Flexible sensors for food monitoring. Part I: Principle
https://doi.org/10.21323/2618-9771-2023-6-4-519-530
Abstract
Monitoring and maintaining food quality, safety, and authenticity are the most important concerns in the food industry. The cutting-edge flexible sensors for food monitoring precisely meet the needs of acquiring information on multiple parameters in small space and more reasonable layout, providing data on mechanical deformations, and conformably attaching to arbitrarily curved surfaces. Flexible sensing materials with a large specific surface area, high carrier mobility and carrier density, dense active sites, outstanding tunability, and processability, such as two-dimensional carbon nanomaterials, conductive polymers, and nanohybrid materials, have further improved the sensitivity, stability, and selectivity of flexible sensors. This article attempts to critically review state-of-the-art developments with respect to materials, fabrication techniques, and sensing mechanisms of devices, as well as the applications of the electrically-transduced flexible sensors. In addition, this review elaborates on the transduction mechanisms of several typical transducers, with a focus on the physics behind, including the modulation of doping level, Schottky barrier, and interfacial layer that typically lead to changes in conductivity, work function, and permittivity. We also highlight the benefits, technical challenges with corresponding solutions of current flexible sensors, and discuss potential strategies to overcome limitations in energy consumption, quantify the trade-offs in maintaining quality and marketability, optimize wireless communication, and explore new sensing patterns.
About the Authors
D. LuoChina
Dongjie Luo, Bachelor
Beijing, 100083, PR China Tel.: +86–1305–120–91–54
M. A. Nikitina
Russian Federation
Marina A. Nikitina, Doctor of Technical Sciences, Docent, Leading Scientific Worker, the Head of the Direction of Information Technologies of the Center of Economic and Analytical Research and Information Technologies
26, Talalikhina str., 109316, Moscow, Tel: +7–495–676–95–11 extension 297
X. Xiao
China
Xinqing Xiao, Doctor of Engineering, Associate Professor, Beijing Laboratory of Food Quality and Safety
Beijing, 100083, PR China. Tel.: +86–158–0122–7781
References
1. World Health Organization (2022). Food Safety. Retrieved from https://www.who.int/news-room/fact-sheets/detail/food-safety. Accessed April 20, 2023.
2. Misra, N.N., Dixit, Y., Al-Mallahi, A., Bhullar, M.S., Upadhyay, R., Martynenko, A. (2020). IoT, big data, and artificial intelligence in agriculture and food industry. IEEE Internet of Things Journal, 9(9), 6305–6324. https://doi.org/10.1109/JIOT.2020.2998584
3. Aung, M.M., Chang, Y.S. (2014). Traceability in a food supply chain: Safety and quality perspectives. Food Control, 39, 172–184. https://doi.org/10.1016/j.foodcont.2013.11.007
4. Wu, D., Sun, D.W. (2013). Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: A review — Part I: Fundamentals. Innovative Food Science and Emerging Technologies, 19, 1–14. https://doi.org/10.1016/j.ifset.2013.04.014
5. Saravanan, A., Kumar, P.S., Hemavathy, R.V., Jeevanantham, S., Kamalesh, R., Sneha S. et al. (2021). Methods of detection of food-borne pathogens: review. Environmental Chemistry Letters, 19, 189–207. https://doi.org/10.1007/s10311-020-01072-z
