Immunology, 141(1), 41–58. https://doi.org/10.1016/j.jaci.2017.11.003

3. Savage, J., Johns, C. B. (2015). Food allergy: Epidemiology and natural history. Immunology and allergy clinics of North America, 35(1), 45–59. https://doi.org/10.1016/j.iac.2014.09.004

4. Valenta R., Hochwallner H, Linhart B, Pahr S. (2015). Food allergies: The basics. Gastroenterology, 148(6), 1120–1131.e4. https://doi.org/10.1053/j.gastro.2015.02.006

5. Cosme-Blanco, W., Arroyo-Flores, E., Ale, H. (2020). Food Allergies. Pediatrics in Review, 41(8), 403–415. https://doi.org/10.1542/pir.2019-0037

6. Loh, W., Tang, M. L. K. (2018). The epidemiology of food allergy in the global context. International Journal of Environmental Research and Public Health, 15(9), Article 2043. https://doi.org/10.3390/ijerph15092043

7. Sharma, H. P., Bansil, S., Uygungil, B. (2015). Signs and symptoms of food allergy and food-induced anaphylaxis. Pediatric Clinics of North America, 62(6), 1377–1392. https://doi.org/10.1016/j.pcl.2015.07.008

8. Deschildre, A., Lejeune, S. (2018). How to cope with food allergy symptoms? Current Opinion in Allergy and Clinical Immunology, 18(3), 234–242. https://doi.org/10.1097/ACI.0000000000000447

9. Valverde-Monge, M., Pastor-Vargas, C., Rodríguez del Rio, P., Escudero, C., Sánchez-García, S., Mendez Brea, P. et al. (2018). Anaphylaxis by exclusive allergy to swordfish and identification of a new fish allergen. Pediatric Allergy and Immunology, 29(5), 563–565. https://doi.org/10.1111/pai.12916

10. González-Fernández, J., Alguacil-Guillén, M., Cuéllar, C., Daschner, A. (2018). Possible allergenic role of tropomyosin in patients with adverse reactions after fish intake. Immunological Investigations, 47(4), 416–429. https://doi.org/10.1080/08820139.2018.1451882

11. Climer, L. K., Cox, A. M., Reynolds, T. J., Simmons, D. D. (2019). Oncomodulin: The enigmatic parvalbumin protein. Frontiers in Molecular Neuroscience, 12, Article 235. https://doi.org/10.3389/fnmol.2019.00235

12. Sampath, V., Abrams, E. M., Adlou, B., Akdis, C., Akdis, M., Brough, H. A. et al. (2021). Food allergy across the globe. Journal of Allergy and Clinical Immunology, 148(6), 1347–1364. https://doi.org/10.1016/j.jaci.2021.10.018

13. VNIRO (2023). World catches of fish and non-fish objects of catching 2017–2021 (according to FAO materials). Moscow: VNIRO, 2023. Retrieved from http://www.vniro.ru/ru/nauchnaya-deyatelnost/statisticheskie-svedeniya/mirovye-ulovy-ryby-i-nerybnykh-obektov-promyslaza-2017–2021-gg Accessed May 14, 2024 (In Russian)]

14. FAO (2024) The State of World Fisheries and Aquaculture 2024. Blue Transformation in action. Rome, 2024. https://doi.org/10.4060/cd0683en

15. State of Biological Resources of the Black and Azov Seas (Reference Manual). Kerch: YugNIRO Press, 1995. (In Russian)

16. Balykin, P. A. (2014). Aquatic biological resources of the Azov and Black Sea basin, their use and study. Fish Breeding and Fisheries, 8, 16–25. (In Russian)

17. Balykin, P. A., Kutsyn, D. N., Startsev, A. V. (2021). Fishing under climate change: Dynamics of composition and structure of catches in the Russian Black Sea in the XXI century. Marine Biological Journal. 6(3), 3–14. (In Russian) https://doi.org/10.36038/0234-2774-2021-22-3-51-60

