Preview

Food systems

Advanced search

Flexible sensors for food monitoring. Part I: Principle

https://doi.org/10.21323/2618-9771-2023-6-4-519-530

Abstract

Monitoring and maintaining food quality, safety, and authenticity are the most important concerns in the food industry. The cutting-edge flexible sensors for food monitoring precisely meet the needs of acquiring information on multiple parameters in small space and more reasonable layout, providing data on mechanical deformations, and conformably attaching to arbitrarily curved surfaces. Flexible sensing materials with a large specific surface area, high carrier mobility and carrier density, dense active sites, outstanding tunability, and processability, such as two-dimensional carbon nanomaterials, conductive polymers, and nanohybrid materials, have further improved the sensitivity, stability, and selectivity of flexible sensors. This article attempts to critically review state-of-the-art developments with respect to materials, fabrication techniques, and sensing mechanisms of devices, as well as the applications of the electrically-transduced flexible sensors. In addition, this review elaborates on the transduction mechanisms of several typical transducers, with a focus on the physics behind, including the modulation of doping level, Schottky barrier, and interfacial layer that typically lead to changes in conductivity, work function, and permittivity. We also highlight the benefits, technical challenges with corresponding solutions of current flexible sensors, and discuss potential strategies to overcome limitations in energy consumption, quantify the trade-offs in maintaining quality and marketability, optimize wireless communication, and explore new sensing patterns.

About the Authors

D. Luo
College of Engineering, China Agricultural University
China

Dongjie Luo, Bachelor

Beijing, 100083, PR China Tel.: +86–1305–120–91–54



M. A. Nikitina
V.M. Gorbatov Federal Research Center for Foods Systems of RAS
Russian Federation

Marina A. Nikitina, Doctor of Technical Sciences, Docent, Leading Scientific Worker, the Head of the  Direction of Information Technologies of the Center of Economic and Analytical Research and Information  Technologies

26, Talalikhina str., 109316, Moscow, Tel: +7–495–676–95–11 extension 297



X. Xiao
College of Engineering, China Agricultural University
China

Xinqing Xiao, Doctor of Engineering, Associate Professor, Beijing Laboratory of Food Quality and Safety

Beijing, 100083, PR China. Tel.: +86–158–0122–7781



References

1. World Health Organization (2022). Food Safety. Retrieved from https://www.who.int/news-room/fact-sheets/detail/food-safety. Accessed April 20, 2023.

2. Misra, N.N., Dixit, Y., Al-Mallahi, A., Bhullar, M.S., Upadhyay, R., Martynenko, A. (2020). IoT, big data, and artificial intelligence in agriculture and food industry. IEEE Internet of Things Journal, 9(9), 6305–6324. https://doi.org/10.1109/JIOT.2020.2998584

3. Aung, M.M., Chang, Y.S. (2014). Traceability in a food supply chain: Safety and quality perspectives. Food Control, 39, 172–184. https://doi.org/10.1016/j.foodcont.2013.11.007

4. Wu, D., Sun, D.W. (2013). Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: A review — Part I: Fundamentals. Innovative Food Science and Emerging Technologies, 19, 1–14. https://doi.org/10.1016/j.ifset.2013.04.014

5. Saravanan, A., Kumar, P.S., Hemavathy, R.V., Jeevanantham, S., Kamalesh, R., Sneha S. et al. (2021). Methods of detection of food-borne pathogens: review. Environmental Chemistry Letters, 19, 189–207. https://doi.org/10.1007/s10311-020-01072-z

6. Samsidar, A., Siddiquee, S., Shaarani, S. (2018). A review of extraction, analytical and advanced methods for determination of pesticides in environment and foodstuffs. Trends in Food Science and Technology, 71, 188–201. https://doi.org/10.1016/j.tifs.2017.11.011

7. Zhao, F., Wu, J., Ying, Y., She, Y., Wang, J., Ping, J. (2018). Carbon nanomaterialenabled pesticide biosensors: Design strategy, biosensing mechanism, and practical application. TrAC Trends in Analytical Chemistry, 106, 62–83. https://doi.org/10.1016/j.trac.2018.06.017

8. Mostafalou, S., Abdollahi, M. (2017). Pesticides: An update of human exposure and toxicity. Archives of Toxicology, 91(2), 549–599. https://doi.org/10.1007/s00204-016-1849-x

9. Wang, X., Zhang, M., Zhang, L., Xu, J., Xiao, X., Zhang, X. (2022). Inkjet-printed flexible sensors: From function materials, manufacture process, and applications perspective. Materials Today Communications, 31(5), Article 103263. https://doi.org/10.1016/j.mtcomm.2022.103263

10. Senapati, M., Sahu, P.P. (2020). Meat quality assessment using Au patch electrode Ag-SnO2/SiO2/Si MIS capacitive gas sensor at room temperature. Food Chemistry, 324, Article 126893. https://doi.org/10.1016/j.foodchem.2020.126893

11. Guo, X., Ding, Y., Liang, C., Du, B., Zhao, C., Tan, Y. et al. (2022). Humidity-activated H 2S sensor based on SnSe2/WO3 composite for evaluating the spoilage of eggs at room temperature. Sensors and Actuators B: Chemical, 357, Article 131424. https://doi.org/10.1016/j.snb.2022.131424

12. Chen, H., Zhang, M., Bhandari, B., Yang, C.-h. (2020). Novel pH-sensitive films containing curcumin and anthocyanins to monitor fish freshness. Food Hydrocolloids, 100, Article 105438. https://doi.org/10.1016/j.foodhyd.2019.105438

13. Liu, K., Zhang, C. (2021). Volatile organic compounds gas sensor based on quartz crystal microbalance for fruit freshness detection: A review. Food Chemistry, 334, Article 127615. https://doi.org/10.1016/j.foodchem.2020.127615

14. Senapati, M., Sahu, P.P. (2020). Onsite fish quality monitoring using ultra-sensitive patch electrode capacitive sensor at room temperature. Biosensors and Bioelectronics, 168, Article 112570. https://doi.org/10.1016/j.bios.2020.112570

15. Cavanna, D., Zanardi, S., Dall’Asta, C., Suman, M. (2019). Ion mobility spectrometry coupled to gas chromatography: A rapid tool to assess eggs freshness. Food Chemistry, 271, 691–696. https://doi.org/10.1016/j.foodchem.2018.07.204

16. Liang, Y., Huang, X., Chen, X., Zhang, W., Ping, G., Xiong, Y. (2018). Plasmonic ELISA for naked-eye detection of ochratoxin A based on the tyramine-H2O2 amplification system. Sensors and Actuators B: Chemical, 259, 162–169. https://doi.org/10.1016/j.snb.2017.12.004

17. Wang, K., Sun, D.W., Pu, H., Wei, Q. (2019). Surface-enhanced Raman scattering of core-shell Au@ Ag nanoparticles aggregates for rapid detection of difenoconazole in grapes. Talanta, 191, 449–456. https://doi.org/10.1016/j.talanta.2018.08.005

18. Yang, N., You, T.-T., Gao, Y.-K., Zhang, C.-M., Yin, P.-G. (2018). Fabrication of a flexible gold nanorod polymer metafilm via a phase transfer method as a SERS substrate for detecting food contaminants. Journal of Agricultural and Food Chemistry, 66(26), 6889–6896. https://doi.org/10.1021/acs.jafc.8b01702