6. Samsidar, A., Siddiquee, S., Shaarani, S. (2018). A review of extraction, analytical and advanced methods for determination of pesticides in environment and foodstuffs. Trends in Food Science and Technology, 71, 188–201. https://doi.org/10.1016/j.tifs.2017.11.011
7. Zhao, F., Wu, J., Ying, Y., She, Y., Wang, J., Ping, J. (2018). Carbon nanomaterialenabled pesticide biosensors: Design strategy, biosensing mechanism, and practical application. TrAC Trends in Analytical Chemistry, 106, 62–83. https://doi.org/10.1016/j.trac.2018.06.017
8. Mostafalou, S., Abdollahi, M. (2017). Pesticides: An update of human exposure and toxicity. Archives of Toxicology, 91(2), 549–599. https://doi.org/10.1007/s00204-016-1849-x
9. Wang, X., Zhang, M., Zhang, L., Xu, J., Xiao, X., Zhang, X. (2022). Inkjet-printed flexible sensors: From function materials, manufacture process, and applications perspective. Materials Today Communications, 31(5), Article 103263. https://doi.org/10.1016/j.mtcomm.2022.103263
10. Senapati, M., Sahu, P.P. (2020). Meat quality assessment using Au patch electrode Ag-SnO2/SiO2/Si MIS capacitive gas sensor at room temperature. Food Chemistry, 324, Article 126893. https://doi.org/10.1016/j.foodchem.2020.126893
11. Guo, X., Ding, Y., Liang, C., Du, B., Zhao, C., Tan, Y. et al. (2022). Humidity-activated H 2S sensor based on SnSe2/WO3 composite for evaluating the spoilage of eggs at room temperature. Sensors and Actuators B: Chemical, 357, Article 131424. https://doi.org/10.1016/j.snb.2022.131424
12. Chen, H., Zhang, M., Bhandari, B., Yang, C.-h. (2020). Novel pH-sensitive films containing curcumin and anthocyanins to monitor fish freshness. Food Hydrocolloids, 100, Article 105438. https://doi.org/10.1016/j.foodhyd.2019.105438
13. Liu, K., Zhang, C. (2021). Volatile organic compounds gas sensor based on quartz crystal microbalance for fruit freshness detection: A review. Food Chemistry, 334, Article 127615. https://doi.org/10.1016/j.foodchem.2020.127615
14. Senapati, M., Sahu, P.P. (2020). Onsite fish quality monitoring using ultra-sensitive patch electrode capacitive sensor at room temperature. Biosensors and Bioelectronics, 168, Article 112570. https://doi.org/10.1016/j.bios.2020.112570
15. Cavanna, D., Zanardi, S., Dall’Asta, C., Suman, M. (2019). Ion mobility spectrometry coupled to gas chromatography: A rapid tool to assess eggs freshness. Food Chemistry, 271, 691–696. https://doi.org/10.1016/j.foodchem.2018.07.204
16. Liang, Y., Huang, X., Chen, X., Zhang, W., Ping, G., Xiong, Y. (2018). Plasmonic ELISA for naked-eye detection of ochratoxin A based on the tyramine-H2O2 amplification system. Sensors and Actuators B: Chemical, 259, 162–169. https://doi.org/10.1016/j.snb.2017.12.004
17. Wang, K., Sun, D.W., Pu, H., Wei, Q. (2019). Surface-enhanced Raman scattering of core-shell Au@ Ag nanoparticles aggregates for rapid detection of difenoconazole in grapes. Talanta, 191, 449–456. https://doi.org/10.1016/j.talanta.2018.08.005
18. Yang, N., You, T.-T., Gao, Y.-K., Zhang, C.-M., Yin, P.-G. (2018). Fabrication of a flexible gold nanorod polymer metafilm via a phase transfer method as a SERS substrate for detecting food contaminants. Journal of Agricultural and Food Chemistry, 66(26), 6889–6896. https://doi.org/10.1021/acs.jafc.8b01702
19. Nguyen, T.H., Nguyen, T.D., Ly, N.H., Kwak, C.H., Huh, Y.S., Joo, S.-W. (2018). On-site detection of sub-mg/kg melamine mixed in powdered infant formula and chocolate using sharp-edged gold nanostar substrates. Food Additives and Contaminants: Part A, 35(6), 1017–1026. https://doi.org/10.1080/19440049.2018.1466399