18. Eremeev, V. N., Gaevskaya, A. V., Shulman, G. E., Zagorodnyaya, Ju. A. (2011). Biological resources of the Black Sea and Sea of Azov. Sevastopol: ECOSY- Gidrofizika, 2011. (In Russian)

19. FAO (2023). Agricultural production statistics 2000–2022. FAOSTAT Analytical Briefs, No. 79. Rome, 2023. https://doi.org/10.4060/cc9205en

20. World fish production in 2017–2021. (2023). Moskow: VNIRO, 2023. Retrieved from http://www.vniro.ru/ru/nauchnaya-deyatelnost/statisticheskiesvedeniya/mirovoe-proizvodstvo-rybnoj-produktsii-v-2017–2021-gg (In Russian)] Accessed May 14, 2024 (In Russian)]

21. Sharp, M. F., Lopata, A. L. (2014). Fish allergy: In review. Clinical Reviews in Allergy and Immunology, 46(3), 258–271. https://doi.org/10.1007/s12016-013-8363-1

22. Liu, R., Krishnan, H. B., Xue, W., Lui, C. (2010). Characterization of allergens isolated from freshwater fish Blunt Snout Bream (Megalobrama amblycephala). Journal of Agricultural and Food Chemistry, 59(1), 458–461. https://doi.org/10.1021/jf103942p

23. Sasaki, M., Koplin, J. J., Dharmage, S. C., Field, M. J., Sawyer, S. M., McWilliam, V. et al. (2018). Prevalence of clinic-defined food allergy in early adolescence: The SchoolNuts study. Journal of Allergy and Clinical Immunology, 141, 391–398.e4. https://doi.org/10.1016/j.jaci.2017.05.041

24. Kanchan, K., Clay, S., Irizar, H., Bunyavanich, S., Mathias, R. A. (2021). Current insights into the genetics of food allergy. Journal of Allergy and Clinical Immunology, 147(1), 15–28. https://doi.org/10.1016/j.jaci.2020.10.039

25. Kourani, E., Corazza, F., Michel, O., Doyen, V. (2019). What do we know about fish allergy at the end of the decade? Journal of Investigational Allergology and Clinical Immunology, 29(6), 414–21. https://doi.org/10.18176/jiaci.0381

26. Dijkema, D., Emons, J. A. M., Van de Ven, A. A. J. M., Oude Elberink, J. N. G. (2022). Fish allergy: Fishing for novel diagnostic and therapeutic options. Clinical Reviews in Allergy and Immunology, 62(1), 64–71. https://doi.org/10.1007/s12016-020-08806-5

27. Carvalho, S., Marcelino, J., Cabral Duarte, M. F., Costa, C., Barbosa, M. A., Pereira Dos Santos M. C. (2020). Role of recombinant parvalbumin Gad c 1 in the diagnosis and prognosis of fish allergy. Journal of Investigational Allergology and Clinical Immunology, 30(5), 340–345. https://doi.org/10.18176/jiaci.0437

28. Kuehn, A., Scheuermann, T., Hilger, C., Hentges, F. (2010). Important variations in parvalbumin content in common fish species: A factor possibly contributing to variable allergenicity. International Archives of Allergy and Immunology, 153(4), 359–366. https://doi.org/10.1159/000316346

29. Schulkes, K. J., Klemans, R. J., Knigge, L, de Bruin-Weller, M, Bruijnzeel-Koomen, C. A, Marknell de Witt, A. et al. (2014). Specific IgE to fish extracts does not predict allergy to specific species within an adult fish allergic population. Clinical and Translational Allergy, 4(1), Article 27. https://doi.org/10.1186/2045-7022-4-27

30. Kato Y., Morikawa T., Kato E., Yoshida K., Imoto Y., Sakashita M. et al. (2021). Involvement of activation of mast cells via IgE signaling and epithelial cell-derived cytokines in the pathogenesis of pollen food allergy syndrome in a murine model. Journal of Immunology, 206(12), 2791–2802. https://doi.org/10.4049/jimmunol.2000518