19. Nguyen, T.H., Nguyen, T.D., Ly, N.H., Kwak, C.H., Huh, Y.S., Joo, S.-W. (2018). On-site detection of sub-mg/kg melamine mixed in powdered infant formula and chocolate using sharp-edged gold nanostar substrates. Food Additives and Contaminants: Part A, 35(6), 1017–1026. https://doi.org/10.1080/19440049.2018.1466399

20. Liu, S., Bai, J., Huo, Y., Ning, B., Peng, Y., Li, S. et al. (2020). A zirconium-porphyrin MOF-based ratiometric fluorescent biosensor for rapid and ultrasensitive detection of chloramphenicol. Biosensors and Bioelectronics, 149, Article 111801. https://doi.org/10.1016/j.bios.2019.111801

21. Shi, Q., He, T., Lee, C. (2019). More than energy harvesting — Combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems. Nano Energy, 57, 851–871. https://doi.org/10.1016/j.nanoen.2019.01.002

22. Vicente, A.T., Araújo, A., Mendes, M.J., Nunes, D., Oliveira, M.J., Sanchez-Sobrado, O. et al. (2018). Multifunctional cellulose-paper for light harvesting and smart sensing applications. Journal of Materials Chemistry C, 6(13), 3143–3181. https://doi.org/10.1039/C7TC05271E

23. Guo, J., Yu, Y., Cai, L., Wang, Y., Shi, K., Wang, Y., Shi, K., Shanget, L. et al. (2021). Microfluidics for flexible electronics. Materials Today, 44, 105–135. https://doi.org/10.1016/j.mattod.2020.08.017

24. Hu, L., Chee, P.L., Sugiarto, S., Yu, Y., Shi, C., Yanet, R. et al. (2022). Hydrogel-based flexible electronics. Advanced Materials, 35(14), Article 2205326. https://doi.org/10.1002/adma.202205326

25. Crabb, R.L., Treble, F.C. (1967). Thin silicon solar cells for large flexible arrays. Nature, 213, 1223–1224. https://doi.org/10.1038/2131223a0

26. Shirakawa, H., Louis, E.J., MacDiarmid, A.G., Chiang, Ch. K., Heeger, A.J. (1977). Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)X. Journal of the Chemical Society, Chemical Communications, 16, 578–580. https://doi.org/10.1039/C39770000578

27. Ling, Z., Ren, C.E., Zhao, M.Q., Yang, J., Giammarco, J.M., Qiu, J. et al. (2014). Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences, 111(47), 16676–16681. https://doi.org/10.1073/pnas.1414215111

28. Vosgueritchian, M., Lipomi, D.J., Bao, Z. (2012). Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Advanced Functional Materials, 22(2), 421–428. https://doi.org/10.1002/adfm.201101775

29. Zhou, Y., Wan, C., Yang, Y., Yang, H., Wang, S., Dai, Z. et al. Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Advanced Functional Materials, 29(1), Article 1806220. https://doi.org/10.1002/adfm.201806220

30. Li, D., Lai, W.Y., Zhang, Y.Z., Huang, W. (2018). Printable transparent conductive films for flexible electronics. Advanced Materials, 30(10), Article 1704738. https://doi.org/10.1002/adma.201704738

31. Lipomi, D.J., Lee, J.A., Vosgueritchian, M., Tee, B.C.-K., Bolander, J.A., Bao Z. (2012). Electronic properties of transparent conductive films of PEDOT: PSS on stretchable substrates. Chemistry of Materials, 24(2), 373–382. https://doi.org/10.1021/cm203216m

32. Chun, K.Y., Oh, Y., Rho, J., Ahn, J.-H., Kim, Y.-J., Choi, H.R. et al. (2010). Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nature Nanotechnology, 5(12), 853–857. https://doi.org/10.1038/nnano.2010.232

33. Kayser, L.V., Lipomi, D.J. (2019). Stretchable conductive polymers and composites based on PEDOT and PEDOT: PSS. Advanced Materials, 31(10), Article 1806133. https://doi.org/10.1002/adma.201806133

34. Wang, Z., Cui, H., Li, S., Feng, X., Aghassi-Hagmann, J., Azizian, S. et al. (2021). Facile approach to conductive polymer microelectrodes for flexible electronics. ACS Applied Materials and Interfaces, 13(18), 21661–21668. https://doi.org/10.1021/acsami.0c22519

35. Glarum, S.H. (1963). Electron mobilities in organic semiconductors. Journal of Physics and Chemistry of Solids, 24(12), 1577–1583. https://doi.org/10.1016/0022-3697(63)90100-8

36. Kronick, P.L., Labes, M.M. (1961). Organic Semiconductors. V. Comparison of measurements on single-crystal and compressed microcrystalline molecular complexes. The Journal of Chemical Physics, 35(6), 2016–2019. https://doi.org/10.1063/1.1732203

37. Chittick, R.C., Alexander, J.H., Sterling, H.F. (1969). The preparation and properties of amorphous silicon. Journal of the Electrochemical Society, 116(1), Article 77. https://doi.org/10.1149/1.2411779

38. Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., Hosono, H. (2004). Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 432(7016), 488–492. https://doi.org/10.1038/nature03090

39. Sun, X., Qin, Z., Ye, L., Zhang, H., Yu, Q., Wu, X. et al. (2020). Carbon nanotubes reinforced hydrogel as flexible strain sensor with high stretchability and mechanically toughness. Chemical Engineering Journal, 382, Article 122832. https://doi.org/10.1016/j.cej.2019.122832

40. Qin, Z., Sun, X., Yu, Q., Zhang, H., Wu, X., Yaoet, M. et al. (2020). Carbon nanotubes/hydrophobically associated hydrogels as ultrastretchable, highly sensitive, stable strain, and pressure sensors. ACS Applied Materials and Interfaces, 12(4), 4944–4953. https://doi.org/10.1021/acsami.9b21659

41. Li, X., Zhang, R., Yu, W., Wang, K., Wei, J., Wuet, D. et al. (2012). Stretchable and highly sensitive graphene-on-polymer strain sensors. Scientific Reports, 2(1), Article 870. https://doi.org/10.1038/srep00870

42. Yan, C., Wang, J., Kang, W., Cui, M., Wang, X., Fooet, C.Y. et al. (2014). Highly stretchable piezoresistive grapheme — nanocellulose nanopaper for strain sensors. Advanced Materials, 26(13), 2022–2027. https://doi.org/10.1002/adma.201304742

43. Amjadi, M., Pichitpajongkit, A., Lee, S., Ryu, S., Park, I. (2014). Highly stretchable and sensitive strain sensor based on silver nanowire — elastomer nanocomposite. ACS Nano, 8(5), 5154–5163. https://doi.org/10.1021/nn501204t

44. Xia, J., Wang, X., Zhang, J., Kong, C., Huang, W., Zhang, X. (2022). Flexible dualmechanism pressure sensor based on Ag nanowire electrodes for nondestructive grading and quality monitoring of fruits. ACS Applied Nano Materials, 5(8), 10652–10662. https://doi.org/10.1021/acsanm.2c01968

45. Park, B., Kim, J., Kang, D., Jeong, C., Kim, K.S., Kimet, J.U. et al. (2016). Dramatically enhanced mechanosensitivity and signal-to-noise ratio of nanoscale crack-based sensors: effect of crack depth. Advanced Materials, 28(37), 8130–8137. https://doi.org/10.1002/adma.201602425

46. Park, J., Lee, Y., Hong, J., Lee, Y., Ha, M., Jung, Y. et al. (2014). Tactile-directionsensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures. ACS Nano, 8(12), 12020–12029. https://doi.org/10.1021/nn505953t

