Preview

Food systems

Advanced search

Modern biological methods of processing plant raw materials used to increase its storage capacity

https://doi.org/10.21323/2618-9771-2024-7-2-298-304

Abstract

Foodborne illnesses, mainly infectious, are a leading cause of morbidity and mortality worldwide. Pathogenic bacteria are present at virtually every stage of the food production chain, compromising company food safety programs and causing out-breaks of foodborne illnesses in various regions of the world. Finding new solutions that provide adequate microbiological stability to minimally processed foods is key to controlling bacterial pathogens that cause foodborne illnesses. The use of chemical and physical methods of food preservation often leads to a deterioration in their nutritional value, physical and organoleptic properties. Minimally processed foods produced without any radical preservation methods may be at particular risk of developing microorganisms, including pathogens. Low-temperature production processes and refrigerated storage promote the development of psychrophilic microorganisms; another threat is posed by high microbiological contamination of raw materials. To preserve the quality of food products, the most commonly used physicochemical methods include modified atmosphere packaging, membrane methods or ultrasound. Alternatively, biological methods can be used: bacteriophages and phage cocktails, bacteriocins, inactivation of plant tissue degradation enzymes, phytochemicals, edible coatings. Moreover, they can be used either individually to limit the growth of bacteria in the food environment, or in combination with other methods in order to achieve maximum effect. This article discusses the main biological methods of combating pathogenic bacteria most commonly found in the food environment. The purpose of this review was to consider existing biological methods for processing plant objects, as well as to identify the advantages and disadvantages of each method.

About the Authors

N. E. Posokina
All-Russian Scientific Research Institute of Preservation Technology
Russian Federation

Natalia E. Posokina - Candidate of Technical Sciences, Head of the Laboratory of Food Canning Technology, All-Russian Scientific Research Institute of Preservation Technology.

78, Shkol'naya Str., Vidnoe, 142703, Moscow region

Tel.: +7-926-367-75-07



A. I. Zakharova
All-Russian Scientific Research Institute of Preservation Technology
Russian Federation

Anna I. Zakharova - Researcher, Laboratory of Food Canning Technology, All-Russian Scientific Research Institute of Preservation Technology.

78, Shkol'naya Str., Vidnoe, 142703, Moscow region

Tel.: +7-903-187-14-08



References

1. Paparella, A., Maggio, F. (2023). Detection and control of foodborne pathogens. Foods, 12(19), Article 3521. https://doi.org/10.3390/foods12193521

2. Chung, K. M., Liau, X. L., Tang, S. S. (2023). Bacteriophages and their host range in multidrug-resistant bacterial disease treatment. Pharmaceuticals, 16 (10), Article 1467. https://doi.org/10.3390/ph16101467

3. Vaca, J., Ortiz, A., Sansinenea, E. (2022). A study of bacteriocin like substances comparison produced by different species of Bacillus related to B. cereus group with specific antibacterial activity against foodborne pathogens. Archives of Microbiology, 3, 205(1), Article 13. https://doi.org/10.1007/s00203-022-03356-0

4. Jamal, M., Bukhari, S., Andleeb, S., Ali, M., Raza, S., Nawaz, M. et al. (2018). Bacteriophages: An overview of the control strategies against multiple bacterial infections in different fields. Journal of Basic Microbiology, 59(2), 123-133. https://doi.org/10.1002/jobm.201800412

5. Petrovic Fabijan, A., Iredell, J., Danis-Wlodarczyk, K., Kebriaei, R., Abedon S. (2023). Translating phage therapy into the clinic: Recent accomplishments but continuing challenges. PLOS Biology, 21(5), Article e3002119. https://doi.org/10.1371/journal.pbio.3002119

6. Zuppi, M., Hendrickson, H. L., O'Sullivan, J. M., Vatanen, T. (2022). Phages in the gut ecosystem. Frontiers in Cellular and Infection Microbiology, 11, Article 822562 https://doi.org/10.3389/fcimb.2021.822562

7. Mani, I. (2023). Phage and phage cocktails formulations. Chapter in a book: Progress in Molecular Biology and Translational Science. Elsevier Inc., 2023. https://doi.org/10.1016/bs.pmbts.2023.04.007

8. Gordillo Altamirano, F. L., Barr, J. J. (2019). Phage therapy in the Postantibiotic Era. Clinical Microbiology Reviews, 32(2), Article e00066-18. https://doi.org/10.1128/CMR.00066-18

9. Dennehy, J. J., Abedon, S. T. (2020). Adsorption: Phage Acquisition of Bacteria. Chapter in a book: Bacteriophages. Springer, Cham. https://doi.org/10.1007/978-3-319-41986-2_2

