Preview

Пищевые системы

Расширенный поиск

Молекулярная пептидная трансплантация как инструмент создания биопептидов нового поколения: мини-обзор

https://doi.org/10.21323/2618-9771-2024-7-2-220-224

Аннотация

Молекулярная пептидная трансплантация (МПТ) — это выделение/синтез биоактивного фрагмента пептида/белка и последующий перенос его в целевой белок/пептид для создания нового белкового продукта, обладающего заданными уникальными биологическими свойствами. Это один из способов, наряду с методами циркуляризации пептидной основы и молекулярным сшиванием, направленных на усиление структурной организации коротких пептидов. Исследования МПТ в настоящее время в основном сосредоточены на демонстрации ее полезности и применимости, а не на разработке получения биопептидов нового поколения. Цель мини-обзора — показать применимость метода МПТ для разработки стабильных и биодоступных пептидов нового поколения с улучшенными биологическими свойствами. Для создания таких пептидов важно правильно подобрать каркас для последующей прививки к нему биологически активной пептидной последовательности. К пептидам с необходимым каркасом относятся циклотиды, которые можно получить трехфазным синтезом. Циклотиды обладают общим механизмом действия. Их биологическая активность определяется способностью связывать белки с образованием пор и разрушением биологических мембран-мишеней, а также свойствами, необходимыми для создания на их каркасе новых пептидов. Для обеспечения функциональности новых биопептидов, полученных методом МПТ, можно использовать различные пептидные вставки. Примером эффективного практического применения МПТ являются различные пептидные лекарства. Следовательно, МПТ позволяет эффективно конструировать биопептиды нового поколения, отличающиеся высокой термодинамической и метаболической стабильностью эпитопа и новыми или усиленными биологическими функциями. Однако эффективность полученных пептидов с использованием МПТ необходимо доказать в исследованиях in vitro и in vivo.

Об авторах

И. М. Чернуха
Федеральный научный центр пищевых систем им. В.М. Горбатова
Россия

Чернуха Ирина Михайловна — доктор технических наук, профессор, академик РАН, главный научный сотрудник, Руководитель Отдела коор-динации инициативных и международных проектов.

109316, Москва, ул. Талалихина, 26

Тел.: +7-495-676-95-11 (109)



С. Л. Тихонов
Уральский государственный аграрный университет; Уральский государственный лесотехнический университет
Россия

Тихонов Сергей Леонидович — доктор технических наук, профессор, директор научно-образовательного центра «Прикладные нанобиотехнологии», Уральский ГАУ; профессор кафедры химической технологии древесины, биотехнологии и наноматериалов, УГЛТУ.

620000, Екатеринбург, ул. Карла Либкнехта, 42; 620100, Екатеринбург, Сибирский тракт, 37

Тел.: +7-912-276-98-95



Н. В. Тихонова
Уральский государственный аграрный университет
Россия

Тихонова Наталья Валерьевна — доктор технических наук, заведующий кафедрой пищевой инженерии аграрного производства.

620000, Екатеринбург, ул. Карла Либкнехта, 42

Тел.: +7-919-392-37-09



Список литературы

1. Camarero, J. A., Campbell, M. J. (2019). The potential of the cyclotide scaffold for drug development. Biomedicines, 7(2), Article 31. https://doi.org/10.3390/biomedicines7020031

2. Wang, C. K., Craik, D. J. (2021). Linking molecular evolution to molecular grafting. Journal of Biological Chemistry, 296, Article 100425. https://doi.org/10.1016/j.jbc.2021.100425

3. Jacob, B., Vogelaar, A., Cadenas, E., Camarero, J. A. (2022). Using the cyclotide scaffold for targeting biomolecular interactions in drug development. Molecules, 27(19), Article 6430. https://doi.org/10.3390/molecules27196430

4. Wang, L., Wang, N., Zhang, W., Cheng, X., Yan, Z., Shao, G. et al. (2022). Therapeutic peptides: Current applications and future directions. Signal Transduction and Targeted Therapy, 7, Article 48. https://doi.org/10.1038/s41392-022-00904-4

5. Sharma, K., Sharma, K. K., Sharma, A., Jain, R. (2023). Peptide-based drug discovery: Current status and recent advances. Drug Discovery Today, 28(2), Article 103464. https://doi.org/10.1016/j.drudis.2022.103464

