Preview

Food systems

Advanced search

Molecular peptide grafting as a tool for creating new generation of biopeptides: A mini-review

https://doi.org/10.21323/2618-9771-2024-7-2-220-224

Abstract

Molecular peptide grafting (MPG) is the isolation/synthesis of a bioactive fragment of a peptide/protein and its subsequent transfer to a target protein/peptide to create a new protein product with specified unique biological properties. This is one of the methods together with molecular stapling and peptide backbone circularization to strengthen the structural organization of short peptides. Nowadays research on MPT is mainly focused on demonstrating its usefulness and applicability, rather than on the development of next-generation biopeptides. The purpose of the mini-review is to demonstrate the applicability of MPT to create stable and bioavailable peptides of a new generation with enhanced biological properties. Choosing the right scaffold for subsequent inoculation of a biologically active peptide sequence into it is the most important task in creating targeted biopeptides. Peptides with the necessary framework, such as cyclotides, can be obtained by three-phase synthesis. Cyclotides have a common mechanism of action. Their biological activity is determined both by the ability to bind proteins with the formation of pores and destruction of biological target-membranes, and by the properties necessary to create new peptides in the scaffold. Various peptide inserts can be used to ensure the functionality of new biopeptides obtained by the MPT method. Different peptide drugs are an example of the effective practical use of MTP. Consequently, MPT makes it possible to effectively design a new generation of biopeptides characterized by high epitope thermodynamic and metabolic stability with new or enhanced biological functions. However, the effectiveness of the peptides obtained by the MPT must be proved in vitro and in vivo.

About the Authors

I. M. Chernukha
V.M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Irina M. Chernukha - Doctor of Technical Sciences, Professor, Academician of the Russian Academy of Sciences, Principal Researcher, Head of the Department for Coordination of Initiative and International Projects, V.M. Gorbatov Federal Research Center for Food Systems.

26, Talalikhina, 109316, Moscow

Тел.: +7-495-676-95-11 (109)



S. L. Tikhonov
Ural State Agricultural University; Ural State Forestry University
Russian Federation

Sergey L. Tikhonov - Doctor of Technical Sciences, Professor, Director of the Scientific and Educational Center «Applied Nanobiotechnology», Ural State Agricultural University; Professor, Department of Chemical Technology of Wood, Biotechnology and Nanomaterials Ural State Forestry University

42, Karl Liebknecht str., 620000, Yekaterinburg; 37 Sibirskiy Trakt, 620100, Yekaterinburg

Tel.: +7-912-276-98-95



N. V. Tikhonova
Ural State Agricultural University
Russian Federation

Natalia V. Tikhonova - Doctor of Technical Sciences, Head of the Department of Food Engineering of Agricultural Production, Ural State Agricultural University.

42, Karl Liebknecht str., 620000, Yekaterinburg, Russia

Tel.: +7-919-392-37-09



References

1. Camarero, J. A., Campbell, M. J. (2019). The potential of the cyclotide scaffold for drug development. Biomedicines, 7(2), Article 31. https://doi.org/10.3390/biomedicines7020031

2. Wang, C. K., Craik, D. J. (2021). Linking molecular evolution to molecular grafting. Journal of Biological Chemistry, 296, Article 100425. https://doi.org/10.1016/j.jbc.2021.100425

3. Jacob, B., Vogelaar, A., Cadenas, E., Camarero, J. A. (2022). Using the cyclotide scaffold for targeting biomolecular interactions in drug development. Molecules, 27(19), Article 6430. https://doi.org/10.3390/molecules27196430

4. Wang, L., Wang, N., Zhang, W., Cheng, X., Yan, Z., Shao, G. et al. (2022). Therapeutic peptides: Current applications and future directions. Signal Transduction and Targeted Therapy, 7, Article 48. https://doi.org/10.1038/s41392-022-00904-4

5. Sharma, K., Sharma, K. K., Sharma, A., Jain, R. (2023). Peptide-based drug discovery: Current status and recent advances. Drug Discovery Today, 28(2), Article 103464. https://doi.org/10.1016/j.drudis.2022.103464

