Modern biological methods of processing plant raw materials used to increase its storage capacity
https://doi.org/10.21323/2618-9771-2024-7-2-298-304
Abstract
Foodborne illnesses, mainly infectious, are a leading cause of morbidity and mortality worldwide. Pathogenic bacteria are present at virtually every stage of the food production chain, compromising company food safety programs and causing out-breaks of foodborne illnesses in various regions of the world. Finding new solutions that provide adequate microbiological stability to minimally processed foods is key to controlling bacterial pathogens that cause foodborne illnesses. The use of chemical and physical methods of food preservation often leads to a deterioration in their nutritional value, physical and organoleptic properties. Minimally processed foods produced without any radical preservation methods may be at particular risk of developing microorganisms, including pathogens. Low-temperature production processes and refrigerated storage promote the development of psychrophilic microorganisms; another threat is posed by high microbiological contamination of raw materials. To preserve the quality of food products, the most commonly used physicochemical methods include modified atmosphere packaging, membrane methods or ultrasound. Alternatively, biological methods can be used: bacteriophages and phage cocktails, bacteriocins, inactivation of plant tissue degradation enzymes, phytochemicals, edible coatings. Moreover, they can be used either individually to limit the growth of bacteria in the food environment, or in combination with other methods in order to achieve maximum effect. This article discusses the main biological methods of combating pathogenic bacteria most commonly found in the food environment. The purpose of this review was to consider existing biological methods for processing plant objects, as well as to identify the advantages and disadvantages of each method.
Keywords
About the Authors
N. E. PosokinaRussian Federation
Natalia E. Posokina - Candidate of Technical Sciences, Head of the Laboratory of Food Canning Technology, All-Russian Scientific Research Institute of Preservation Technology.
78, Shkol'naya Str., Vidnoe, 142703, Moscow region
Tel.: +7-926-367-75-07
A. I. Zakharova
Russian Federation
Anna I. Zakharova - Researcher, Laboratory of Food Canning Technology, All-Russian Scientific Research Institute of Preservation Technology.
78, Shkol'naya Str., Vidnoe, 142703, Moscow region
Tel.: +7-903-187-14-08
References
1. Paparella, A., Maggio, F. (2023). Detection and control of foodborne pathogens. Foods, 12(19), Article 3521. https://doi.org/10.3390/foods12193521
2. Chung, K. M., Liau, X. L., Tang, S. S. (2023). Bacteriophages and their host range in multidrug-resistant bacterial disease treatment. Pharmaceuticals, 16 (10), Article 1467. https://doi.org/10.3390/ph16101467
3. Vaca, J., Ortiz, A., Sansinenea, E. (2022). A study of bacteriocin like substances comparison produced by different species of Bacillus related to B. cereus group with specific antibacterial activity against foodborne pathogens. Archives of Microbiology, 3, 205(1), Article 13. https://doi.org/10.1007/s00203-022-03356-0
4. Jamal, M., Bukhari, S., Andleeb, S., Ali, M., Raza, S., Nawaz, M. et al. (2018). Bacteriophages: An overview of the control strategies against multiple bacterial infections in different fields. Journal of Basic Microbiology, 59(2), 123-133. https://doi.org/10.1002/jobm.201800412
5. Petrovic Fabijan, A., Iredell, J., Danis-Wlodarczyk, K., Kebriaei, R., Abedon S. (2023). Translating phage therapy into the clinic: Recent accomplishments but continuing challenges. PLOS Biology, 21(5), Article e3002119. https://doi.org/10.1371/journal.pbio.3002119
6. Zuppi, M., Hendrickson, H. L., O'Sullivan, J. M., Vatanen, T. (2022). Phages in the gut ecosystem. Frontiers in Cellular and Infection Microbiology, 11, Article 822562 https://doi.org/10.3389/fcimb.2021.822562