47. Bao, Z., Chen, X. (2016). Flexible and stretchable devices. Advanced Materials, 28(22), 4177–4179. https://doi.org/10.1002/adma.201601422

48. Xu, J., Ma, R., Stankovski, S., Liu, X., Zhang, X. (2022). Intelligent dynamic quality prediction of chilled chicken with integrated IoT flexible sensing and knowledge rules extraction. Foods, 11(6), Article 836. https://doi.org/10.3390/foods11060836

49. Huang, W., Wang, X., Xia, J., Li, Y., Zhang, L., Fenget, H. et al. (2023). Flexible sensing enabled agri-food cold chain quality control: A review of mechanism analysis, emerging applications, and system integration. Trends in Food Science and Technology, 133, 189–204. https://doi.org/10.1016/j.tifs.2023.02.010

50. Feng, H., Zhang, M., Gecevska, V., Chen, B., Saeed, R., Zhang, X. (2022). Modeling and evaluation of quality monitoring based on wireless sensor and blockchain technology for live fish waterless transportation. Computers and Electronics in Agriculture, 193, Article 106642. https://doi.org/10.1016/j.compag.2021.106642

51. Xiao, X., Mu, B., Cao, G. (2021). Light-energy-harvested flexible wireless temperature-sensing patch for food cold storage. ACS Applied Electronic Materials, 3(7), 3015–3022. https://doi.org/10.1021/acsaelm.1c00251

52. Mu, B., Cao, G., Zhang, L., Zou, Y., Xiao, X. (2021). Flexible wireless pH sensor system for fish monitoring. Sensing and Bio­Sensing Research, 34, Article 100465. https://doi.org/10.1016/j.sbsr.2021.100465

53. Xiao, X., Mu, B., Cao, G., Yang, Y., Wang, M. (2022). Flexible battery-free wireless electronic system for food monitoring. Journal of Science: Advanced Materials and Devices, 7(2), Article 100430. https://doi.org/10.1016/j.jsamd.2022.100430

54. Xu, J., Yang, Z., Wang, Z., Li, J., Zhang, X. (2023). Flexible sensing enabled packaging performance optimization system (FS-PPOS) for lamb loss reduction control in E-commerce supply chain. Food Control, 145, Article 109394. https://doi.org/10.1016/j.foodcont.2022.109394

55. Wang, M., Luo, D., Liu, M., Zhang, R., Wu, Z., Xiao, X. (2023). Flexible wearable optical wireless sensing system for fruit monitoring. Journal of Science: Advanced Materials and Devices, 8(2), Article 100555. https://doi.org/10.1016/j.jsamd.2023.100555

56. Boahen, E.K, Pan, B., Kweon, H., Kim, J.S., Choi, H., Konget, Z. et al. (2022). Ultrafast, autonomous self-healable iontronic skin exhibiting piezo-ionic dynamics. Nature Communications, 13(1), Article 7699. https://doi.org/10.1038/s41467-022-35434-8

57. Gao, W., Emaminejad, S., Nyein, H.Y.Y., Challa, S., Chen, K., Pecket, A. et al. (2016). Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529(7587), 509–514. https://doi.org/10.1038/nature16521

58. Escobedo, P., Bhattacharjee, M., Nikbakhtnasrabadi, F., Dahiya, R. (2021). Flexible strain and temperature sensing NFC tag for smart food packaging applications. IEEE Sensors Journal, 21(23), 26406–26414. https://doi.org/10.1109/JSEN.2021.3100876

59. Molina-Lopez, F., Briand, D., de Rooij, N.F. (2012). All additive inkjet printed humidity sensors on plastic substrate. Sensors and Actuators B: Chemical, 166–167, 212–222. https://doi.org/10.1016/j.snb.2012.02.042

60. Jović, M., Hidalgo-Acosta, J.C., Lesch, A., Bassetto, V.C., Smirnov, E., Cortés-Salazar, F. et al. (2018). Large-scale layer-by-layer inkjet printing of flexible iridium-oxide based pH sensors. Journal of Electroanalytical Chemistry, 819, 384–390. https://doi.org/10.1016/j.jelechem.2017.11.032

61. Mu, B., Dong, Y., Qian, J., Wang, M., Yang, Y., Nikitina, M.A. et al. (2022). Hydrogel coating flexible pH sensor system for fish spoilage monitoring. Materials Today Chemistry, 26, Article 101183. https://doi.org/10.1016/j.mtchem.2022.101183

62. Won, S., Won, K. (2021). Self-powered flexible oxygen sensors for intelligent food packaging. Food Packaging and Shelf Life, 29, Article 100713. https://doi.org/10.1016/j.fpsl.2021.100713

63. Giaretta, J.E., Duan, H., Farajikhah, S., Oveissi, F., Dehghani, F., Naficy, S. (2022). A highly flexible, physically stable, and selective hydrogel-based hydrogen peroxide sensor. Sensors and Actuators B: Chemical, 371, Article 132483. https://doi.org/10.1016/j.snb.2022.132483

64. Meng, Z., Stolz, R.M., Mendecki, L., Mirica, K.A. (2019). Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chemical Reviews, 119(1), 478–598. https://doi.org/10.1021/acs.chemrev.8b00311

65. Wang, X., Liu, Z., Zhang, T. (2017). Flexible sensing electronics for wearable/attachable health monitoring. Small, 13(25), Article 1602790. https://doi.org/10.1002/smll.201602790

66. Gao, Y., Yu, L., Yeo, J.C., Lim, C.T. (2020). Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability. Advanced Materials, 32(15), Article 1902133. https://doi.org/10.1002/adma.201902133

67. Bag, A., Lee, N.E. (2021). Recent advancements in development of wearable gas sensors. Advanced Materials Technologies, 6(3), Article 2000883. https://doi.org/10.1002/admt.202000883

68. Liang, J., Li, L., Niu, X., Pei, Q. (2013). Elastomeric polymer light-emitting devices and displays. Nature Photonics, 7(10), 817–824. https://doi.org/10.1038/nphoton.2013.242

69. Yu, Z., Niu, X., Liu, Z., Pei, Q. (2011). Intrinsically stretchable polymer lightemitting devices using carbon nanotube-polymer composite electrodes. Advanced Materials, 23(34), 3989–3994. https://doi.org/10.1002/adma.201101986

70. Yan, C., Wang, J., Wang, X., Kang, W., Cui, M., Foo, C.Y. et al. (2014). An intrinsically stretchable nanowire photodetector with a fully embedded structure. Advanced Materials, 26(6), 943–950. https://doi.org/10.1002/adma.201304226

71. Ho, D.H., Sun, Q., Kim, S.Y., Han, J.T., Kim, D.H., Cho, J.H. (2016). Stretchable and multimodal all graphene electronic skin. Advanced Materials, 28(13), 2601–2608. https://doi.org/10.1002/adma.201505739

72. Li, W., Chen, R., Qi, W., Cai, L., Sun, Y., Sun, M. et al. (2019). Reduced graphene oxide/mesoporous ZnO NSs hybrid fibers for flexible, stretchable, twisted, and wearable NO 2 E-textile gas sensor. ACS Sensors, 4(10), 2809–2818. https://doi.org/10.1021/acssensors.9b01509