6. Agyei, D., Ahmed, I., Akram, Z., Iqbal, H. M. N., Danquah, M. K. (2017). Protein and peptide biopharmaceuticals: An overview. Protein and Peptide Letters, 24(2), 94-101. https://doi.org/10.2174/0929866523666161222150444

7. Lau, J. L., Dunn, M. K. (2018). Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorganic and Medicinal Chemistry, 26(10), 2700-2707. https://doi.org/10.1016/j.bmc.2017.06.052

8. Qin, L., Cui, Z., Wu, Y., Wang, H., Zhang, X., Guan, J. et al. (2022). Challenges and strategies to enhance the systemic absorption of inhaled peptides and proteins. Pharmaceutical Research, 40, 1037-1055. https://doi.org/10.1007/s11095-022-03435-3

9. Holub, J. M. (2017). Small scaffolds, big potential: Developing miniature proteins as therapeutic agents. Drug Development Research, 78(6), 268-282. https://doi.org/10.1002/ddr.21408

10. Wang, C. K., Craik, D. J. (2021). Linking molecular evolution to molecular grafting. Journal of Biological Chemistry, 296, Article 100425. https://doi.Org/10.1016/j.jbc.2021.100425

11. Jacob, B., Vogelaar, A., Cadenas, E., Camarero, J. A. (2022). Using the cyclotide scaffold for targeting biomolecular interactions in drug development. Molecules, 27(19), Article 6430. https://doi.org/10.3390/molecules27196430

12. Hillman, R. A., Nadraws, J. W., Bertucci, M. A. (2018). The hydrocarbon staple and beyond: Recent advances towards stapled peptide therapeutics that target protein-protein interactions. Current Topics in Medicinal Chemistry, 18(7), 611-624. https://doi.org/10.2174/1568026618666180518095255

13. Ali, A. M., Atmaj, J., Van Oosterwijk, N., Groves, M. R., Domling, A. (2019). Stapled peptides inhibitors: A new window for target drug discovery. Computational and Structural Biotechnology Journal, 17, 263-281. https://doi.org/10.1016/j.csbj.2019.01.012

14. Chan, A. M., Goodis, C. C., Pommier, E. G., Fletcher, S. (2022). Recent applications of covalent chemistries in protein-protein interaction inhibitors. RSC Medicinal Chemistry, 13(8), 921-928. https://doi.org/10.1039/d2md00112h

15. Pan, X., Kortemme, T. (2021). Recent advances in de novo protein design: Principles, methods, and applications. Journal of Biological Chemistry, 296, Article 100558. https://doi.org/10.1016/j.jbc.2021.100558

16. Huang, P.-S., Boyken, S. E., Baker, D. (2016). The coming of age of de novo protein design. Nature, 537(7620), 320-327. https://doi.org:10.1038/nature19946

17. Woolfson, D. N. (2021). A brief history of de novo protein design: Minimal, rational, and computational. Journal of Molecular Biology, 433(20), Article 167160. https://doi.org/10.1016/j.jmb.2021.167160

18. Anishchenko, I., Pellock, S.-J., Chidyausiku, T.-M., Ramelot, T.-A., Ovchinnikov, S., Hao, J. et al. (2021). De novo protein design by deep network hallucination. Nature, 600, 547-552. https://doi.org/10.1038/s41586-021-04184-w

19. Wang, J., Lisanza, S., Juergens, D., Tischer, D., Anishchenko, I., Baek, M. et al. (2022). Scaffolding protein functional sites using deep learning. Science, 377(6604), 387-394. https://doi.org/10.1126/science.abn2100

20. Marchand, A, Van Hall-Beauvais A. K., Correia, B. E. (2022). Computational design of novel protein-protein interactions — An overview on methodological approaches and applications Current Opinion in Structural Biology, 74, Article 102370. https://doi.org/10.1016/j.sbi.2022.102370

21. Zhou, W., Smidlehner, T., Jerala, R. (2020). Synthetic biology principles for the design of protein with novel structures and functions. FEBS Letters, 594(14), 2199-2212. https://doi.org/10.1002/1873-3468.13796

22. Lovelock, S. L., Crawshaw, R., Basler, S., Levy, C., Baker, D., Hilvert D. et al. (2022). The road to fully programmable protein catalysis. Nature, 606, 49-58. https://doi.org/10.1038/s41586-022-04456-z