7. Mani, I. (2023). Phage and phage cocktails formulations. Chapter in a book: Progress in Molecular Biology and Translational Science. Elsevier Inc., 2023. https://doi.org/10.1016/bs.pmbts.2023.04.007
8. Gordillo Altamirano, F. L., Barr, J. J. (2019). Phage therapy in the Postantibiotic Era. Clinical Microbiology Reviews, 32(2), Article e00066-18. https://doi.org/10.1128/CMR.00066-18
9. Dennehy, J. J., Abedon, S. T. (2020). Adsorption: Phage Acquisition of Bacteria. Chapter in a book: Bacteriophages. Springer, Cham. https://doi.org/10.1007/978-3-319-41986-2_2
10. Amjad, K. (2020). Phage-bacteria interaction and prophage sequences in bacterial genomes. Electronic Thesis and Dissertation Repository. The University of Western Ontario. https://ir.lib.uwo.ca/etd/6957
11. Aframian, N., Bendori, S. O., Hen, S., Guler, P., Stokar-Avihail, A., Manor, E. et al. (2021). Dormant phages communicate to control exit from lysogeny. bioRxiv, Preprint https://doi.org/10.1101/2021.09.20.460909
12. Schneider, C. L. (2017). Bacteriophage-mediated horizontal gene transfer: Trans-duction. Chapter in a book: Bacteriophages. Springer, Cham. 2020. https://doi.org/10.1007/978-3-319-40598-8_4-1
13. Endersen, L., Coffey A. (2020). The use of bacteriophages for food safety. Current Opinion in Food Science, 36, 1-8. https://doi.org/10.1016/j.cofs.2020.10.006
14. Liu, A., Liu, Y., Peng, L., Cai, X., Shen, L., Duan, M. et al. (2020). Characterization of the narrow-spectrum bacteriophage LSE7621 towards Salmonella Enteritidis and its biocontrol potential on different foods. LWT, 118, Article 108791. https://doi.org/10.1016/j.lwt.2019.108791
15. Liu, N., Lewis, C., Zheng, W., Fu, Z. Q. (2020). Phage cocktail therapy: Multiple ways to suppress pathogenicity. Trends in Plant Science, 25(4), 315-317. https://doi.org/10.1016/j.tplants.2020.01.013
16. Wójcicki, M., Świder, O., Gientka, I., Błażejak, S., Średnicka, P., Shymialevich, D. et al. (2023). Effectiveness of a phage cocktail as a potential biocontrol agent against saprophytic bacteria in ready-to-eat plant-based food. Viruses, 15, Article 172. https://doi.org/10.3390/v15010172
17. Duc, H. M., Zhang, Y., Hoang, S. M., Masuda, Y., Honjoh, K.-I., Miyamoto, T. (2023). The use of phage cocktail and various antibacterial agents in combination to prevent the emergence of phage resistance. Antibiotics, 12(6), Article 1077. https://doi.org/10.3390/antibiotics12061077
18. Wong, C. W. Y., Delaquis, P., Goodridge, L., Lévesque R. C., Fong, K., Wang, S. (2020). Inactivation of Salmonella enterica on post-harvest cantaloupe and lettuce by a lytic bacteriophage cocktail. Critical Reviews in Food Science and Nutrition, 2, 25-32. https://doi.org/10.1016/j.crfs.2019.11.004
19. Toprak, Z. T., Sanlibaba, P. (2020). Application of Phage for Biocontrol of Salmonella Species in Food Systems. Turkish Journal of Agriculture — Food Science and Technology, 8(10), 2214-2221. https://doi.org/10.24925/turjaf.v8i10.2214-2221.3689
20. Hong, Y.-P., Cho, J. W., Lee, J. H., Yang, R.-Y. (2015). Combining of bacteriophage and G. asaii application to reduce l. monocytogenes on fresh-cut melon under low temperature and packing with functional film. Journal of Food and Nutrition Sciences, 3(1-2), 79-83. https://doi.org/10.11648/j.jfns.s.2015030102.25
21. Lahiri, D., Nag, M., Dutta, B., Sarkar, T., Pati, S., Basu, D. et al. (2022). Bacteriocin: A natural approach for food safety and food security. Frontiers in Bioengineering and Biotechnology, 10, Article 1005918. https://doi.org/10.3389/fbioe.2022.1005918
22. Cleveland, J., Montville, T. J., Nes, I. F., Chikindas, M. L. (2001). Bacteriocins: Safe, natural antimicrobials for food preservation. International Journal of Food Microbiology, 71(1), 1-20. https://doi.org/10.1016/S0168-1605(01)00560-8
23. Anjana, P., Tiwari, S. K. (2022). Bacteriocin-producing probiotic lactic acid bacteria in controlling dysbiosis of the gut microbiota. Frontiers in Cellular and Infection Microbiology, 12, Article 851140. https://doi.org/10.3389/fcimb.2022.851140