10. Amjad, K. (2020). Phage-bacteria interaction and prophage sequences in bacterial genomes. Electronic Thesis and Dissertation Repository. The University of Western Ontario. https://ir.lib.uwo.ca/etd/6957

11. Aframian, N., Bendori, S. O., Hen, S., Guler, P., Stokar-Avihail, A., Manor, E. et al. (2021). Dormant phages communicate to control exit from lysogeny. bioRxiv, Preprint https://doi.org/10.1101/2021.09.20.460909

12. Schneider, C. L. (2017). Bacteriophage-mediated horizontal gene transfer: Trans-duction. Chapter in a book: Bacteriophages. Springer, Cham. 2020. https://doi.org/10.1007/978-3-319-40598-8_4-1

13. Endersen, L., Coffey A. (2020). The use of bacteriophages for food safety. Current Opinion in Food Science, 36, 1-8. https://doi.org/10.1016/j.cofs.2020.10.006

14. Liu, A., Liu, Y., Peng, L., Cai, X., Shen, L., Duan, M. et al. (2020). Characterization of the narrow-spectrum bacteriophage LSE7621 towards Salmonella Enteritidis and its biocontrol potential on different foods. LWT, 118, Article 108791. https://doi.org/10.1016/j.lwt.2019.108791

15. Liu, N., Lewis, C., Zheng, W., Fu, Z. Q. (2020). Phage cocktail therapy: Multiple ways to suppress pathogenicity. Trends in Plant Science, 25(4), 315-317. https://doi.org/10.1016/j.tplants.2020.01.013

16. Wójcicki, M., Świder, O., Gientka, I., Błażejak, S., Średnicka, P., Shymialevich, D. et al. (2023). Effectiveness of a phage cocktail as a potential biocontrol agent against saprophytic bacteria in ready-to-eat plant-based food. Viruses, 15, Article 172. https://doi.org/10.3390/v15010172

17. Duc, H. M., Zhang, Y., Hoang, S. M., Masuda, Y., Honjoh, K.-I., Miyamoto, T. (2023). The use of phage cocktail and various antibacterial agents in combination to prevent the emergence of phage resistance. Antibiotics, 12(6), Article 1077. https://doi.org/10.3390/antibiotics12061077

18. Wong, C. W. Y., Delaquis, P., Goodridge, L., Lévesque R. C., Fong, K., Wang, S. (2020). Inactivation of Salmonella enterica on post-harvest cantaloupe and lettuce by a lytic bacteriophage cocktail. Critical Reviews in Food Science and Nutrition, 2, 25-32. https://doi.org/10.1016/j.crfs.2019.11.004

19. Toprak, Z. T., Sanlibaba, P. (2020). Application of Phage for Biocontrol of Salmonella Species in Food Systems. Turkish Journal of Agriculture — Food Science and Technology, 8(10), 2214-2221. https://doi.org/10.24925/turjaf.v8i10.2214-2221.3689

20. Hong, Y.-P., Cho, J. W., Lee, J. H., Yang, R.-Y. (2015). Combining of bacteriophage and G. asaii application to reduce l. monocytogenes on fresh-cut melon under low temperature and packing with functional film. Journal of Food and Nutrition Sciences, 3(1-2), 79-83. https://doi.org/10.11648/j.jfns.s.2015030102.25

21. Lahiri, D., Nag, M., Dutta, B., Sarkar, T., Pati, S., Basu, D. et al. (2022). Bacteriocin: A natural approach for food safety and food security. Frontiers in Bioengineering and Biotechnology, 10, Article 1005918. https://doi.org/10.3389/fbioe.2022.1005918

22. Cleveland, J., Montville, T. J., Nes, I. F., Chikindas, M. L. (2001). Bacteriocins: Safe, natural antimicrobials for food preservation. International Journal of Food Microbiology, 71(1), 1-20. https://doi.org/10.1016/S0168-1605(01)00560-8

23. Anjana, P., Tiwari, S. K. (2022). Bacteriocin-producing probiotic lactic acid bacteria in controlling dysbiosis of the gut microbiota. Frontiers in Cellular and Infection Microbiology, 12, Article 851140. https://doi.org/10.3389/fcimb.2022.851140

24. Taye, Y., Degu, T., Fesseha, H., Mathewos, M. (2021). Isolation and identification of lactic acid bacteria from cow milk and milk products. The Scientific World Journal, Article 4697445. https://doi.org/10.1155/2021/4697445