73. Dai, X., Huang, L.B., Du, Y., Han, J., Kong, J. (2021). Self-healing flexible strain sensors based on dynamically cross-linked conductive nanocomposites. Composites Communications, 24, Article 100654. https://doi.org/10.1016/j.coco.2021.100654

74. Gupta, A.K., Mishra, P., Senapati, M., Sahu, P.P. (2021). A novel electrochemical device for naringin quantification and removal from bitter variety of citrus fruits. Journal of Food Engineering, 306, Article 110637. https://doi.org/10.1016/j.jfoodeng.2021.110637

75. Lan, K., Wang, Z., Yang, X., Wei, J., Qin, Y., Qin, G. (2022). Flexible silicon nanowires sensor for acetone detection on plastic substrates. Nanotechnology, 33(15), Article 155502. https://doi.org/10.1088/1361–6528/ac46b3

76. Lonsdale, W., Wajrak, M., Alameh, K. (2018). Manufacture and application of RuO 2 solid-state metal-oxide pH sensor to common beverages. Talanta, 180, 277–281. https://doi.org/10.1016/j.talanta.2017.12.070

77. Han, S.T., Peng, H., Sun, Q., Venkatesh, S., Chung, K.-S., Lau, S.C. et al. (2017). An overview of the development of flexible sensors. Advanced Materials, 29(33), Article 1700375. https://doi.org/10.1002/adma.201700375

78. Zhang, J., Wang, X., Xia, J., Xing, S., Zhang, X. (2022). Flexible sensing enabled intelligent manipulator system (FSIMS) for avocados (Persea Americana Mill) ripeness grading. Journal of Cleaner Production, 363, Article 132599. https://doi.org/10.1016/j.jclepro.2022.132599

79. Root, S.E., Savagatrup, S., Printz, A.D., Rodriquez, D., Lipomi, D.J. (2017). Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics. Chemical Reviews, 117(9), 6467–6499. https://doi.org/10.1021/acs.chemrev.7b00003

80. Onorato, J., Pakhnyuk, V., Luscombe, C.K. (2017). Structure and design of polymers for durable, stretchable organic electronics. Polymer Journal, 49(1), 41–60. https://doi.org/10.1038/pj.2016.76

81. Huang, W.D., Deb, S., Seo, Y.S., Rao, S., Chiao, M., J.C. (2011). A passive radiofrequency pH-sensing tag for wireless food-quality monitoring. IEEE Sensors Journal, 12(3), 487–495. https://doi.org/10.1109/JSEN.2011.2107738

82. Yousefi, H., Ali, M.M., Su, H.M., Filipe, C.D.M., Didar, T.F. (2018). Sentinel wraps: real-time monitoring of food contamination by printing DNAzyme probes on food packaging. ACS Nano, 12(4), 3287–3294. https://doi.org/10.1021/acsnano.7b08010

83. Shu, J., Qiu, Z., Tang, D. (2018). Self-referenced smartphone imaging for visual screening of H2S using Cu x O-polypyrrole conductive aerogel doped with graphene oxide framework. Analytical Chemistry, 90(16), 9691–9694. https://doi.org/10.1021/acs.analchem.8b03011

84. Fallatah, A., Kuperus, N., Almomtan, M., Padalkar, S. (2022). Sensitive biosensor based on shape-controlled ZnO Nanostructures grown on flexible porous substrate for pesticide detection. Sensors, 22(9), Article 3522. https://doi.org/10.3390/s22093522

85. Zhang, S., Hubis, E., Tomasello, G., Soliveri, G., Kumar, P., Cicoira, F. (2017). Patterning of stretchable organic electrochemical transistors. Chemistry of Materials, 29(7), 3126–3132. https://doi.org/10.1021/acs.chemmater.7b00181

86. Wang, L., Yue, X., Sun, Q., Zhang, L., Ren, G., Lu, G. et al. (2021). Flexible organic electrochemical transistors for chemical and biological sensing. Nano Research, 15, 2433–2464. https://doi.org/10.1007/s12274-021-3856-3

87. Paschoalin, R.T., Gomes, N.O., Almeida, G.F., Bilatto, S., Farinas, C.S., Machado, S.A.S. et al. (2022). Wearable sensors made with solution-blow spinning poly (lactic acid) for non-enzymatic pesticide detection in agriculture and food safety. Biosensors and Bioelectronics, 199, Article 113875. https://doi.org/10.1016/j.bios.2021.113875

88. Raymundo-Pereira, P.A., Gomes, N.O., Shimizu, F.M., Machado, S.A.S., Oliveira Jr., O.N. (2021). Selective and sensitive multiplexed detection of pesticides in food samples using wearable, flexible glove-embedded non-enzymatic sensors. Chemical Engineering Journal, 408, Article 127279. https://doi.org/10.1016/j.cej.2020.127279

89. Xu, X.Y., Yan, B., Lian, X. (2018). Wearable glove sensor for non-invasive organophosphorus pesticide detection based on a double-signal fluorescence strategy. Nanoscale, 10(28), 13722–13729. https://doi.org/10.1039/c8nr03352h

90. Mishra, R.K., Hubble, L.J., Martín, A., Kumar, R., Barfidokht, A., Kim, J. et al. (2017). Wearable flexible and stretchable glove biosensor for on-site detection of organophosphorus chemical threats. ACS Sensors, 2(4), 553–561. https://doi.org/10.1021/acssensors.7b00051

91. Vanegas, D.C., Patiño, L., Mendez, C., de Oliveira, D.A., Torres, A.M., Gomes, C.L. et al. (2018). Laser scribed graphene biosensor for detection of biogenic amines in food samples using locally sourced materials. Biosensors, 8(2), Article 42. https://doi.org/10.3390/bios8020042

92. Aparicio-Martínez, E., Ibarra, A., Estrada-Moreno, I.A., Osuna, V., Dominguez, R.B. (2019). Flexible electrochemical sensor based on laser scribed Graphene/Ag nanoparticles for non-enzymatic hydrogen peroxide detection. Sensors and Actuators B: Chemical, 301, Article 127101. https://doi.org/10.1016/j.snb.2019.127101

93. Escobedo, P., Erenas, M.M., Lopez-Ruiz, N., Carvajal, M.A., Gonzalez-Chocano, S., de Orbe-Payá, I. et al. (2017). Flexible passive near field communication tag for multigas sensing. Analytical Chemistry, 89(3), 1697–1703. https://doi.org/10.1021/acs.analchem.6b03901

94. Vahidpour, F., Oberländer. J., Schöning, M.J. (2018). Flexible calorimetric gas sensors for detection of a broad concentration range of gaseous hydrogen peroxide: A step forward to online monitoring of food-package sterilization processes. Physica Status Solidi, 215(15), Article 1800044. https://doi.org/10.1002/pssa.201800044

95. Lahcen, A.A., Rauf, S., Beduk, T., Durmus, C., Aljedaibi, A., Timur, S. et al. (2020). Electrochemical sensors and biosensors using laser-derived graphene: A com‑ prehensive review. Biosensors and Bioelectronics, 168, Article 112565. https://doi.org/10.1016/j.bios.2020.112565

96. Geim, A.K. (2011). Random walk to graphene (Nobel Lecture). Angewandte Chemie International Edition, 50(31), 6966–6985. https://doi.org/10.1002/anie.201101174

97. Morales-Narváez, E., Baptista-Pires, L., Zamora-Gálvez, A., Merkoçi, A. (2017). Graphene-based biosensors: Going simple. Advanced Materials, 29(7), Article 1604905. https://doi.org/10.1002/adma.201604905

