Preview

Food systems

Advanced search

Prediction of technological properties of wheat flour by combination of UV-VIS-NIR spectroscopy and multivariate analysis methods

https://doi.org/10.21323/2618-9771-2024-7-1-22-30

Abstract

Over the last decades, optical spectroscopy methods that do not require complex sample preparation have been widely used to identify and control the composition of food products. In the present study, the possibility of using UV-VIS-NIR spectroscopy combined with multivariate analysis for grading wheat flour into groups differing in technological properties was analyzed. UV-VIS-NIR spectra contain information on the combination and intensity of absorption bands assigned to functional groups of the composition components and determining the technological properties of wheat flour. The database of UV-VIS-NIR spectra of wheat flour samples differing by technological properties was formed into three groups: the first group — wheat flour samples with good baking properties, the second group — with reduced baking properties, the third group — with low baking properties. The visible range of UV-VIS-NIR diffuse reflectance spectrum was used to calculate the color coordinates in the CIE colorimetric system L*a*b*. The greatest difference among the groups in the color coordinates of the samples was found for the coordinate b*, which is associated with the different content of coloring pigments. The spectra database was used to build a classification model for grading wheat flour into quality groups using a combination of principal component analysis and linear discriminant analysis (PCA-LDA) methods. The achieved results indicate that the classification model built on the training sample is able to distinguish wheat flour spectra by quality groups with an accuracy of 96.49%. The effectiveness of the model is verified using a test set of spectra of wheat flour samples. The present study confirms that the combination of UV-VIS-NIR spectroscopy in conjunction with the PCA-LDA method has significant potential for determining a quality group of wheat flour based on technological properties.

About the Authors

R. A. Platova
Plekhanov Russian University of Economic
Russian Federation

Raisa A. Platova, Candidate of Technical Sciences, Docent, Department of Commodity Science
Stremyanny Lane, 36, Moscow, 117997
Tel.: +7–916–346–37–75



E. V. Zhirkova
Plekhanov Russian University of Economic
Russian Federation

Elena V. Zhirkova, Candidate of Technical Sciences, Docent, Department of Commodity Science
Stremyanny lane, 36, Moscow, 117997
Tel.: +7–929–590–45–48



D. A. Metlenkin
Plekhanov Russian University of Economic
Russian Federation

Dmitrii A. Metlenkin, Engineer, Engineering Center
Stremyanny Lane, 36, Moscow, 117997
Tel.: +7–963–656–79–92



A. A. Lysenkova
Plekhanov Russian University of Economic
Russian Federation

Anna A. Lysenkova, Graduate Student, Department of Commodity Science
Stremyanny lane, 36, Moscow, 117997
Tel.: +7–915–479–56–90 



Yu. T. Platov
Plekhanov Russian University of Economic
Russian Federation

Yuri T. Platov, Doctor of Technical Sciences, Professor, Department of Commodity Science
Stremyanny lane, 36, Moscow, 117997
Tel.: +7–910–473–21–75



V. A. Rassulov
All-Russian Research Institute of Mineral Resources named after N. M. Fedorovsky
Russian Federation

Victor A. Rassulov, Candidate of Geological and Mineralogical Sciences
Staromonetny Lane, 31, Moscow, 19017
Tel.: +7–905–778–45–16



References

1. Cortés, V., Blasco, J., Aleixos, N., Cubero, S., Talens, P. (2019). Monitoring strategies for quality control of agricultural products using visible and near-infrared spectroscopy: A review. Trends in Food Science and Technology, 85, 138–148. https://doi.org/10.1016/j.tifs.2019.01.015

2. Sibirina, T. F., Melnikova, E. V., Mordvinova, N. M., Poluboyarinov, N. A., Belyakov, A. A. (2020). Forecasting the strength of spring wheat flour cultivated in foreststeppe conditions. Era of Science, 21, 49–60. https://doi.org/10.24411/24093203-2020-11007 (In Russian)

3. Porep, J. U., Kammerer, D. R., Carle, R. (2015). On-line application of near infrared (NIR) spectroscopy in food production. Trends in Food Science and Technology, 46(2(A)), 211–230. https://doi.org/10.1016/j.tifs.2015.10.002

4. Galata, D. L., Meszaros, L. A., Ficzere, M., Vass, P., Nagy, B., Szabo, E. et al. (2021). Continuous blending monitored and feedback controlled by machine visionbased PAT tool. Journal of Pharmaceutical and Biomedical Analysis, 196, Article 113902. https://doi.org/10.1016/j.jpba.2021.113902

5. Radman, M., Jurina, T., Benković, M., Tušek, A. J., Valinger, D., Kljusurić, J. G. (2018). Application of NIR spectroscopy in gluten detection as a cross-contaminant in food. Hrvatski Casopis za Prehrambenu Tehnologiju, Biotehnologiju i Nutricionizam, 13(3–4), 120–127. https://doi.org/10.31895/hcptbn.13.3-4.4