20. Liu, S., Bai, J., Huo, Y., Ning, B., Peng, Y., Li, S. et al. (2020). A zirconium-porphyrin MOF-based ratiometric fluorescent biosensor for rapid and ultrasensitive detection of chloramphenicol. Biosensors and Bioelectronics, 149, Article 111801. https://doi.org/10.1016/j.bios.2019.111801
21. Shi, Q., He, T., Lee, C. (2019). More than energy harvesting — Combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems. Nano Energy, 57, 851–871. https://doi.org/10.1016/j.nanoen.2019.01.002
22. Vicente, A.T., Araújo, A., Mendes, M.J., Nunes, D., Oliveira, M.J., Sanchez-Sobrado, O. et al. (2018). Multifunctional cellulose-paper for light harvesting and smart sensing applications. Journal of Materials Chemistry C, 6(13), 3143–3181. https://doi.org/10.1039/C7TC05271E
23. Guo, J., Yu, Y., Cai, L., Wang, Y., Shi, K., Wang, Y., Shi, K., Shanget, L. et al. (2021). Microfluidics for flexible electronics. Materials Today, 44, 105–135. https://doi.org/10.1016/j.mattod.2020.08.017
24. Hu, L., Chee, P.L., Sugiarto, S., Yu, Y., Shi, C., Yanet, R. et al. (2022). Hydrogel-based flexible electronics. Advanced Materials, 35(14), Article 2205326. https://doi.org/10.1002/adma.202205326
25. Crabb, R.L., Treble, F.C. (1967). Thin silicon solar cells for large flexible arrays. Nature, 213, 1223–1224. https://doi.org/10.1038/2131223a0
26. Shirakawa, H., Louis, E.J., MacDiarmid, A.G., Chiang, Ch. K., Heeger, A.J. (1977). Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)X. Journal of the Chemical Society, Chemical Communications, 16, 578–580. https://doi.org/10.1039/C39770000578
27. Ling, Z., Ren, C.E., Zhao, M.Q., Yang, J., Giammarco, J.M., Qiu, J. et al. (2014). Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences, 111(47), 16676–16681. https://doi.org/10.1073/pnas.1414215111
28. Vosgueritchian, M., Lipomi, D.J., Bao, Z. (2012). Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Advanced Functional Materials, 22(2), 421–428. https://doi.org/10.1002/adfm.201101775
29. Zhou, Y., Wan, C., Yang, Y., Yang, H., Wang, S., Dai, Z. et al. Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Advanced Functional Materials, 29(1), Article 1806220. https://doi.org/10.1002/adfm.201806220
30. Li, D., Lai, W.Y., Zhang, Y.Z., Huang, W. (2018). Printable transparent conductive films for flexible electronics. Advanced Materials, 30(10), Article 1704738. https://doi.org/10.1002/adma.201704738
31. Lipomi, D.J., Lee, J.A., Vosgueritchian, M., Tee, B.C.-K., Bolander, J.A., Bao Z. (2012). Electronic properties of transparent conductive films of PEDOT: PSS on stretchable substrates. Chemistry of Materials, 24(2), 373–382. https://doi.org/10.1021/cm203216m
32. Chun, K.Y., Oh, Y., Rho, J., Ahn, J.-H., Kim, Y.-J., Choi, H.R. et al. (2010). Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nature Nanotechnology, 5(12), 853–857. https://doi.org/10.1038/nnano.2010.232
33. Kayser, L.V., Lipomi, D.J. (2019). Stretchable conductive polymers and composites based on PEDOT and PEDOT: PSS. Advanced Materials, 31(10), Article 1806133. https://doi.org/10.1002/adma.201806133
34. Wang, Z., Cui, H., Li, S., Feng, X., Aghassi-Hagmann, J., Azizian, S. et al. (2021). Facile approach to conductive polymer microelectrodes for flexible electronics. ACS Applied Materials and Interfaces, 13(18), 21661–21668. https://doi.org/10.1021/acsami.0c22519