6. Agyei, D., Ahmed, I., Akram, Z., Iqbal, H. M. N., Danquah, M. K. (2017). Protein and peptide biopharmaceuticals: An overview. Protein and Peptide Letters, 24(2), 94-101. https://doi.org/10.2174/0929866523666161222150444

7. Lau, J. L., Dunn, M. K. (2018). Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorganic and Medicinal Chemistry, 26(10), 2700-2707. https://doi.org/10.1016/j.bmc.2017.06.052

8. Qin, L., Cui, Z., Wu, Y., Wang, H., Zhang, X., Guan, J. et al. (2022). Challenges and strategies to enhance the systemic absorption of inhaled peptides and proteins. Pharmaceutical Research, 40, 1037-1055. https://doi.org/10.1007/s11095-022-03435-3

9. Holub, J. M. (2017). Small scaffolds, big potential: Developing miniature proteins as therapeutic agents. Drug Development Research, 78(6), 268-282. https://doi.org/10.1002/ddr.21408

10. Wang, C. K., Craik, D. J. (2021). Linking molecular evolution to molecular grafting. Journal of Biological Chemistry, 296, Article 100425. https://doi.Org/10.1016/j.jbc.2021.100425

11. Jacob, B., Vogelaar, A., Cadenas, E., Camarero, J. A. (2022). Using the cyclotide scaffold for targeting biomolecular interactions in drug development. Molecules, 27(19), Article 6430. https://doi.org/10.3390/molecules27196430

12. Hillman, R. A., Nadraws, J. W., Bertucci, M. A. (2018). The hydrocarbon staple and beyond: Recent advances towards stapled peptide therapeutics that target protein-protein interactions. Current Topics in Medicinal Chemistry, 18(7), 611-624. https://doi.org/10.2174/1568026618666180518095255

13. Ali, A. M., Atmaj, J., Van Oosterwijk, N., Groves, M. R., Domling, A. (2019). Stapled peptides inhibitors: A new window for target drug discovery. Computational and Structural Biotechnology Journal, 17, 263-281. https://doi.org/10.1016/j.csbj.2019.01.012

14. Chan, A. M., Goodis, C. C., Pommier, E. G., Fletcher, S. (2022). Recent applications of covalent chemistries in protein-protein interaction inhibitors. RSC Medicinal Chemistry, 13(8), 921-928. https://doi.org/10.1039/d2md00112h

15. Pan, X., Kortemme, T. (2021). Recent advances in de novo protein design: Principles, methods, and applications. Journal of Biological Chemistry, 296, Article 100558. https://doi.org/10.1016/j.jbc.2021.100558

16. Huang, P.-S., Boyken, S. E., Baker, D. (2016). The coming of age of de novo protein design. Nature, 537(7620), 320-327. https://doi.org:10.1038/nature19946

17. Woolfson, D. N. (2021). A brief history of de novo protein design: Minimal, rational, and computational. Journal of Molecular Biology, 433(20), Article 167160. https://doi.org/10.1016/j.jmb.2021.167160

18. Anishchenko, I., Pellock, S.-J., Chidyausiku, T.-M., Ramelot, T.-A., Ovchinnikov, S., Hao, J. et al. (2021). De novo protein design by deep network hallucination. Nature, 600, 547-552. https://doi.org/10.1038/s41586-021-04184-w

19. Wang, J., Lisanza, S., Juergens, D., Tischer, D., Anishchenko, I., Baek, M. et al. (2022). Scaffolding protein functional sites using deep learning. Science, 377(6604), 387-394. https://doi.org/10.1126/science.abn2100

20. Marchand, A, Van Hall-Beauvais A. K., Correia, B. E. (2022). Computational design of novel protein-protein interactions — An overview on methodological approaches and applications Current Opinion in Structural Biology, 74, Article 102370. https://doi.org/10.1016/j.sbi.2022.102370

21. Zhou, W., Smidlehner, T., Jerala, R. (2020). Synthetic biology principles for the design of protein with novel structures and functions. FEBS Letters, 594(14), 2199-2212. https://doi.org/10.1002/1873-3468.13796

22. Lovelock, S. L., Crawshaw, R., Basler, S., Levy, C., Baker, D., Hilvert D. et al. (2022). The road to fully programmable protein catalysis. Nature, 606, 49-58. https://doi.org/10.1038/s41586-022-04456-z