24. Taye, Y., Degu, T., Fesseha, H., Mathewos, M. (2021). Isolation and identification of lactic acid bacteria from cow milk and milk products. The Scientific World Journal, Article 4697445. https://doi.org/10.1155/2021/4697445
25. Barreto Pinilla, C. M., Brandelli, A., Ataide Isaia, H. (2024). Probiotic Potential and Application of Indigenous Non-Starter Lactic Acid Bacteria in Ripened Short-Aged Cheese. Current Microbiology, 81, Article 202. https://doi.org/10.1007/s00284-024-03729-2
26. Mekala, P. N., Ansari, R. M. H. (2023). Biotechnological potential of lactic acid bacteria derived bacteriocins in sustainable food preservation. World Journal of Biology Pharmacy and Health Sciences, 14(3), 24-35. https://doi.org/10.30574/wjbphs.2023.14.3.0245
27. Bintsis, T. (2018). Lactic acid bacteria as starter cultures: An update in their metabolism and genetics. AIMS Microbiology, 4(4), 665-684. https://doi.org/10.3934/microbiol.2018.4.665
28. Contessa, C. R., de Souza, N. B., Gongalo, G. B., de Moura, C. M., da Rosa, G. S., Moraes, C. C. (2021). Development of active packaging based on agar-agar incorporated with bacteriocin of Lactobacillus sakei. Biomolecules, 11(12), Article 1869. https://doi.org/10.3390/biom11121869
29. Strack, L., Carli, R. C., da Silva, R. V., Sartor, K. B., Colla, L. M., Reinehr, C. O. (2020) Food biopreservation using antimicrobials produced by lactic acid bacteria. Research Society and Development, 9(8), Article e998986666. https://doi.org/10.33448/rsd-v9i8.6666
30. Perez, R. H., Zendo, T., Sonomoto, K. (2022). Multiple bacteriocin production in lactic acid bacteria. Journal of Bioscience and Bioengineering, 134(4), 277-287. https://doi.org/10.1016/j.jbiosc.2022.07.007
31. Tang, H., Huang, W., Yao, Y.-F. (2023). The metabolites of lactic acid bacteria: Classification, biosynthesis and modulation of gut microbiota. Microbial Cell, 10(3), 49-62. https://doi.org/10.15698/mic2023.03.792
32. Alameri, F., Tarique, M., Osaili, T., Obaid R., Abdalla, A., Masad R. et al. (2022). Lactic acid bacteria isolated from fresh vegetable products: Potential probiotic and postbiotic characteristics including immunomodulatory effects. Microorganisms, 10(2), Article 389. https://doi.org/10.3390/microorganisms10020389
33. Szutowska, J., Gwiazdowska, D. (2021). Probiotic potential of lactic acid bacteria obtained from fermented curly kale juice. Archives of Microbiology, 203(3), 975-988. https://doi.org/10.1007/s00203-020-02095-4
34. Parlindungan, E., Lugli, G., Ventura, M., van Sinderen, D., Mahony, J. (2021). Lactic acid bacteria diversity and characterization of probiotic candidates in fermented meats. Foods, 10(7), Article 1519. https://doi.org/10.3390/foods10071519
35. Małaczewska, J., Kaczorek-Łukowska, E (2021). Nisin — a lantibiotic with immunomodulatory properties: A review. Peptides, 137, Article 170479. https://doi.org/10.1016/j.peptides.2020.170479
36. Wang, X., Gu, Q., Breukink, E. (2020). Non-lipid II targeting lantibiotics. Biochimica et Biophysica Acta (BBA) — Biomembranes, 1862(8), Article 183244. https://doi.org/10.1016/j.bbamem.2020.183244
37. Negash, A. W., Tsehai, B. A. (2020). Current applications of bacteriocin. International Journal of Microbiology, 2020, Article 4374891. https://doi.org/10.1155/2020/4374891
38. Antoshina, D. V., Balandin, S. V., Ovchinnikova, T. V. (2022). Structural features, mechanisms of action, and prospects for practical application of class II bacteriocins. Biochemistry (Moscow), 87(11), 1387-1403. https://doi.org/10.1134/S0006297922110165
39. Timothy, B., Iliyasu, A. H., Anvikar, A. R. (2021). Bacteriocins of lactic acid bacteria and their industrial application. Current Topics in Lactic Acid Bacteria and Probiotics, 7(1), 1-13. https://doi.org/10.35732/ctlabp.2021.7.1.1
40. Angelescu, I.-R., Grosu-Tudor, S.-S., Cojoc L.-R., Maria, G.-M., Zamfir, M. (2021). Isolation, characterization, and applicability of Helveticin 34.9, a class iii bacteriocin produced by Lactobacillus Helveticus 34.9. Research Square, Preprint. https://doi.org/10.21203/rs.3.rs-808205/v1