31. Liang, J., Taylor, S. L., Baumert, J., Lopata, A. L., Lee, N. A. (2021). Effects of thermal treatment on the immunoreactivity and quantification of parvalbumin from Southern hemisphere fish species with two anti-parvalbumin antibodies. Food Control, 121, Article 107675. https://doi.org/10.1016/j.foodcont.2020.107675

32. Xepapadaki, P., Christopoulou, G., Stavroulakis, G., Freidl, R., Linhart, B., Zuidmeer, L. et al. (2021). Natural history of IgE-mediated fish allergy in children. Journal of Allergy Clinical Immunology: In Practice, 9, 3147–3156. https://doi.org/10.1016/j.jaip.2021.04.007

33. Huby, R. D., Dearman, R. J., Kimber, I. (2000). Why are some proteins allergens? Toxicological Sciences, 55(2), 235–246. https://doi.org/10.1093/toxsci/55.2.235

34. Campana, R., Dzoro, S., Mittermann, I., Fedenko, E., Elisyutina, O., Khaitov, M. et al. (2017). Molecular aspects of allergens in atopic dermatitis. Current Opinion in Allergy and Clinical Immunology, 17(4), 269–277. https://doi.org/10.1097/ACI.0000000000000378

35. Suarez-Farinas M., Suprun M., Bahnson H. T, Raghunathan R., Getts R., duToit G. et al. (2021). Evolution of epitope-specific IgE and IgG4 antibodies in children enrolled in the LEAP trial. Journal of Allergy and Clinical Immunology, 148(3), 835–842. https://doi.org/10.1016/j.jaci.2021.01.030

36. Dall’antonia, F., Pavkov-Keller, T., Zangger, K., Keller, W. (2014). Structure of allergens and structure based epitope predictions. Methods, 66(1), 3–21. https://doi.org/10.1016/j.ymeth.2013.07.024

37. Mabelane T., Basera W., Botha M., Thomas H. F., Ramjith J., Levin M. E. (2018). Predictive values of alpha-gal IgE levels and alpha-gal IgE: Total IgE ratio and oral food challenge-proven meat allergy in a population with a high prevalence of reported red meat allergy. Pediatric Allergy and Immunology, 29(8), 841–849. https://doi.org/10.1111/pai.12969

38. Ferraro, V., Zanconato, S., Carraro, S. (2019). Timing of food introduction and the risk of food allergy. Nutrients, 11(5), Article 1131. https://doi.org/10.3390/nu11051131

39. Hungerford, J. M. (2021). Histamine and scombrotoxins. Toxicon, 201, 115–126. https://doi.org/10.1016/j.toxicon.2021.08.013

40. Aibinu, I. E., Smooker, P. M., Lopata, A. L. (2019). Anisakis Nematodes in Fish and Shellfish- from infection to allergies. International Journal for Parasitology: Parasites and Wildlife, 9, 384–393. https://doi.org/10.1016/j.ijppaw.2019.04.007

41. Morozińska-Gogol, J. (2019). Anisakis spp. as etiological agent of zoonotic disease and allergy in European region — an overview. Annals of Parasitology, 65(4), 303–314. https://doi.org/10.17420/ap6504.214

42. Rama T. A., Silva D. (2022). Anisakis allergy: Raising awareness. Acta Medica Portuguesa, 5(7–8), 578–583. https://doi.org/10.20344/amp.15908

43. Kuehn, A., Swoboda, I., Arumugam, K., Hilger, C., Hentges, F. (2014). Fish allergens at a glance: Variable allergenicity or parvalbumin, the major fish allergens. Frontiers in Immunology, 22(5), Article 179. https://doi.org/10.3389/ fimmu.2014.00179

44. Perez-Gordo, M., Sanchez-Garcia, S., Cases, B., Pastor, C., Vivanco, F., CuestaHerranz, J. (2008). Identification of vitellogenin as an allergen in Beluga caviar allergy. Allergy, 63, 479–480. https://doi.org/10.1111/j.1398–9995.2007.01614.x