25. Barreto Pinilla, C. M., Brandelli, A., Ataide Isaia, H. (2024). Probiotic Potential and Application of Indigenous Non-Starter Lactic Acid Bacteria in Ripened Short-Aged Cheese. Current Microbiology, 81, Article 202. https://doi.org/10.1007/s00284-024-03729-2

26. Mekala, P. N., Ansari, R. M. H. (2023). Biotechnological potential of lactic acid bacteria derived bacteriocins in sustainable food preservation. World Journal of Biology Pharmacy and Health Sciences, 14(3), 24-35. https://doi.org/10.30574/wjbphs.2023.14.3.0245

27. Bintsis, T. (2018). Lactic acid bacteria as starter cultures: An update in their metabolism and genetics. AIMS Microbiology, 4(4), 665-684. https://doi.org/10.3934/microbiol.2018.4.665

28. Contessa, C. R., de Souza, N. B., Gongalo, G. B., de Moura, C. M., da Rosa, G. S., Moraes, C. C. (2021). Development of active packaging based on agar-agar incorporated with bacteriocin of Lactobacillus sakei. Biomolecules, 11(12), Article 1869. https://doi.org/10.3390/biom11121869

29. Strack, L., Carli, R. C., da Silva, R. V., Sartor, K. B., Colla, L. M., Reinehr, C. O. (2020) Food biopreservation using antimicrobials produced by lactic acid bacteria. Research Society and Development, 9(8), Article e998986666. https://doi.org/10.33448/rsd-v9i8.6666

30. Perez, R. H., Zendo, T., Sonomoto, K. (2022). Multiple bacteriocin production in lactic acid bacteria. Journal of Bioscience and Bioengineering, 134(4), 277-287. https://doi.org/10.1016/j.jbiosc.2022.07.007

31. Tang, H., Huang, W., Yao, Y.-F. (2023). The metabolites of lactic acid bacteria: Classification, biosynthesis and modulation of gut microbiota. Microbial Cell, 10(3), 49-62. https://doi.org/10.15698/mic2023.03.792

32. Alameri, F., Tarique, M., Osaili, T., Obaid R., Abdalla, A., Masad R. et al. (2022). Lactic acid bacteria isolated from fresh vegetable products: Potential probiotic and postbiotic characteristics including immunomodulatory effects. Microorganisms, 10(2), Article 389. https://doi.org/10.3390/microorganisms10020389

33. Szutowska, J., Gwiazdowska, D. (2021). Probiotic potential of lactic acid bacteria obtained from fermented curly kale juice. Archives of Microbiology, 203(3), 975-988. https://doi.org/10.1007/s00203-020-02095-4

34. Parlindungan, E., Lugli, G., Ventura, M., van Sinderen, D., Mahony, J. (2021). Lactic acid bacteria diversity and characterization of probiotic candidates in fermented meats. Foods, 10(7), Article 1519. https://doi.org/10.3390/foods10071519

35. Małaczewska, J., Kaczorek-Łukowska, E (2021). Nisin — a lantibiotic with immunomodulatory properties: A review. Peptides, 137, Article 170479. https://doi.org/10.1016/j.peptides.2020.170479

36. Wang, X., Gu, Q., Breukink, E. (2020). Non-lipid II targeting lantibiotics. Biochimica et Biophysica Acta (BBA) — Biomembranes, 1862(8), Article 183244. https://doi.org/10.1016/j.bbamem.2020.183244

37. Negash, A. W., Tsehai, B. A. (2020). Current applications of bacteriocin. International Journal of Microbiology, 2020, Article 4374891. https://doi.org/10.1155/2020/4374891

38. Antoshina, D. V., Balandin, S. V., Ovchinnikova, T. V. (2022). Structural features, mechanisms of action, and prospects for practical application of class II bacteriocins. Biochemistry (Moscow), 87(11), 1387-1403. https://doi.org/10.1134/S0006297922110165

39. Timothy, B., Iliyasu, A. H., Anvikar, A. R. (2021). Bacteriocins of lactic acid bacteria and their industrial application. Current Topics in Lactic Acid Bacteria and Probiotics, 7(1), 1-13. https://doi.org/10.35732/ctlabp.2021.7.1.1

40. Angelescu, I.-R., Grosu-Tudor, S.-S., Cojoc L.-R., Maria, G.-M., Zamfir, M. (2021). Isolation, characterization, and applicability of Helveticin 34.9, a class iii bacteriocin produced by Lactobacillus Helveticus 34.9. Research Square, Preprint. https://doi.org/10.21203/rs.3.rs-808205/v1

41. Kumariya, R., Garsa, A. K., Rajput, Y. S., Sood, S. K., Akhtar, N., Patel, S. (2019). Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microbial Pathogenesis, 128, 171-177. https://doi.org/10.1016/j.micpath.2019.01.002