41. Kumariya, R., Garsa, A. K., Rajput, Y. S., Sood, S. K., Akhtar, N., Patel, S. (2019). Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microbial Pathogenesis, 128, 171-177. https://doi.org/10.1016/j.micpath.2019.01.002
42. Darbandi, A., Asadi, A., Mahdizade Ari, M., Ohadi, E., Talebi, M., Halaj Zadeh, M. et al. (2022). Bacteriocins: Properties and potential use as antimicrobials. Journal of Clinical Laboratory Analysis, 36(1), Article e24093. https://doi.org/10.1002/jcla.24093
43. Lauková, A., Pogány Simonová, M., Focková, V., Kološta, M., Tomáška, M., Dvorožňáková, E. (2020). Susceptibility to bacteriocins in biofilm-forming, variable staphylococci isolated from local slovak ewes' milk lump cheeses. Foods, 22, 9(9), Article 1335. https://doi.org/10.3390/foods9091335
44. Simons, A., Alhanout, K., Duval, R. E. (2020). Bacteriocins, antimicrobial peptides from bacterial origin: Overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms, 8(5), Article 639. https://doi.org/10.3390/microorganisms8050639
45. Huang, F., Teng, K., Liu, Y., Cao, Y., Wang, T., Ma, C. et al. (2021). Bacteriocins: Potential for human health. Oxidative Medicine and Cellular Longevity, Article 5518825. https://doi.org/10.1155/2021/5518825
46. Veettil, V. N., Chitra V. A. (2022). Optimization of bacteriocin production by Lactobacillus plantarum using Response Surface Methodology. Cellular and Molecular Biology, 68(6), 105-110. https://doi.org/10.14715/cmb/2022.68.6.17.
47. Ryan, A., Patel, P., O'Connor, P. M., Ross, R. P., Hill, C., Hudson, S. P. (2021). Pharmaceutical design of a delivery system for the bacteriocin lacticin 3147. Drug Delivery and Translational Research, 11(4), 1735-1751. https://doi.org/10.1007/s13346-021-00984-9
48. Ross, J. N., Fields, F. R., Kalwajtys, V. R., Gonzalez, A. J., O'Connor, S., Zhang, A. et al. (2020). Synthetic peptide libraries designed from a minimal Alpha-helical domain of AS-48-Bacteriocin homologs exhibit potent antibacterial activity. Frontiers In Microbiology, 11, Article 589666. https://doi.org/10.3389/fmicb.2020.589666
49. Wang, M. (2023). In Vitro fermentation. Fermentation, 9(2), Article 86. https://doi.org/10.3390/fermentation9020086
50. Steier, V., Prigolovkin, L., Reiter, A., Neddermann, T., Wiechert, W., Reich, S. J. et al. (2024). Automated workflow for characterization of bacteriocin production in natural producers Lactococcus lactis and Latilactobacillus sakei. Microbial Cell Factories, 23(1), Article 74. https://doi.org/10.1186/s12934-024-02349-6
51. Abedin, M. M., Chourasia, R., Phukon, L. C., Sarkar, P., Ray, R. C., Singh, S. P. et al. (2023). Lactic acid bacteria in the functional food industry: Biotechnological properties and potential applications. Critical Reviews in Food Science and Nutrition, 5, 1-19. https://doi.org/10.1080/10408398.2023.2227896
52. Guo, L., Stoffels, K., Broos, J., Kuipers, O. P. (2024). Engineering hybrid lantibiotics yields the highly stable and bacteriocidal peptide cerocin V. Microbiology Research, 282, Article 127640. https://doi.org/10.1016/j.micres.2024.127640
53. Fernandes, P. (2018). Enzymatic processing in the food industry. Chapter in a book: Reference Module in Food Science. Elzevier, 2018. https://doi.org/10.1016/B978-0-08-100596-5.22341-X
54. Heirangkhongjam, M. D., Agarwal, K., Agarwal, A., Jaiswal N. (2022). Role of enzymes in fruit and vegetable processing industries: Effect on quality, processing method, and application. Chapter in a book: Novel Food Grade Enzymes. Springer, Singapore. https://doi.org/10.1007/978-981-19-1288-7_3
55. Motta, J. F. G., Freitas B. C. B. de, Almeida A. F. de, Martins G. A. de S., Borges, S. V. (2023). Use of enzymes in the food industry: A review. Article Food Science and Technology, 43, Article e106222. https://doi.org/10.1590/fst.106222
56. Shouket, S., Khurshid, S., Khan, J., Batool, R., Sarwar, A., Aziz, T. et al. (2023). Enhancement of shelf-life of food items via immobilized enzyme nanoparticles on varied supports. A sustainable approach towards food safety and sustainability. Food Research International, 169, Article 112940. https://doi.org/10.1016/j.foodres.2023.112940