23. Sia, S. K., Carr, P. A., Cochran, A. G., Malashkevich, V. N., Kim, P. S. (2002). Short constrained peptides that inhibit HIV-1 entry. Proceedings of the National Academy of Sciences (PNAS), 99(23), 14664-14669. https://doi.org/10.1073/pnas.232566599

24. Qin, L., Cui, Z., Wu, Y., Wang, H., Zhang, X., Guan, J. et al. (2022). Challenges and strategies to enhance the systemic absorption of inhaled peptides and proteins. Pharmaceutical Research, 40, 1037-1055. https://doi.org/10.1007/s11095-022-03435-3

25. Wang, C. K., Craik, D. J. (2018). Designing macrocyclic disulfide-rich peptides for biotechnological applications. Nature Chemical Biology, 14, 417-427. https://doi.org/10.1038/s41589-018-0039-y

26. Crook, Z. R., Sevilla, G. P., Friend, D., Brusniak, M.-Y., Bandaranayake, A. D., Clarke, M. et al. (2017). Mammalian display screening of diverse cystine-dense peptides for difficult to drug targets. Nature Communications, 8, Article 2244. https://doi.org/10.1038/s41467-017-02098-8

27. Simeon, R., Chen, Z. (2018). In vitro-engineered non-antibody protein therapeutics. Protein and Cell, 9(1), 3-14. https://doi.org/10.1007/s13238-017-0386-6

28. Chiu, M. L., Goulet, D. R., Teplyakov, A., Gilliland, G. L. (2019). Antibody structure and function: The basis for engineering therapeutics. Antibodies, 8(4), Article 55. https://doi.org/10.3390/antib8040055

29. Korendovych, I. V., DeGrado, W. F. (2020). De novo protein design, a retrospective. Quarterly Reviews of Biophysics, 53, Article e3. https://doi.org/10.1017/S0033583519000131

30. Bhardwaj, G., Mulligan, V. K., Bahl, C. D., Gilmore, J. M., Harvey, P. J., Cheneval, O.-et al. (2016). Accurate de novo design of hyperstable constrained peptides. Nature, 538, 329-335. https://doi.org/10.1038/nature19791

31. Dawson, W. M., Rhys, G. G., Woolfson, D. N. (2019). Towards functional de novo designed proteins. Current Opinion in Chemical Biology, 52, 102-111. https://doi.org/10.1016/j.cbpa.2019.06.011

32. Garcia, A. E., Camarero, J. A. (2010). Biological activities of natural and engineered cyclotides, a novel molecular scaffold for peptide-based therapeutics. Current Molecular Pharmacology, 3(3), 153-163. https://doi.org/10.2174/1874467211003030153

33. Aboye, T., Meeks, C. J., Majumder, S., Shekhtman, A., Rodgers, K., Camarero, J. A. (2016). Design of a MCoTI-based cyclotide with angiotensin (1-7)-like activity. Molecules, 21(2), Article 152. https://doi.org/10.3390/molecules21020152

34. Grover, T., Mishra, R., Bushra, Gulati, P., Mohanty, A. (2021). An insight into biological activities of native cyclotides for potential applications in agriculture and pharmaceutics. Peptides, 135, Article 170430. https://doi.org/10.1016/j.peptides.2020.170430

35. Camarero, J. A. (2017). Cyclotides, a versatile ultrastable micro-protein scaffold for biotechnological applications. Bioorganic and Medicinal Chemistry Letters, 27(23), 5089-5099. https://doi.org/10.1016/j.bmcl.2017.10.051

36. Cybase. (2024). The database of cyclic proteins. The Institute of Molecular Biosciences IMG, Brisbane, Australia. Retrieved from https://cybase.org.au Accessed March 04, 2024. Access mode: for registered users.