42. Darbandi, A., Asadi, A., Mahdizade Ari, M., Ohadi, E., Talebi, M., Halaj Zadeh, M. et al. (2022). Bacteriocins: Properties and potential use as antimicrobials. Journal of Clinical Laboratory Analysis, 36(1), Article e24093. https://doi.org/10.1002/jcla.24093

43. Lauková, A., Pogány Simonová, M., Focková, V., Kološta, M., Tomáška, M., Dvorožňáková, E. (2020). Susceptibility to bacteriocins in biofilm-forming, variable staphylococci isolated from local slovak ewes' milk lump cheeses. Foods, 22, 9(9), Article 1335. https://doi.org/10.3390/foods9091335

44. Simons, A., Alhanout, K., Duval, R. E. (2020). Bacteriocins, antimicrobial peptides from bacterial origin: Overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms, 8(5), Article 639. https://doi.org/10.3390/microorganisms8050639

45. Huang, F., Teng, K., Liu, Y., Cao, Y., Wang, T., Ma, C. et al. (2021). Bacteriocins: Potential for human health. Oxidative Medicine and Cellular Longevity, Article 5518825. https://doi.org/10.1155/2021/5518825

46. Veettil, V. N., Chitra V. A. (2022). Optimization of bacteriocin production by Lactobacillus plantarum using Response Surface Methodology. Cellular and Molecular Biology, 68(6), 105-110. https://doi.org/10.14715/cmb/2022.68.6.17.

47. Ryan, A., Patel, P., O'Connor, P. M., Ross, R. P., Hill, C., Hudson, S. P. (2021). Pharmaceutical design of a delivery system for the bacteriocin lacticin 3147. Drug Delivery and Translational Research, 11(4), 1735-1751. https://doi.org/10.1007/s13346-021-00984-9

48. Ross, J. N., Fields, F. R., Kalwajtys, V. R., Gonzalez, A. J., O'Connor, S., Zhang, A. et al. (2020). Synthetic peptide libraries designed from a minimal Alpha-helical domain of AS-48-Bacteriocin homologs exhibit potent antibacterial activity. Frontiers In Microbiology, 11, Article 589666. https://doi.org/10.3389/fmicb.2020.589666

49. Wang, M. (2023). In Vitro fermentation. Fermentation, 9(2), Article 86. https://doi.org/10.3390/fermentation9020086

50. Steier, V., Prigolovkin, L., Reiter, A., Neddermann, T., Wiechert, W., Reich, S. J. et al. (2024). Automated workflow for characterization of bacteriocin production in natural producers Lactococcus lactis and Latilactobacillus sakei. Microbial Cell Factories, 23(1), Article 74. https://doi.org/10.1186/s12934-024-02349-6

51. Abedin, M. M., Chourasia, R., Phukon, L. C., Sarkar, P., Ray, R. C., Singh, S. P. et al. (2023). Lactic acid bacteria in the functional food industry: Biotechnological properties and potential applications. Critical Reviews in Food Science and Nutrition, 5, 1-19. https://doi.org/10.1080/10408398.2023.2227896

52. Guo, L., Stoffels, K., Broos, J., Kuipers, O. P. (2024). Engineering hybrid lantibiotics yields the highly stable and bacteriocidal peptide cerocin V. Microbiology Research, 282, Article 127640. https://doi.org/10.1016/j.micres.2024.127640

53. Fernandes, P. (2018). Enzymatic processing in the food industry. Chapter in a book: Reference Module in Food Science. Elzevier, 2018. https://doi.org/10.1016/B978-0-08-100596-5.22341-X

54. Heirangkhongjam, M. D., Agarwal, K., Agarwal, A., Jaiswal N. (2022). Role of enzymes in fruit and vegetable processing industries: Effect on quality, processing method, and application. Chapter in a book: Novel Food Grade Enzymes. Springer, Singapore. https://doi.org/10.1007/978-981-19-1288-7_3

55. Motta, J. F. G., Freitas B. C. B. de, Almeida A. F. de, Martins G. A. de S., Borges, S. V. (2023). Use of enzymes in the food industry: A review. Article Food Science and Technology, 43, Article e106222. https://doi.org/10.1590/fst.106222

56. Shouket, S., Khurshid, S., Khan, J., Batool, R., Sarwar, A., Aziz, T. et al. (2023). Enhancement of shelf-life of food items via immobilized enzyme nanoparticles on varied supports. A sustainable approach towards food safety and sustainability. Food Research International, 169, Article 112940. https://doi.org/10.1016/j.foodres.2023.112940