45. Liu, R., Holck, A. L., Yang, E., Liu, C., Cue, W. (2013). Tropomyosin from tilapia (Oreochromis mossambicus) as an allergen. Clinical and Experimental Allergy, 43(3), 365–377. https://doi.org/10.1111/cea.12056

46. Perez-Gordo, M., Cuesta-Herranz, J., Maroto, A. S., Cases, B., Ibáñez, M. D., Vivanco, F. et al. (2011). Identification of sole parvalbumin as a major allergen: Study of cross reactivity between parvalbumins in a Spanish fish-allergic population. Clinical and Experimental Allergy, 41, 750–758. https://doi.org/10.1111/j.1365-2222.2011.03721.x

47. Helbling, A., Heydet, R., McCants, M. L., Musmand, J. J., El-Dahr, J., Lehrer, S. G. (1999). Fish allergy: Is cross-reactivity among fish species relevant? Doubleblind placebo-controlled food challenge studies or fish-allergic patients. Annals of Allergy, Asthma and Immunology, 83, 517–523. https://doi.org/10.1016/S1081-1206(10)62862-1

48. Sten, E., Hansen, T. K., Stahl Skov, P., Andersen, S. B., Torp, A., Bindslev-Jensen, U. et al. (2004). Cross-reactivity to eel, eelpout and ocean pout in codfish-allergic patients, Allergy, 59, 1173–1180. https://doi.org/10.1111/j.1398-9995.2004.00497.x

49. Luo, C., Guo, Y., Li, Z., Ahmed, I., Pramod, S. N., Gao, X. et al. (2020). Lipid emulsion enhances fish allergen parvalbumin’s resistance to in vitro digestion and IgG/IgE binding capacity. Food Chemistry, 302, Article 125333. https://doi.org/10.1016/j.foodchem.2019.125333

50. Grabenhenrich, L., Trendelenburg, V., Bellach, J., Yürek, S., Reich, A., Fiandor, A. et al. (2020). Frequency of food allergy in school-aged children in eight European countries-The EuroPrevall-iFAAM birth cohort. Allergy, 75(9), 2294–2308. https://doi.org/10.1111/all.14290

51. Kobayashi, Y., Yang, T., Yu, C. T., Ume, C., Kubota, H., Shimakura, K. et al. (2016). Quantification of major allergen parvalbumin in 22 species of fish by SDS — PAGE. Food Chemistry, 194, 345–353. https://doi.org/10.1016/j.foodchem.2015.08.037

52. André, F., Cavagna, S., André, C. (2003). Gelatin prepared from tuna skin: A risk factor for fish allergy or sensitization? International Archives of Allergy and Immunology, 130, 17–24. https://doi.org/10.1159/000068370

53. Kondo, Y., Komatsubara, R., Nakajima, Y., Yasuda, T., Kakami, M., Tsuge, I. et al. (2006). Parvalbumin is not responsible for crossreactivity between tuna and marlin: A case report. Journal of Allergy and Clinical Immunology, 118(6), 1382– 1383. https://doi.org/10.1016/j.jaci.2006.07.047

54. Ruethers, T., Taki, A. C., Karnaneedi, S., Nie, S., Kalic, T., Dai, D. et al. (2021). Expanding the allergen repertoire of salmon and catfish. Allergy, 76(5), 1443–1453. https://doi.org/10.1111/all.14574

55. Kuehn, A., Hilger, C., Lehners-Weber, C., Codreanu-Morel, F., Morisset, M., Metz-Favre, C. et al. (2013). Identification of enolases and aldolases as important fish allergens in cod, salmon and tuna: Component resolved diagnosis using parvalbumin and the new allergens. Clinical and Experimental Allergy, 43(7), 811–822. https://doi.org/10.1111/cea.12117

56. Pascal, M., Grishina, G., Yang, A. C., Sánchez-García, S., Lin, J., Towle, D. et al. (2015). Molecular diagnosis of shrimp allergy: Efficiency of several allergens to predict clinical reactivity. Journal of Allergy Clinical Immunology: In Practice, 3(4), 521–529.e10. https://doi.org/10.1016/j.jaip.2015.02.001