37. Li, Y., Bi, T., Camarero, J. A. (2015). Chemical and biological production of cyclotides. Chapter in a book: Advances in Botanical Research. Elsevier Ltd., United Kingdom. 2015. https://doi.org/10.1016/bs.abr.2015.08.006

38. Aboye, T., Kuang, Y., Neamati, N., Camarero, J. A. (2015). Rapid parallel synthesis of bioactive folded cyclotides by using a tea-bag approach. ChemBioChem, 16(5), 827-833. https://doi.org/10.1002/cbic.201402691

39. Li, Y., Gould, A., Aboye, T., Bi, T., Breindel, L., Shekhtman, A. et al. (2017). Full sequence amino acid scanning of theta-defensin RTD-1 yields a potent anthrax lethal factor protease inhibitor. Journal of Medicinal Chemistry, 60(5), 1916-1927. https://doi.org/10.1021/acs.jmedchem.6b01689

40. Montone, C. M., Capriotti, A. L., Cavaliere, C., La Barbera, G., Piovesana S., Chiozzi, R. Z. et al. (2018). Peptidomic strategy for purification and identification of potential ACE-inhibitory and antioxidant peptides in Tetradesmus obliquus microalgae. Analytical and Bioanalytical Chemistry, 410, 3573-3586. http://doi.org/10.1007/s00216-018-0925-x

41. Liao, W., Fan, H., Davidge, S. T., Wu, J. (2019). Egg white-derived antihypertensive peptide IRW (Ile-Arg-Trp) reduces blood pressure in spontaneously hypertensive rats via the ACE2/Ang (1-7)/Mas receptor axis. Molecular Nutrition and Food Research, 63(9), Article e1900063. https://doi.org/10.1002/mnfr.201900063

42. Wisniewski, K., Sueiras-Diaz, J., Jiang, G., Galyean, R., Lu, M., Thompson, D. et al. (2016). Synthesis and pharmacological characterization of novel glucagon-like peptide-2 (GLP-2) analogues with low systemic clearance. Journal of Medicinal Chemistry, 59(7), 3129-3139. https://doi.org/10.1021/acs.jmedchem.5b01909

43. Zhang, Y., Xiu, M, Jiang, J., He, J., Li, D., Liang, S. et al. (2016). Novokinin inhibits gastric acid secretion and protects against alcohol-induced gastric injury in rats. Alcohol, 56, 1-8. https://doi.org/10.1016/j.alcohol.2016.08.003

44. Minshawi F., Lanvermann S., McKenzie E., Jeffery R., Couper K., Papoutsopoulou, S. et al. (2020). The generation of an engineered Interleukin-10 protein with improved stability and biological function. Frontiers in Immunology, 11, Article 1794. https://doi.org/10.3389/fimmu.2020.01794

45. González-Castro, R., Gómez-Lim, M. A., Plisson, F. (2021). Cysteine-rich peptides: Hyperstable scaffolds for protein engineering. ChemBioChem, 22(6), 961-973. https://doi.org/10.1002/cbic.202000634

46. Mehta L, Dhankhar R, Gulati P, Kapoor R. K., Mohanty A., Kumar S. (2020). Natural and grafted cyclotides in cancer therapy: An insight. Journal of Peptide Science, 26(4-5), Article e3246. https://doi.org/10.1002/psc.3246

47. Hamad, F., Elnour, A. A., Elamin, A., Mohamed, S., Yousif, I., Don, J. et al. (2021). Systematic review of glucagon like peptide one receptor agonist liraglutide for subjects with heart failure with reduced left ventricular ejection fraction. Current Diabetes Reviews, 17(3), 280-292. https://doi.org/10.2174/1573399816999200821164129

48. Yi, H.A., Fochtman, B. C., Rizzo, R. C., Jacobs, A. (2016). Inhibition of HIV entry by targeting the envelope transmembrane subunit gp41. Current HIV Research, 14(3), 283-294. https://doi.org/10.2174/1570162x14999160224103908

49. Steward-Tharp, S. M., Song, Y.-J., Siegel, R. M., O'Shea, J. J. (2010). New insights into T cell biology and T cell-directed therapy for autoimmunity, inflammation, and immunosuppression. Annals of the New York Academy of Sciences, 1183(1), 123-148. https://doi.org/10.1111/j.1749-6632.2009.05124.x


Review

For citations:


Chernukha I.M., Tikhonov S.L., Tikhonova N.V. Molecular peptide grafting as a tool for creating new generation of biopeptides: A mini-review. Food systems. 2024;7(2):220-224. (In Russ.) https://doi.org/10.21323/2618-9771-2024-7-2-220-224

Views: 629


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)