57. Meli, V. S., Ghosh, S., Prabha, T. N., Chakraborty, N., Chakraborty, S., Datta, A. (2010). Enhancement of fruit shelf life by suppressing N-glycan processing enzymes. PNAS, 107(6), 2413-2418. https://doi.org/10.1073/pnas.0909329107

58. Posokina, N. E., Zakharova, A. I. (2023). Modern non-thermal method of processing plant raw materials used to increase its storability. Food Systems, 6(1), 4-10. (In Russian) https://doi.org/10.21323/2618-9771-2023-6-1-4-10

59. Mitelut, A. C., Popa, E. E., Draghici, M. C., Popescu, P. A., Popa, V. I., Bujor, O. C. et al. (2021). Latest developments in edible coatings on minimally processed fruits and vegetables: A review. Foods, 10(11), Article 2821. https://doi.org/10.3390/foods10112821

60. Díaz-Montes, E., Castro-Muñoz, R. (2021). Edible films coatings as food-quality preservers: An overview. Foods, 26, 10(2), Article 249. https://doi.org/10.3390/foods10020249

61. Martins, V. F. R., Pintado, M. E., Morais, R. M. S. C., Morais, A. M. M. B. (2024). Recent highlights in sustainable bio-based edible films and coatings for fruit and vegetable applications. Foods, 13(2), Article 318. https://doi.org/10.3390/foods13020318

62. Matloob, A., Ayub, H., Mohsin, M., Ambreen, S., Khan, F. A., Oranab, S. et al. (2023). A review on edible coatings and films: Advances, composition, production methods, and safety concerns. ACS Omega, 8(32), 28932-28944. https://doi.org/10.1021/acsomega.3c03459

63. Miteluț, A. C., Popa, E. E., Drăghici, M. C., Popescu, P. A., Popa, V. I., Bujor, O.-C. et al. (2021). Latest developments in edible coatings on minimally processed fruits and vegetables: A review. Foods, 10(11), Article 2821. https://doi.org/10.3390/foods10112821

64. Tiamiyu, Q. O., Adebayo, S. E., Yusuf, A. A. (2023). Gum Arabic edible coating and its application in preservation of fresh fruits and vegetables: A review. Food Chemistry Advances, 2, Article 100251. https://doi.org/10.1016/j.focha.2023.100251

65. Pinto, L. Tapia-Rodríguez, M. R. Baruzzi, F. Ayala-Zavala, J. F. (2023). Plant antimicrobials for food quality and safety: Recent views and future challenges. Foods, 12(12), Article 2315. https://doi.org/10.3390/foods12122315

66. Biswas, O., Kandasamy, P., Nanda, P. K., Biswas, S., Lorenzo, J. M., Das, A. et al. (2023). Phytochemicals as natural additives for quality preservation and improvement of muscle foods: A focus on fish and fish products. Food Materials Research, 3, Article 5. https://doi.org/10.48130/FMR-2023-0005

67. Galal, H. (2021). Impact of post-harvest treatments on the antioxidant content of fruits and vegetables. Egyptian Journal of Horticulture, 49 (1), 25-33. https://doi.org/10.21608/EJOH.2021.96104.1184

68. Albuquerque, P. M., Azevedo, S. G., de Andrade, C. P., D’Ambros, N. C. d. S., Pérez, M. T. M., Manzato, L. (2022). Biotechnological applications of nanoencapsulated essential oils: A review. Polymers, 14(24), Article 5495. https://doi.org/10.3390/polym14245495

69. Wan, J., Wilcock, A., Coventry, M. J. (1998). The effect of essential oils of basil on the growth of Aeromonas hydrophila and Pseudomonas fluorescens. Journal of Applied Microbiology, 84(2), 152-158. https://doi.org/10.1046/j.1365-2672.1998.00338.x

70. Kim, T., Kim, J.-H., Oh, S.-W. (2021). Grapefruit seed extract as a natural food antimicrobial: A review. Food and Bioprocess Technology, 14(4), 626-633. https://doi.org/10.1007/s11947-021-02610-5

71. Awad, A. M., Kumar, P., Ismail-Fitry, M. R., Jusoh, S., Ab Aziz, M. F., Sazili, A. Q. (2021). Green extraction of bioactive compounds from plant biomass and their application in meat as natural antioxidant. Antioxidants, 10(9), Article 1465. https://doi.org/10.3390/antiox10091465


Review

For citations:


Posokina N.E., Zakharova A.I. Modern biological methods of processing plant raw materials used to increase its storage capacity. Food systems. 2024;7(2):298-304. (In Russ.) https://doi.org/10.21323/2618-9771-2024-7-2-298-304

Views: 549


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)