57. Pérez-Tavarez, R., Carrera, M., Pedrosa, M., Quirce, S., Rodríguez-Pérez, R., Gasset, M. (2019). Reconstruction of fish allergenicity from the content and structural traits of the component b-parvalbumin isoforms. Scientific Reports. 9(1), Article 16298. https://doi.org/10.1038/s41598-019-52801-6

58. Matricardi, P. M., Kleine-Tebbe, J., Hoffmann, H. J., Valenta, R., Hilger, C., Hofmaier, S. et al. (2016). EAACI Molecular Allergology User’s Guide. Pediatric Allergy and Immunology, 27 (Suppl 23), 1–250. https://doi.org/10.1111/pai.12563

59. Wong, L., Tham, E. H., Lee, B. W. (2019). An update on shellfish allergy. Current Opinion in Allergy and Clinical Immunology, 19(3), 236–242. https://doi.org/10.1097/ACI.0000000000000532

60. Le, T. T. K., Tran, T. T. B., Ho, H. T. M., Vu, A. T. L., McBryde, E., Lopata, A. L. (2020). The predominance of seafood allergy in Vietnamese adults: Results from the first population-based questionnaire survey. World Allergy Organization Journal, 13(3), Article 100102. https://doi.org/10.1016/j.waojou.2020.100102

61. Liu, M., Huan, F., Li, M., Han, T., Xia, F., Yang, Y. et al. (2021). Mapping and IgE-binding capacity analysis of heat/digested stable epitopes of mud crab allergens. Food Chemistry, 344, Article 128735. https://doi.org/10.1016/j.foodchem.2020.128735

62. Kamath, S. D., Scheiblhofer, S., Johnson, C. M., Machado, Y., McLean, T., Taki, A. C. et al. (2020). Effect of structural stability on endolysosomal degradation and T-cell reactivity of major shrimp allergen tropomyosin. Allergy, 75, 2909–2919. https://doi.org/10.1111/all.14410

63. FAO (2007). Future prospects for fish and fishery products 4. Fish consumption in the European Union in 2015 and 2030 Part 1. European overview. FAO Fisheries Circular No. 972/4, Part 1. Rome, 2007

64. Warren, C., Lei, D., Sicherer, S., Schleimer, R., Gupta, R. (2021). Prevalence and characteristics of peanut allergy in US adults. Journal of Allergy and Clinical Immunology, 147(6), 2263–2270.e5. https://doi.org/10.1016/j.jaci.2020.11.046

65. Baimakova, E. A. (2022). A case of infant seafood allergy. Allergology and Immunology in Pediatrics, 2, 30–32. (In Russian)] https://doi.org/10.53529/2500-1175-2022-2-30-32

66. Yamaguchi, C., Ebara, T., Hosokawa, R., Futamura, M., Ohya, Y., Asano, M. (2019). Factors determining parenting stress in mothers of children with atopic dermatitis. Allergology International, 68(2), 185–190. https://doi.org/10.1016/j.alit.2018.08.006

67. Jhamnani, R. D., Levin, S., Rasooly, M., Stone, K. D., Milner, J. D., Nelson, C. et al. (2018). Impact of food allergy on the growth of children with moderate severe atopic dermatitis. Journal of Allergy and Clinical Immunology, 141, 1526–1529.e4. https://doi.org/10.1016/j.jaci.2017.11.056

68. Kuehn, A., Hilger, C., Hentges, F. (2009). Anaphylaxis provoked by ingestion or marshmallows containing fish gelatin. Journal of Allergy and Clinical Immunology, 123(3), 708–709. https://doi.org/10.1016/j.jaci.2008.12.012

69. Ueno, R., Takaoka, Y., Shimojo, N., Ohno, F., Yamaguchi, T., Matsunaga, K. et al. (2020). A case of pediatric anaphylaxis caused by gummy tablets containing fish collagen. Asia Paificc Allergy, 10(4), Article e35. https://doi.org/10.5415/apallergy.2020.10.e35