6. Platov, Y. T., Metlenkin, D. A., Platova, R. A., Rassulov, V. A., Vereshchagin, A. I., Marin, V. A. (2021). Buckwheat identification by combined UV-VIS-NIR spectroscopy and multivariate analysis. Journal of Applied Spectroscopy, 88, 723–730. https://doi.org/10.1007/s10812-022-01315-7

7. de Brito, A. A., Campos, F., dos Reis Nascimento, A., Damiani, C., da Silva, F. A., de Almeida Teixeira, G. H. et al. (2022). Non-destructive determination of color, titratable acidity, and dry matter in intact tomatoes using a portable VisNIR spectrometer. Journal of Food Composition and Analysis, 107, Article 104288. https://doi.org/10.1016/j.jfca.2021.104288

8. Pourdarbani, R., Sabzi, S., Kalantari, D., Karimzadeh, R., Ilbeygi, E., Arribas, J. I. (2020). Automatic non-destructive video estimation of maturation levels in Fuji apple (Malus Malus pumila) fruit in orchard based on colour (Vis) and spectral (NIR) data. Biosystems Engineering, 195, 136–151. https://doi.org/10.1016/j.biosystemseng.2020.04.015

9. Menezes, C. M., da Costa, A. B., Renner, R. R., Bastos, L. F., Ferrão, M. F., Dressler, V. L. (2014). Direct determination of tannins in Acacia mearnsii bark using near-infrared spectroscopy. Analytical Methods, 6(20), 8299–8305. https://doi.org/10.1039/C4AY01558D

10. de Matos, M. F. R., Bezerra, P. Q. M., Correia, L. C. A., Viola, D. N., de Oliveira Rios, A., Druzian, J. I. et al. (2021). Innovative methodological approach using CIELab and dye screening for chemometric classification and HPLC for the confirmation of dyes in cassava flour: A contribution to product quality control. Food Chemistry, 365, Article 130446. https://doi.org/10.1016/j.foodchem.2021.130446

11. Jeber, J. N., Hassan, R. F., Hammood, M. K., Al-Jeilawi, O. H. R. (2021). Sensitive and simple colorimetric methods for visual detection and quantitative determination of semicarbazide in flour products using colorimetric reagents. Sensors and Actuators B: Chemical, 341, Article 130009. https://doi.org/10.1016/j.snb.2021.130009

12. Rodionova, O. Ye., Pomerantsev, A. L. (2006). Chemometrics: Achievements and prospects. Russian Chemical Reviews, 75(4), 271–287. https://doi.org/10.1070/RC2006v075n04ABEH003599

13. Prasadi, V. P. N., Joye, I. J. (2023). Effect of soluble dietary fibre from barley on the rheology, water mobility and baking quality of wheat flour dough. Journal of Cereal Science, 112, Article 103715. https://doi.org/10.1016/j.jcs.2023.103715

14. Parasich, A. V., Parasich, V. A., Parasich, I. V. (2021). Training set formation in machine learning tasks. Survey. Information and Control Systems, 4(113), 61–70. https://doi.org/10.31799/1684-8853-2021-4-61-70 (In Russian) 15. Aw, W. C., Ballard, J. W. O. (2019). Near-infrared spectroscopy for metabolite quantification and species identification. Ecology and Evolution. 9(3), 1336–1343. https://doi.org/10.1002/ece3.4847

15. Shibaeva, A. A., Myasnikova, E. N. (2020). Factors and standards that shape the quality of wheat flour. Technologies for the Food and Processing Industry of AIC-Healthy Food, 3, 72–77. https://doi.org/10.24411/2311-6447-2020-10064 (In Russian)

16. Horváth, Z. H., Véha, A. (2015). Colour characteristics of winter wheat grits of different grain size. Acta Universitatis Sapientiae, Alimentaria, 8(1), 70–77. https://doi.org/10.1515/ausal-2015-0006

17. Malchikov, P. N., Myasnikova, M. G. (2020). The content of yellow pigments in durum wheat (Titicum durum Desf.) grains: Biosynthesis, genetic control, marker selection. Vavilov journal of genetics and breeding, 24(5), 501–511. https://doi.org/10.18699/VJ20.642 (In Russian)

18. Lachman, J., Martinek, P., Kotikova, Z, Orsáka, M., Šulcaet, M. (2017). Genetics and chemistry of pigments in wheat grain — A review. Journal of Cereal Science, 74, 145–154. https://doi.org/10.1016/j.jcs.2017.02.007

19. Fratianni, A., Irano, M., Panfili, G., Acquistucci, R. (2005). Estimation of Color of Durum Wheat. Comparison of WSB, HPLC, and Reflectance Colorimeter Measurements. Journal of Agricultural and Food Chemistry, 53(7), 2373–2378. https://doi.org/10.1021/jf040351n