98. Huang, J.Y., Ding, F., Yakobson, B.I., Li, J. (2009). In situ observation of graphene sublimation and multi-layer edge reconstructions. Proceedings of the National Academy of Sciences, 106(25), 10103–10108. https://doi.org/10.1073/pnas.0905193106

99. Soares, R.R.A., Hjort, R.G., Pola, C.C., Parate, K., Reis, E.L., Soares, N.F.F. et al. (2020). Laser-induced graphene electrochemical immunosensors for rapid and label-free monitoring of Salmonella enterica in chicken broth. ACS Sensors, 5(7), 1900–1911. https://doi.org/10.1021/acssensors.9b02345

100. Tang, N., Zhou, C., Xu, L., Jiang, Y., Qu, H., Duan, X. (2019). A fully integrated wireless flexible ammonia sensor fabricated by soft nano-lithography. ACS Sensors, 4(3), 726–732. https://doi.org/10.1021/acssensors.8b01690

101. Alrammouz, R., Podlecki, J., Abboud, P., Sorli, B., Habchi, R. (2018). A review on flexible gas sensors: From materials to devices. Sensors and Actuators A: Physical, 284, 209–231. https://doi.org/10.1016/j.sna.2018.10.036

102. Lin, L., Hu, Y., Xu, C., Zhang, Y., Zhang, R., Wen, X. et al. (2013). Transparent flexible nanogenerator as self-powered sensor for transportation monitoring. Nano Energy, 2(1), 75–81. https://doi.org/10.1016/j.nanoen.2012.07.019

103. Liaw, D.J., Hsu, P.N., Chen, W.H., Lin, S.-L. (2002). High glass transitions of new polyamides, polyimides, and poly (amide– imide) s containing a triphenylamine group: Synthesis and characterization. Macromolecules, 35(12), 4669–4676. https://doi.org/10.1021/ma001523u

104. Polyethylene terephthalate (Polyester, PET, PETP) — Film- Material information. Retrieved from http://www.goodfellow.com. Accessed April 20, 2023

105. Polyesters (Thermoplastic) PETP, PBT, PET. Retrieved from http://www.bpf.co.uk/plastipedia/polymers/Polyesters.aspx. Accessed April 20, 2023

106. Schneider, F., Fellner, T., Wilde, J., Wallrabe, U. (2008). Mechanical properties of silicones for MEMS. Journal of Micromechanics and Microengineering, 18(6), Article 065008. https://doi.org/10.1088/0960-1317/18/6/065008

107. Hu, S., Ren, X., Bachman, M., Sims, C.E., Li, G.P., Allbritton, N. (2002). Surface modification of poly (dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting. Analytical Chemistry, 74(16), 4117–4123. https://doi.org/10.1021/ac025700w

108. Oishi, Y., Nakaya. M., Matsui, E., Hotta, A. (2015). Structural and mechanical properties of cellulose composites made of isolated cellulose nanofibers and poly (vinyl alcohol). Composites Part A: Applied Science and Manufacturing, 73, 72–79. https://doi.org/10.1016/j.compositesa.2015.02.026

109. Tai, H., Duan, Z., Wang, Y., Wang, S., Jiang, Y. (2020). Paper-based sensors for gas, humidity, and strain detections: A review. ACS Applied Materials and Interfaces, 12(28), 31037–31053. https://doi.org/10.1021/acsami.0c06435

110. Güder, F., Ainla, A., Redston, J., Mosadegh, B., Glavan, A., Martin, T.J. et al. (2019). Paper-based electrical respiration sensor. Angewandte Chemie International Edition, 55(19), 5727–5732. https://doi.org/10.1002/anie.201511805

111. Jiang, Y., Zhu, N. (2020). Flexible and printed electronics for smart clothes. Chapter in a book: Flexible and Wearable Electronics for Smart Clothing. Wiley-VCH Verlag GmbH and Co. KGaA, 2020. https://doi.org/10.1002/9783527818556.ch11

112. Zeng, Y., Li, Q., Wang, W., Wen, Y., Ji, K., Liu, X. et al. (2022). The fabrication of a flexible and portable sensor based on home-made laser-induced porous graphene electrode for the rapid detection of sulfonamides. Microchemical Journal, 182, Article 107898. https://doi.org/10.1016/j.microc.2022.107898

113. Chen, Q., Liu, D., Lin, L., Wu, J. (2019). Bridging interdigitated electrodes by electrochemical-assisted deposition of graphene oxide for constructing flexible gas sensor. Sensors and Actuators B: Chemical, 286, 591–599. https://doi.org/10.1016/j.snb.2019.02.024

114. Xu, G., Li, X., Cheng, C., Yang, J., Liu, Z., Shi, Z. et al. (2020). Fully integrated battery-free and flexible electrochemical tag for on-demand wireless in situ monitoring of heavy metals. Sensors and Actuators B: Chemical, 310, Article 127809. https://doi.org/10.1016/j.snb.2020.127809

115. Zhu, X., Lin, L., Wu, R., Zhu, Y., Sheng, Y., Nie, P. et al. (2021). Portable wireless intelligent sensing of ultra-trace phytoregulator α-naphthalene acetic acid using self-assembled phosphorene/Ti3C2-MXene nanohybrid with high ambient stability on laser induced porous graphene as nanozyme flexible electrode. Biosensors and Bioelectronics, 179, Article 113062. https://doi.org/10.1016/j.bios.2021.113062

116. Shahrbabaki, Z., Farajikhah, S., Ghasemian, M.B., Oveissi, F., Rath, R.J., Yun, J. et al. (2023). A flexible and polymer-based chemiresistive CO2 gas sensor at room temperature. Advanced Materials Technologies, 8(10), Article 2201510. https://doi.org/10.1002/admt.202201510

117. Yan, H., Zhao, G., Lu, W., Hu, C., Wang, X., Liu, G. et al. (2023). A flexible and wearable paper-based chemiresistive sensor modified with SWCNTs-PdNPspolystyrene microspheres composite for the sensitive detection of ethylene gas: A new method for the determination of fruit ripeness and corruption. Analytica Chimica Acta, 1239, Article 340724. https://doi.org/10.1016/j.aca.2022.340724

118. Rim, Y.S., Bae, S.H., Chen, H., De Marco, N., Yang, Y. (2016). Recent progress in materials and devices toward printable and flexible sensors. Advanced Materials, 28(22), 4415–4440. https://doi.org/10.1002/adma.201505118

119. Sinar, D., Knopf, G.K. (2014, 18–21 August). Printed graphene interdigitated capacitive sensors on flexible polyimide substrates. Proceedings of the 14th IEEE International Conference on Nanotechnology, Toronto, ON, Canada. IEEE, 538–542. https://doi.org/10.1109/NANO.2014.6968041

120. Zhang, Y., Xiao, J., Sun, Y., Wang, L., Dong, X., Ren, J. et al. (2018). Flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen doped carbon nanotube arrays: In situ electrochemical detection in live cancer cells. Biosensors and Bioelectronics, 100, 453–461. https://doi.org/10.1016/j.bios.2017.09.038

121. Llobet, E. (2013). Gas sensors using carbon nanomaterials: A review.Sensors and Actuators B: Chemical, 179, 32–45. https://doi.org/10.1016/j.snb.2012.11.014

122. Cosnier, S., Karyakin, A. (2011). Electropolymerization: Concepts, materials and applications. New Jersey: John Wiley & Sons, 2011.