70. Warren, C. M, Jiang, J., Gupta, R. S. (2020). Epidemiology and burden of food allergy. Current Allergy Asthma Reports, 20(2), Article 6. https://doi.org/10.1007/s11882-020-0898-7

71. Goodman, M., Pechère, J.-F., Haiech, J., Demaille, J. G. (1979). Evolutionary diversification of structure and function in the family of intracellular calciumbinding proteins. Journal of Molecular Evolution, 13(4), 331–352. https://doi.org/10.1007/BF01731373

72. Woods, R. K., Abramson, M., Bailey, M., Walters, E. H. (2001). International prevalences of reported food allergies and intolerances. Comparisons arising from the European Community Respiratory Health Survey (ECRHS) 1991–1994. European Journal of Clinical Nutrition, 55, 298–304. https://doi.org/10.1038/sj.ejcn.1601159

73. Durham, S. R., Shamji, M. H. (2023). Allergen immunotherapy: Past, present and future. Nature Reviews Immunology, 23(5), 317–328. https://doi.org/10.1038/s41577-022-00786-1

74. Fogg, M. I., Spergel, J. M. (2003). Management of food allergies. Expert Opinion on Pharmacotherapy, 4 (7), 1025–1037. https://doi.org/10.1517/14656566.4.7.1025

75. Plotkin, S. A. (2005). Vaccines: Past, present and future. Nature Medicine, 11(4 Suppl), S5–S11. https://doi.org/10.1038/nm1209

76. Schmiechen, Z. C., Weissler, K. A., Frischmeyer-Guerrerio, P. A. (2019). Recent developments in understanding the mechanisms of food allergy. Current Opinion in Pediatrics, 31(6), 807–814. https://doi.org/10.1097/MOP.0000000000000806

77. Valenta, R., Campana, R., Niederberger, V. (2017). Recombinant allergy vaccines based on allergen-derived B cell epitopes. Immunology Letters, 189, 19–26. https://doi.org/10.1016/j.imlet.2017.04.015

78. Yu, W., Freeland, D. M. H., Nadeau, K. C. (2016). Food allergy: Immune mechanisms, diagnosis and immunotherapy. Nature Reviews Immunology, 16(12), 751– 765. https://doi.org/10.1038/nri.2016.111

79. Davis, C. M., Gupta, R. S., Aktas, O. N., Diaz, V., Kamath, S. D., Lopata, A. L. (2020). Clinical management of seafood allergy. The Journal of Allergy Clinical Immunology: In Practice, 8(1), 37–44. https://doi.org/10.1016/j.jaip.2019.10.019

80. Wei, G., Helmerhorst, E. J., Darwish, G., Blumenkranz, G., Schuppan, D. (2020). Gluten degrading enzymes for treatment of celiac disease. Nutrients, 12(7), Article 2095. https://doi.org/10.3390/nu12072095

81. Kalic, T., Kamath, S. D., Ruethers, T., Taki, A. C., Nugraha, R., Le, T. T. K. et al. (2020). Collagenan important fish allergen for improved diagnosis. Journal of Allergy Clinical Immunology: In Practice, 8(9), 3084–3092.e10. https://doi.org/10.1016/j.jaip.2020.04.063

82. Klueber, J., Schrama, D., Rodrigues, P., Dickel, H., Kuehn, A. (2019). Fish allergy management: From component-resolved diagnosis to unmet diagnostic needs. Current Treatment Options in Allergy, 6(4), 322–337. https://doi.org/10.1007/s40521-019-00235-w

83. Rad, L. M., Arellano, G., Podojil, J. R., O’Konek, J. J., Shea, L. D., Miller, S. D. (2024). Engineering nanoparticle therapeutics for food allergy. Journal of Allergy and Clinical Immunology, 153(3), 549–559. https://doi.org/10.1016/j.jaci.2023.10.013

84.


Review

For citations:


Tsarin S.A., Stolyarchuk N.M., Kuznetsov A.V. Allergy to aquatic biological resources as food. Food systems. 2024;7(3):403-409. (In Russ.) https://doi.org/10.21323/2618-9771-2024-7-3-403-409

Views: 1301


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)