57. Meli, V. S., Ghosh, S., Prabha, T. N., Chakraborty, N., Chakraborty, S., Datta, A. (2010). Enhancement of fruit shelf life by suppressing N-glycan processing enzymes. PNAS, 107(6), 2413-2418. https://doi.org/10.1073/pnas.0909329107
58. Posokina, N. E., Zakharova, A. I. (2023). Modern non-thermal method of processing plant raw materials used to increase its storability. Food Systems, 6(1), 4-10. (In Russian) https://doi.org/10.21323/2618-9771-2023-6-1-4-10
59. Mitelut, A. C., Popa, E. E., Draghici, M. C., Popescu, P. A., Popa, V. I., Bujor, O. C. et al. (2021). Latest developments in edible coatings on minimally processed fruits and vegetables: A review. Foods, 10(11), Article 2821. https://doi.org/10.3390/foods10112821
60. Díaz-Montes, E., Castro-Muñoz, R. (2021). Edible films coatings as food-quality preservers: An overview. Foods, 26, 10(2), Article 249. https://doi.org/10.3390/foods10020249
61. Martins, V. F. R., Pintado, M. E., Morais, R. M. S. C., Morais, A. M. M. B. (2024). Recent highlights in sustainable bio-based edible films and coatings for fruit and vegetable applications. Foods, 13(2), Article 318. https://doi.org/10.3390/foods13020318
62. Matloob, A., Ayub, H., Mohsin, M., Ambreen, S., Khan, F. A., Oranab, S. et al. (2023). A review on edible coatings and films: Advances, composition, production methods, and safety concerns. ACS Omega, 8(32), 28932-28944. https://doi.org/10.1021/acsomega.3c03459
63. Miteluț, A. C., Popa, E. E., Drăghici, M. C., Popescu, P. A., Popa, V. I., Bujor, O.-C. et al. (2021). Latest developments in edible coatings on minimally processed fruits and vegetables: A review. Foods, 10(11), Article 2821. https://doi.org/10.3390/foods10112821
64. Tiamiyu, Q. O., Adebayo, S. E., Yusuf, A. A. (2023). Gum Arabic edible coating and its application in preservation of fresh fruits and vegetables: A review. Food Chemistry Advances, 2, Article 100251. https://doi.org/10.1016/j.focha.2023.100251
65. Pinto, L. Tapia-Rodríguez, M. R. Baruzzi, F. Ayala-Zavala, J. F. (2023). Plant antimicrobials for food quality and safety: Recent views and future challenges. Foods, 12(12), Article 2315. https://doi.org/10.3390/foods12122315
66. Biswas, O., Kandasamy, P., Nanda, P. K., Biswas, S., Lorenzo, J. M., Das, A. et al. (2023). Phytochemicals as natural additives for quality preservation and improvement of muscle foods: A focus on fish and fish products. Food Materials Research, 3, Article 5. https://doi.org/10.48130/FMR-2023-0005
67. Galal, H. (2021). Impact of post-harvest treatments on the antioxidant content of fruits and vegetables. Egyptian Journal of Horticulture, 49 (1), 25-33. https://doi.org/10.21608/EJOH.2021.96104.1184
68. Albuquerque, P. M., Azevedo, S. G., de Andrade, C. P., D’Ambros, N. C. d. S., Pérez, M. T. M., Manzato, L. (2022). Biotechnological applications of nanoencapsulated essential oils: A review. Polymers, 14(24), Article 5495. https://doi.org/10.3390/polym14245495
69. Wan, J., Wilcock, A., Coventry, M. J. (1998). The effect of essential oils of basil on the growth of Aeromonas hydrophila and Pseudomonas fluorescens. Journal of Applied Microbiology, 84(2), 152-158. https://doi.org/10.1046/j.1365-2672.1998.00338.x
70. Kim, T., Kim, J.-H., Oh, S.-W. (2021). Grapefruit seed extract as a natural food antimicrobial: A review. Food and Bioprocess Technology, 14(4), 626-633. https://doi.org/10.1007/s11947-021-02610-5
71. Awad, A. M., Kumar, P., Ismail-Fitry, M. R., Jusoh, S., Ab Aziz, M. F., Sazili, A. Q. (2021). Green extraction of bioactive compounds from plant biomass and their application in meat as natural antioxidant. Antioxidants, 10(9), Article 1465. https://doi.org/10.3390/antiox10091465
Review
For citations:
Posokina N.E., Zakharova A.I. Modern biological methods of processing plant raw materials used to increase its storage capacity. Food systems. 2024;7(2):298-304. (In Russ.) https://doi.org/10.21323/2618-9771-2024-7-2-298-304