20. Steinberg, T. S., Meleshkina, E. P., Shvedova, O. G., Morozova, O. V., Zhiltsova, N. S. (2020). Changes of the optical properties of top-grade flour (semolina) from durum wheat during its ripening. Food Systems, 3(2), 24–28. https://doi.org/10.21323/2618-9771-2020-3-2-24-28

21. Kolašinac, S. M., Dajić-Stevanović, Z. P., Kilibarda, S. N., Kostić, A. Ž. (2021). Carotenoids: New applications of “old” pigments. Phyton-International Journal of Experimental Botany, 90(4), 1041–1062. https://doi.org/10.32604/phyton.2021.015996

22. Shlykova, A. N., Balabaev, A. A., Trukhina, E. V., Bazarnova, Y. G. (2020). Preparation of carotenoid pigments from the microalga Chlorella. PNRPU Bulletin. Chemical Technology and Biotechnology, 3, 20–37. https://doi.org/10.15593/22249400/2020.3.02 (In Russian)

23. Britton, G. (2020). Carotenoid research: History and new perspectives for chemistry in biological systems. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Bio logy of Lipids, 1865(11), Article 158699. https://doi.org/10.1016/j.bbalip.2020.158699

24. Dowell, F. E., Maghirang, E. B., Graybosch, R. A., Berzonsky, W. A., Delwiche, S. R. (2009). Selecting and sorting waxy wheat kernels using near-infrared spectroscopy. Cereal Chemistry, 86(3), 251–255. https://doi.org/10.1094/CCHEM-86-3-0251

25. Joe, A. A. F., Gopal, A. (April 20–21, 2017). Identification of spectral regions of the key components in the near infrared spectrum of wheat grain. International Conference on Circuit, Power and Computing Technologies (ICCPCT). IEEE, Kollam. https://doi.org/10.1109/ICCPCT.2017.8074207

26. Hoffman, L. C., Ni, D., Dayananda, B., Abdul Ghafar, N., Cozzolino, D. (2022). Unscrambling the provenance of eggs by combining chemometrics and nearinfrared reflectance spectroscopy. Sensors, 22(13), Article 4988. https://doi.org/10.3390/s22134988

27. Wang, P., Ma, T., Slipchenko, M. N., Liang, S., Hui, J., Shung, K. K. et al. (2014). High-speed intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque enabled by a 2-kHz barium nitrite Raman laser. Scientific Reports, 4(1), Article 6889. https://doi.org/10.1038/srep06889

28. Puertas, G., Cazón, P., Vázquez, M. (2023). Application of UV-VIS-NIR spectroscopy in membrane separation processes for fast quantitative compositional analysis: A case study of egg products. LWT, 174, Article 114429. https://doi.org/10.1016/j.lwt.2023.114429

29. Monago-Maraña, O., Eskildsen, C. E., Galeano-Díaz, T., de la Peña, A. M., Wold, J. P. (2021). Untargeted classification for paprika powder authentication using visible–Near infrared spectroscopy (VIS-NIRS). Food Control, 121, Article 107564. https://doi.org/10.1016/j.foodcont.2020.107564

30. Núñez-Sánchez, N., Martínez-Marín, A. L., Polvillo, O., Fernández-Cabanás, V. M., Carrizosa, J., Urrutia, B. et al. (2016). Near Infrared Spectroscopy (NIRS) for the determination of the milk fat fatty acid profile of goats. Food Chemistry, 190, 244–252. https://doi.org/10.1016/j.foodchem.2015.05.083

31. Uysal, R. S., Acar-Soykut, E., Boyaci, I. H. (2020). Determination of yolk: White ratio of egg using SDS-PAGE. Food Science and Biotechnology, 29, 179–186. https://doi.org/10.1007/s10068-019-00650-4

32. Wilson, R. N., Nadeau, K. P., Jaworski, F. B., Tromberg, B. J., Durkina, A. J. (2015). Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization. Journal of Biomedical Optics, 20 (3), Article 03090. https://doi.org/10.1117/1.JBO.20.3.030901

33. Taira, E. (2021). Information and Communication Technology in Agriculture. Chapter in a book: Near-infrared spectroscopy: Theory, spectral analysis, instrumentation, and applications. Singapore: Springer, 2021. https://doi.org/10.1007/978-981-15-8648-4

34. Næs, T., Isaksson, T., Fearn, T., Davies, T. (2002). A user-friendly guide to multivariate calibration and classification. NIR Publications, Chichester, UK. 2002.


Review

For citations:


Platova R.A., Zhirkova E.V., Metlenkin D.A., Lysenkova A.A., Platov Yu.T., Rassulov V.A. Prediction of technological properties of wheat flour by combination of UV-VIS-NIR spectroscopy and multivariate analysis methods. Food systems. 2024;7(1):22-30. (In Russ.) https://doi.org/10.21323/2618-9771-2024-7-1-22-30

Views: 891


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)