23. Sia, S. K., Carr, P. A., Cochran, A. G., Malashkevich, V. N., Kim, P. S. (2002). Short constrained peptides that inhibit HIV-1 entry. Proceedings of the National Academy of Sciences (PNAS), 99(23), 14664-14669. https://doi.org/10.1073/pnas.232566599

24. Qin, L., Cui, Z., Wu, Y., Wang, H., Zhang, X., Guan, J. et al. (2022). Challenges and strategies to enhance the systemic absorption of inhaled peptides and proteins. Pharmaceutical Research, 40, 1037-1055. https://doi.org/10.1007/s11095-022-03435-3

25. Wang, C. K., Craik, D. J. (2018). Designing macrocyclic disulfide-rich peptides for biotechnological applications. Nature Chemical Biology, 14, 417-427. https://doi.org/10.1038/s41589-018-0039-y

26. Crook, Z. R., Sevilla, G. P., Friend, D., Brusniak, M.-Y., Bandaranayake, A. D., Clarke, M. et al. (2017). Mammalian display screening of diverse cystine-dense peptides for difficult to drug targets. Nature Communications, 8, Article 2244. https://doi.org/10.1038/s41467-017-02098-8

27. Simeon, R., Chen, Z. (2018). In vitro-engineered non-antibody protein therapeutics. Protein and Cell, 9(1), 3-14. https://doi.org/10.1007/s13238-017-0386-6

28. Chiu, M. L., Goulet, D. R., Teplyakov, A., Gilliland, G. L. (2019). Antibody structure and function: The basis for engineering therapeutics. Antibodies, 8(4), Article 55. https://doi.org/10.3390/antib8040055

29. Korendovych, I. V., DeGrado, W. F. (2020). De novo protein design, a retrospective. Quarterly Reviews of Biophysics, 53, Article e3. https://doi.org/10.1017/S0033583519000131

30. Bhardwaj, G., Mulligan, V. K., Bahl, C. D., Gilmore, J. M., Harvey, P. J., Cheneval, O.-et al. (2016). Accurate de novo design of hyperstable constrained peptides. Nature, 538, 329-335. https://doi.org/10.1038/nature19791

31. Dawson, W. M., Rhys, G. G., Woolfson, D. N. (2019). Towards functional de novo designed proteins. Current Opinion in Chemical Biology, 52, 102-111. https://doi.org/10.1016/j.cbpa.2019.06.011

32. Garcia, A. E., Camarero, J. A. (2010). Biological activities of natural and engineered cyclotides, a novel molecular scaffold for peptide-based therapeutics. Current Molecular Pharmacology, 3(3), 153-163. https://doi.org/10.2174/1874467211003030153

33. Aboye, T., Meeks, C. J., Majumder, S., Shekhtman, A., Rodgers, K., Camarero, J. A. (2016). Design of a MCoTI-based cyclotide with angiotensin (1-7)-like activity. Molecules, 21(2), Article 152. https://doi.org/10.3390/molecules21020152

34. Grover, T., Mishra, R., Bushra, Gulati, P., Mohanty, A. (2021). An insight into biological activities of native cyclotides for potential applications in agriculture and pharmaceutics. Peptides, 135, Article 170430. https://doi.org/10.1016/j.peptides.2020.170430

35. Camarero, J. A. (2017). Cyclotides, a versatile ultrastable micro-protein scaffold for biotechnological applications. Bioorganic and Medicinal Chemistry Letters, 27(23), 5089-5099. https://doi.org/10.1016/j.bmcl.2017.10.051

36. Cybase. (2024). The database of cyclic proteins. The Institute of Molecular Biosciences IMG, Brisbane, Australia. Retrieved from https://cybase.org.au Accessed March 04, 2024. Access mode: for registered users.