123. Kurra, N., Jiang, Q., Nayak, P., Alshareef, H.N. (2019). Laser-derived graphene: A three-dimensional printed graphene electrode and its emerging applications. Nano Today, 24, 81–102. http://doi.org/10.1016/j.nantod.2018.12.003

124. Strong, V., Dubin, S., El-Kady, M.F., Lech, A., Wang, Y., Weiller, B.H. et al. (2012). Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices. ACS Nano, 6(2), 1395–1403. https://doi.org/10.1021/nn204200w

125. Griffiths, K., Dale, C., Hedley, J., Kowal, M.D., Kanerc, R.B., Keegan, N. (2014). Laser-scribed graphene presents an opportunity to print a new generation of disposable electrochemical sensors. Nanoscale, 6(22), 13613–13622. https://doi.org/10.1039/c4nr04221b

126. Shi, H., Liu, C., Jiang, Q., Xu, J. (2015). Effective approaches to improve the electrical conductivity of PEDOT: PSS: A review. Advanced Electronic Materials, 1(4), Article 1500017. https://doi.org/10.1002/aelm.201500017

127. Lang, U., Müller, E., Naujoks, N., Dual, J. (2009). Microscopical investigations of PEDOT: PSS thin films. Advanced Functional Materials, 19(8), 1215–1220. https://doi.org/10.1002/adfm.200801258

128. Fan, Z., Ouyang, J. (2019). Thermoelectric properties of PEDOT: PSS. Advanced Electronic Materials, 5(11), Article 1800769. https://doi.org/10.1002/aelm.201800769

129. Jariwala, D., Sangwan, V.K., Lauhon, L.J., Marksab, T.J., Hersam, M.C. (2013). Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chemical Society Reviews, 42(7), 2824–2860. https://doi.org/10.1039/c2cs35335k

130. Wang, F., Liu, S., Shu, L., Tao, X.-M. (2017). Low-dimensional carbon based sensors and sensing network for wearable health and environmental monitoring. Carbon, 121, 353–367. https://doi.org/10.1016/j.carbon.2017.06.006

131. Iijima, S., Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature, 363(6430), 603–605. https://doi.org/10.1038/363603a0

132. Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K. et al. (2000). Nanotube molecular wires as chemical sensors. Science, 287(5453), 622–625. https://doi.org/10.1126/science.287.5453.622

133. Nguyen, H.Q., Huh, J.S. (2006). Behavior of single-walled carbon nanotube-based gas sensors at various temperatures of treatment and operation. Sensors and Actuators B: Chemical, 117(2), 426–430. https://doi.org/10.1016/j.snb.2005.11.056

134. Peng, S., Cho, K., Qi, P., Dai, H. (2004). Ab initio study of CNT NO2 gas sensor. Chemical Physics Letters, 387(4–6), 271–276. https://doi.org/10.1016/j.cplett.2004.02.026

135. Zhao, J., Buldum, A., Han, J., Lu, J.P. (2002). Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology, 13(2), Article 195. https://doi.org/10.1088/0957-4484/13/2/312

136. Samarasekara, P. (2009). Hydrogen and methane gas sensors synthesis of multi-walled carbon nanotubes. Chinese Journal of Physics, 47(3), 361–369.

137. Geim, A.K., Novoselov, K.S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191. https://doi.org/10.1038/nmat1849

138. Huo, P., Zhao, P., Wang, Y., Yin, G., Dong, M. A. (2018). A roadmap for achieving sustainable energy conversion and storage: Graphene-based composites used both as an electrocatalyst for oxygen reduction reactions and an electrode material for a supercapacitor. Energies, 11(1), Article 167. https://doi.org/10.3390/en11010167

139. Novoselov, K.S., Fal′ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim K. (2012). A roadmap for graphene. Nature, 490(7419), 192–200. https://doi.org/10.1038/nature11458

140. Neto, A.H.C., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81(1), Article 109. https://doi.org/10.1103/RevModPhys.81.109

141. He, Q., Wu, S., Yin, Z., Zhang, H. (2012). Graphene-based electronic sensors. Chemical Science, 3(6), 1764–1772. https://doi.org/10.1039/C2SC20205K

142. Yuan, W., Shi, G. (2013). Graphene-based gas sensors. Journal of Materials Chemistry A, 1(35), 10078–10091. https://doi.org/10.1039/c3ta11774j

143. Yavari, F., Koratkar, N. (2012). Graphene-based chemical sensors. The Journal of Physical Chemistry Letters, 3(13), 1746–1753. https://doi.org/10.1021/jz300358t

144. Stine, R., Mulvaney, S.P., Robinson, J.T., Tamanaha, C.R., Sheehan, P.E. (2013). Fabrication, optimization, and use of graphene field effect sensors. Analytical Chemistry, 85(2), 509–521. https://doi.org/10.1021/ac303190w

145. Fang, Y., Wang, E. (2013). Electrochemical biosensors on platforms of graphene. Chemical Communications, 49(83), 9526–9539. https://doi.org/10.1039/c3cc44735a

146. Yu, X., Cheng, H., Zhang, M., Zhao, Y., Qu, L., Shi, G. (2017). Graphene-based smart materials. Nature Reviews Materials, 2(9), Article 17046. https://doi.org/10.1038/natrevmats.2017.46

147. Guo, Sh., Dong, Sh. (2011). Graphene and its derivative-based sensing materi als for analytical devices. Journal of Materials Chemistry, 21(46), 18503–18516. https://doi.org/10.1039/C1JM13228H

148. Wu, J., Pisula, W., Müllen, K. (2007). Graphenes as potential material for electronics. Chemical Reviews, 107(3), 718–747. https://doi.org/10.1021/cr068010r

149. Choi, W., Lahiri, I., Seelaboyina, R., Kang, Y.S. (2010). Synthesis of graphene and its applications: A review. Critical Reviews in Solid State and Materials Sciences, 35(1), 52–71. https://doi.org/10.1080/10408430903505036

150. Pumera, M., Ambrosi, A., Bonanni, A., Chng, E.L.K., Poh, H.L. (2010). Graphene for electrochemical sensing and biosensing. TrAC Trends in Analytical Chemistry, 29(9), 954–965. https://doi.org/10.1016/j.trac.2010.05.011

151. Jang, H., Park, Y.J., Chen. X., Das, T., Kim, M.-S., Ahn, J.-H. (2016). Graphenebased flexible and stretchable electronics. Advanced Materials, 28(22), 4184–4202. https://doi.org/10.1002/adma.201504245

152. Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C. et al. (2006). Electronic confinement and coherence in patterned epitaxial graphene. Science, 312(5777), 1191–1196. https://doi.org/10.1126/science.1125925

153. Emtsev, K.V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G.L., Ley, L. et al. (2009). Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Materials, 8(3), 203–207. https://doi.org/10.1038/nmat2382

154. Geim, A.K. (2009). Graphene: status and prospects. Science, 324(5934), 1530–1534. https://doi.org/10.1126/science.1158877

155. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., et al. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666–669. https://doi.org/10.1126/science.1102896

156. Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D. et al. (2009). Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324(5932), 1312–1314. https://doi.org/10.1126/science.1171245

157. Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V. et al. (2009). Layer area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 9(8), 3087–3087. https://doi.org/10.1021/nl901829a

158. Pumera, M. (2013). Electrochemistry of graphene, graphene oxide and other graphenoids: Review. Electrochemistry Communications, 36, 14–18. https://doi.org/10.1016/j.elecom.2013.08.028

159. Yuan, W., Zhou, Y., Li, Y., Li, C., Peng, H., Zhang, J. et al. (2013). The edge-and basal-plane-specific electrochemistry of a single-layer graphene sheet. Scientific Reports, 3(1), Article 2248. https://doi.org/10.1038/srep02248

160. Nezakati, T., Seifalian, A., Tan, A., Seifalian, A.M. (2018). Conductive polymers: Opportunities and challenges in biomedical applications. Chemical Reviews, 118(14), 6766–6843. https://doi.org/10.1021/acs.chemrev.6b00275

161. Hodgson, A.J., Gilmore, K., Small, C., Wallace, G.G., Mackenzie, I.L., Aoki, T. et al. (1994). Reactive supramolecular assemblies of mucopolysaccharide, polypyrrole and protein as controllable biocomposites for a new generation of ‘intelligent biomaterials’. Supramolecular Science, 1(2), 77–83. https://doi.org/10.1016/0968-5677(94)90013-2

162. Gerard, M., Chaubey, A., Malhotra, B.D. (2002). Application of conducting polymers to biosensors. Biosensors and Bioelectronics, 17(5), 345–359. https://doi.org/10.1016/S0956-5663(01)00312-8

163. Park, A.R., Kim, J.S., Kim, K.S., Zhang, K., Park, J., Park, J.H. et al. (2014). Si–Mn/Reduced graphene oxide nanocomposite anodes with enhanced capacity and stability for lithium-ion batteries. ACS Applied Materials and Interfaces, 6(3), 1702–1708. https://doi.org/10.1021/am404608d

164. Green, R.A., Baek, S., Poole-Warren, L.A., Martens, P.J. (2010). Conducting polymerhydrogels for medical electrode applications. Science and Technology of Advanced Materials, 11(1), Article 014107. https://doi.org/10.1088/1468–6996/11/1/014107

165. Schopf, G., Kossmehl G. (1997). Polythiophenes-electrically conductive polymers. Berlin, Heidelberg: Springer Berlin Heidelberg. 1997.

166. Leclerc, M., Faid, K. (1997). Electrical and optical properties of processable polythiophene derivatives: Structure-property relationships. Advanced Materials, 9(14), 1087–1094. https://doi.org/10.1002/adma.19970091404

167. Yamamoto, T., Sanechika, K., Yamamoto, A. (1980). Preparation of thermostable and electric-conducting poly (2, 5-thienylene). Journal of Polymer Science: Polymer Letters Edition, 18(1), 9–12. https://doi.org/10.1002/pol.1980.130180103

168. Groenendaal, L., Jonas, F., Freitag, D., Pielartzik, H., Reynolds, J.R. (2000). Poly (3, 4-ethylenedioxythiophene) and its derivatives: Past, present, and future. Advanced Materials, 12(7), 481–494. https://doi.org/10.1002/(SICI)1521-4095(200004)12:7<481:: AID-ADMA481>3.0.CO;2-C

169. Dietrich, M., Heinze, J., Heywang, G., Jonas, F. (1994). Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes. Journal of Electroanalytical Chemistry, 369(1–2), 87–92. https://doi.org/10.1016/0022-0728(94)87085-3

170. Pei, Q., Zuccarello, G., Ahlskog, M., Inganäs, O. (1994). Electrochromic and highly stable poly (3, 4-ethylenedioxythiophene) switches between opaque blue-black and transparent sky blue. Polymer, 35(7), 1347–1351. https://doi.org/10.1016/0032-3861(94)90332-8

171. Karagkiozaki, V., Karagiannidis, P.G., Gioti, M., Kavatzikidou, P., Georgiou, D., Georgaraki, E. et al. (2013). Bioelectronics meets nanomedicine for cardiovascular implants: PEDOT-based nanocoatings for tissue regeneration. Biochimica et Biophysica Acta (BBA)­General Subjects, 1830(9), 4294–4304. https://doi.org/10.1016/j.bbagen.2012.12.019

172. Lu, Y., Biswas, M.C., Guo, Z., Jeon, J.-W., Wujcik, E.K. (2019). Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors. Biosensors and Bioelectronics, 123, 167–177. https://doi.org/10.1016/j.bios.2018.08.037

173. Vuorinen, T., Niittynen, J., Kankkunen, T., Kraft, T.M., Mäntysalo, M. (2016). Inkjet-printed graphene/PEDOT: PSS temperature sensors on a skin-conformable polyurethane substrate. Scientific Reports, 6(1), Article 35289. https://doi.org/10.1038/srep35289

174. Zhang, Y., Cui, Y. (2019). Development of flexible and wearable temperature sensors based on PEDOT: PSS. IEEE Transactions on Electron Devices, 66(7), 3129–3133. https://doi.org/10.1109/TED.2019.2914301

175. Zhang, R., Xu, X., Fan, X., Yang, R., Wu, T., Zhang, C. (2018). Application of conducting micelles self-assembled from commercial poly (3, 4-ethylenedioxythiophene): Poly (styrene sulfonate) and chitosan for electrochemical biosensor. Colloid and Polymer Science, 296, 495–502. https://doi.org/10.1007/s00396-018-4270-6

176. Mercante, L.A., Facure, M.H.M., Sanfelice, R.C., Migliorini, F.L., Mattoso, L.H.C., Correa, D.S. (2017). One-pot preparation of PEDOT: PSS-reduced graphene decorated with Au nanoparticles for enzymatic electrochemical sensing of H2O2. Applied Surface Science, 407, 162–170. https://doi.org/10.1016/j.apsusc.2017.02.156

177. Lopes, G.R., Pinto, D.C.G.A., Silva, A.M.S. (2014). Horseradish peroxidase (HRP) as a tool in green chemistry. RSC Advances, 4(70), 37244–37265. https://doi.org/10.1039/C4RA06094F

178. Słoniewska, A., Kasztelan, M., Berbeć, S., Pałys, B. (2020). Influence of buffer solution on structure and electrochemical properties of poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) hydrogels. Synthetic Metals, 263, Article 116363. https://doi.org/10.1016/j.synthmet.2020.116363

179. Mochizuki, Y., Horii, T., Okuzaki, H. (2012). Effect of pH on structure and conductivity of PEDOT/PSS. Transactions of the Materials Research Society of Japan, 37(2), 307–310. https://doi.org/10.14723/tmrsj.37.307

180. Borges, M. H. R., Nagay, B. E., Costa, R. C., Souza, J.G.S., Mathew, M.T., Barão, V.A.R. (2023). Recent advances of polypyrrole conducting polymer film for biomedical application: Toward a viable platform for cell-microbial interactions. Advances in Colloid and Interface Science, 134, Article 102860. https://doi.org/10.1016/j.cis.2023.102860

181. Lei, J., Martin, Ch. R. (1995). Investigations of the chemical interactions between molecular oxygen and pristine (undoped) polypyrrole. Chemistry of Materials, 7(3), 578–584. https://doi.org/10.1021/cm00051a020

182. Li, X.-G., Huang, M.-R., Duan, W., Yang, Y.-L. (2002). Novel multifunctional polymers from aromatic diamines by oxidative polymerizations. Chemical Reviews, 102(9), 2925–3030. https://doi.org/10.1021/cr010423z

183. Wang, L.-X., Li, X.-G., Yang, Y.-L. (2001). Preparation, properties and applications of polypyrroles. Reactive and Functional Polymers, 47(2), 125–139. https://doi.org/10.1016/S1381-5148(00)00079-1