37. Li, Y., Bi, T., Camarero, J. A. (2015). Chemical and biological production of cyclotides. Chapter in a book: Advances in Botanical Research. Elsevier Ltd., United Kingdom. 2015. https://doi.org/10.1016/bs.abr.2015.08.006

38. Aboye, T., Kuang, Y., Neamati, N., Camarero, J. A. (2015). Rapid parallel synthesis of bioactive folded cyclotides by using a tea-bag approach. ChemBioChem, 16(5), 827-833. https://doi.org/10.1002/cbic.201402691

39. Li, Y., Gould, A., Aboye, T., Bi, T., Breindel, L., Shekhtman, A. et al. (2017). Full sequence amino acid scanning of theta-defensin RTD-1 yields a potent anthrax lethal factor protease inhibitor. Journal of Medicinal Chemistry, 60(5), 1916-1927. https://doi.org/10.1021/acs.jmedchem.6b01689

40. Montone, C. M., Capriotti, A. L., Cavaliere, C., La Barbera, G., Piovesana S., Chiozzi, R. Z. et al. (2018). Peptidomic strategy for purification and identification of potential ACE-inhibitory and antioxidant peptides in Tetradesmus obliquus microalgae. Analytical and Bioanalytical Chemistry, 410, 3573-3586. http://doi.org/10.1007/s00216-018-0925-x

41. Liao, W., Fan, H., Davidge, S. T., Wu, J. (2019). Egg white-derived antihypertensive peptide IRW (Ile-Arg-Trp) reduces blood pressure in spontaneously hypertensive rats via the ACE2/Ang (1-7)/Mas receptor axis. Molecular Nutrition and Food Research, 63(9), Article e1900063. https://doi.org/10.1002/mnfr.201900063

42. Wisniewski, K., Sueiras-Diaz, J., Jiang, G., Galyean, R., Lu, M., Thompson, D. et al. (2016). Synthesis and pharmacological characterization of novel glucagon-like peptide-2 (GLP-2) analogues with low systemic clearance. Journal of Medicinal Chemistry, 59(7), 3129-3139. https://doi.org/10.1021/acs.jmedchem.5b01909

43. Zhang, Y., Xiu, M, Jiang, J., He, J., Li, D., Liang, S. et al. (2016). Novokinin inhibits gastric acid secretion and protects against alcohol-induced gastric injury in rats. Alcohol, 56, 1-8. https://doi.org/10.1016/j.alcohol.2016.08.003

44. Minshawi F., Lanvermann S., McKenzie E., Jeffery R., Couper K., Papoutsopoulou, S. et al. (2020). The generation of an engineered Interleukin-10 protein with improved stability and biological function. Frontiers in Immunology, 11, Article 1794. https://doi.org/10.3389/fimmu.2020.01794

45. González-Castro, R., Gómez-Lim, M. A., Plisson, F. (2021). Cysteine-rich peptides: Hyperstable scaffolds for protein engineering. ChemBioChem, 22(6), 961-973. https://doi.org/10.1002/cbic.202000634

46. Mehta L, Dhankhar R, Gulati P, Kapoor R. K., Mohanty A., Kumar S. (2020). Natural and grafted cyclotides in cancer therapy: An insight. Journal of Peptide Science, 26(4-5), Article e3246. https://doi.org/10.1002/psc.3246

47. Hamad, F., Elnour, A. A., Elamin, A., Mohamed, S., Yousif, I., Don, J. et al. (2021). Systematic review of glucagon like peptide one receptor agonist liraglutide for subjects with heart failure with reduced left ventricular ejection fraction. Current Diabetes Reviews, 17(3), 280-292. https://doi.org/10.2174/1573399816999200821164129

48. Yi, H.A., Fochtman, B. C., Rizzo, R. C., Jacobs, A. (2016). Inhibition of HIV entry by targeting the envelope transmembrane subunit gp41. Current HIV Research, 14(3), 283-294. https://doi.org/10.2174/1570162x14999160224103908

49. Steward-Tharp, S. M., Song, Y.-J., Siegel, R. M., O'Shea, J. J. (2010). New insights into T cell biology and T cell-directed therapy for autoimmunity, inflammation, and immunosuppression. Annals of the New York Academy of Sciences, 1183(1), 123-148. https://doi.org/10.1111/j.1749-6632.2009.05124.x


Рецензия

Для цитирования:


Чернуха И.М., Тихонов С.Л., Тихонова Н.В. Молекулярная пептидная трансплантация как инструмент создания биопептидов нового поколения: мини-обзор. Пищевые системы. 2024;7(2):220-224. https://doi.org/10.21323/2618-9771-2024-7-2-220-224

For citation:


Chernukha I.M., Tikhonov S.L., Tikhonova N.V. Molecular peptide grafting as a tool for creating new generation of biopeptides: A mini-review. Food systems. 2024;7(2):220-224. (In Russ.) https://doi.org/10.21323/2618-9771-2024-7-2-220-224

Просмотров: 667


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)