184. Guimard, N.K., Gomez, N., Schmidt, Ch.E. (2007). Conducting polymers in biomedical engineering. Progress in Polymer Science, 32(8–9), 876–921. https://doi.org/10.1016/j.progpolymsci.2007.05.012

185. Garlof, S., Mecklenburg, M., Smazna, D., Mishra, Y.K., Adelung, R., Schulte, K. et al. (2017). 3D carbon networks and their polymer composites: Fabrication and electromechanical investigations of neat Aerographite and Aerographite-based PNCs under compressive load. Carbon, 111, 103–112. https://doi.org/10.1016/j.carbon.2016.09.046

186. Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39(1), 228–240. https://doi.org/10.1039/b917103g

187. Bajaj, B., Joh, H.I., Jo, S.M., Park, J.H., Yi, K.B., Lee, S. (2018). Enhanced reactive H 2S adsorption using carbon nanofibers supported with Cu/CuxO nanoparticles. Applied Surface Science, 429, 253–257. https://doi.org/10.1016/j.apsusc.2017.06.280

188. Liang, X., Kim, T.H., Yoon, J.W., Kwak, C.-H., Lee, J.-H. (2015). Ultrasensitive and ultraselective detection of H 2S using electrospun CuO-loaded In2O3 nanofiber sensors assisted by pulse heating. Sensors and Actuators B: Chemical, 209, 934–942. https://doi.org/10.1016/j.snb.2014.11.130

189. Lakard, B., Carquigny, S., Segut, O., Patois, T., Lakard, S. (2015). Gas sensors based on electrodeposited polymers. Metals, 5(3), 1371–1386. https://doi.org/10.3390/met5031371

190. Chu, J., Wang, X., Wang, D., Yang, A., Lva, P., Wu, Y. et al. (2018). Highly selective detection of sulfur hexafluoride decomposition components H2S and SOF2 employing sensors based on tin oxide modified reduced graphene oxide. Carbon, 135, 95–103. https://doi.org/10.1016/j.carbon.2018.04.037

191. Tabish, M., Malik, M.U., Khan, M.A., Yasin, G., Asif, H.M., Anjumet, M.J. et al. (2021). Construction of NiCo/graphene nanocomposite coating with bulgeslike morphology for enhanced mechanical properties and corrosion resistance performance. Journal of Alloys and Compounds, 867, Article 159138. https://doi.org/10.1016/j.jallcom.2021.159138

192. Nadeem, M., Yasin, G., Arif, M., Tabassum, H., Bhatti, M.H., Mehmood, M. et al. (2021). Highly active sites of Pt/Er dispersed N-doped hierarchical porous carbon for trifunctional electrocatalyst. Chemical Engineering Journal, 409, Article 128205. https://doi.org/10.1016/j.cej.2020.128205

193. Yasin, G., Arif, M., Mehtab, T., Shakeel, M., Mushtaq, M.A., Kuma, A. et al. (2020). A novel strategy for the synthesis of hard carbon spheres encapsulated with graphene networks as a low-cost and large-scalable anode material for fast sodium storage with an ultralong cycle life. Inorganic Chemistry Frontiers, 7(2), 402–410. https://doi.org/10.1039/C9QI01105F

194. Ibraheem, S., Chen, S., Peng, L., Li, J., Li, L., Liao, Q. et al. (2020). Strongly coupled iron selenides-nitrogen-bond as an electronic transport bridge for enhanced synergistic oxygen electrocatalysis in rechargeable zinc-O2 batteries. Applied Catalysis B: Environmental, 265, Article 118569. https://doi.org/10.1016/j.apcatb.2019.118569

195. Nadeem, M., Yasin, G., Arif, M, Bhatt, i M.H., Sayin, K., Mehmood, M. et al. (2020). Pt-Ni@ PC900 hybrid derived from layered-structure Cd-MOF for fuel cell ORR activity. ACS Omega, 5(5), 2123–2132. https://doi.org/10.1021/acsomega.9b02741

196. Hangarter, C.M., Chartuprayoon, N., Hernández, S.C., Choa, Y., Myung, N.V. (2013). Hybridized conducting polymer chemiresistive nano-sensors. Nano Today, 8(1), 39–55. https://doi.org/10.1016/j.nantod.2012.12.005

197. Miller, D.R., Akbar, S.A., Morris, P.A. (2014). Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sensors and Actuators B: Chemical, 204, 250–272. https://doi.org/10.1016/j.snb.2014.07.074

198. Zheng, W., Zhang, P., Chen, J., Tian, W.B., Zhangb, Y.M., Sun, Z.M. (2018). In situ synthesis of CNTs@ Ti3C2 hybrid structures by microwave irradiation for high-performance anodes in lithium ion batteries. Journal of Materials Chemistry A, 6(8), 3543–3551. https://doi.org/10.1039/C7TA10394H

199. Guo, X., Zhang, W., Zhang, J., Zhou, D., Tang, X., Xu, X. et al. (2020). Boosting sodium storage in two-dimensional phosphorene/Ti3C2Tx MXene nanoarchitectures with stable fluorinated interphase. ACS Nano, 14(3), 3651–3659. https://doi.org/10.1021/acsnano.0c00177

200. Bard, A.J., Faulkner, L.R., White, H.S. (2022). Electrochemical methods: fundamentals and applications. New York, Chichester, Weinheim, Brisbane, Singapore, Toronto: John Wiley & Sons, 2022.

201. Banica, F.-G. (2012). Chemical sensors and biosensors: Fundamentals and applications. New Jersey: John Wiley & Sons. 2012.

202. McEvoy, M.A., Correll, N. (2015). Materials that couple sensing, actuation, computation, and communication. Science, 347(6228), Article 1261689. https://doi.org/10.1126/science.1261689

203. Paolesse, R., Nardis, S., Monti, D., Stefanelli, M., Natale, C.D. (2017). Porphyrinoids for chemical sensor applications. Chemical Reviews, 117(4), 2517–2583. https://doi.org/10.1021/acs.chemrev.6b00361

204. Watson, J., Ihokura, K. (1999). Gas-sensing materials. MRS Bulletin, 24(6), 14–17. https://doi.org/10.1557/S0883769400052453

205. Poghossian, A., Lüth, H., Schultze, J.W., Schöning, M.J. (2001). (Bio-) chemical and physical microsensor arrays using an identical transducer principle. Electrochimica Acta, 47(1–2), 243–249. https://doi.org/10.1016/S0013-4686(01)00562-X

206. Pirondini, L., Dalcanale, E. (2007). Molecular recognition at the gas–solid interface: A powerful tool for chemical sensing. Chemical Society Reviews, 36(5), 695–706. https://doi.org/10.1039/b516256b

207. Ariga, K., Hill, J.P., Endo, H. (2007). Developments in molecular recognition and sensing at interfaces. International Journal of Molecular Sciences, 8(8), 864–883. https://doi.org/10.3390/i8080864

208. Mu, B., Zhang, J., McNicholas, T.P., Reuel, N.F., Kruss, S., Strano, M.S. (2014). Recent advances in molecular recognition based on nanoengineered platforms. Accounts of Chemical Research, 47(4), 979–988. https://doi.org/10.1021/ar400162w


Review

For citations:


Luo D., Nikitina M.A., Xiao X. Flexible sensors for food monitoring. Part I: Principle. Food systems. 2023;6(4):519-530. https://doi.org/10.21323/2618-9771-2023-6-4-519-530

Views: 721


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)