35. Glarum, S.H. (1963). Electron mobilities in organic semiconductors. Journal of Physics and Chemistry of Solids, 24(12), 1577–1583. https://doi.org/10.1016/0022-3697(63)90100-8
36. Kronick, P.L., Labes, M.M. (1961). Organic Semiconductors. V. Comparison of measurements on single-crystal and compressed microcrystalline molecular complexes. The Journal of Chemical Physics, 35(6), 2016–2019. https://doi.org/10.1063/1.1732203
37. Chittick, R.C., Alexander, J.H., Sterling, H.F. (1969). The preparation and properties of amorphous silicon. Journal of the Electrochemical Society, 116(1), Article 77. https://doi.org/10.1149/1.2411779
38. Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., Hosono, H. (2004). Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 432(7016), 488–492. https://doi.org/10.1038/nature03090
39. Sun, X., Qin, Z., Ye, L., Zhang, H., Yu, Q., Wu, X. et al. (2020). Carbon nanotubes reinforced hydrogel as flexible strain sensor with high stretchability and mechanically toughness. Chemical Engineering Journal, 382, Article 122832. https://doi.org/10.1016/j.cej.2019.122832
40. Qin, Z., Sun, X., Yu, Q., Zhang, H., Wu, X., Yaoet, M. et al. (2020). Carbon nanotubes/hydrophobically associated hydrogels as ultrastretchable, highly sensitive, stable strain, and pressure sensors. ACS Applied Materials and Interfaces, 12(4), 4944–4953. https://doi.org/10.1021/acsami.9b21659
41. Li, X., Zhang, R., Yu, W., Wang, K., Wei, J., Wuet, D. et al. (2012). Stretchable and highly sensitive graphene-on-polymer strain sensors. Scientific Reports, 2(1), Article 870. https://doi.org/10.1038/srep00870
42. Yan, C., Wang, J., Kang, W., Cui, M., Wang, X., Fooet, C.Y. et al. (2014). Highly stretchable piezoresistive grapheme — nanocellulose nanopaper for strain sensors. Advanced Materials, 26(13), 2022–2027. https://doi.org/10.1002/adma.201304742
43. Amjadi, M., Pichitpajongkit, A., Lee, S., Ryu, S., Park, I. (2014). Highly stretchable and sensitive strain sensor based on silver nanowire — elastomer nanocomposite. ACS Nano, 8(5), 5154–5163. https://doi.org/10.1021/nn501204t
44. Xia, J., Wang, X., Zhang, J., Kong, C., Huang, W., Zhang, X. (2022). Flexible dualmechanism pressure sensor based on Ag nanowire electrodes for nondestructive grading and quality monitoring of fruits. ACS Applied Nano Materials, 5(8), 10652–10662. https://doi.org/10.1021/acsanm.2c01968
45. Park, B., Kim, J., Kang, D., Jeong, C., Kim, K.S., Kimet, J.U. et al. (2016). Dramatically enhanced mechanosensitivity and signal-to-noise ratio of nanoscale crack-based sensors: effect of crack depth. Advanced Materials, 28(37), 8130–8137. https://doi.org/10.1002/adma.201602425
46. Park, J., Lee, Y., Hong, J., Lee, Y., Ha, M., Jung, Y. et al. (2014). Tactile-directionsensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures. ACS Nano, 8(12), 12020–12029. https://doi.org/10.1021/nn505953t
47. Bao, Z., Chen, X. (2016). Flexible and stretchable devices. Advanced Materials, 28(22), 4177–4179. https://doi.org/10.1002/adma.201601422
48. Xu, J., Ma, R., Stankovski, S., Liu, X., Zhang, X. (2022). Intelligent dynamic quality prediction of chilled chicken with integrated IoT flexible sensing and knowledge rules extraction. Foods, 11(6), Article 836. https://doi.org/10.3390/foods11060836
49. Huang, W., Wang, X., Xia, J., Li, Y., Zhang, L., Fenget, H. et al. (2023). Flexible sensing enabled agri-food cold chain quality control: A review of mechanism analysis, emerging applications, and system integration. Trends in Food Science and Technology, 133, 189–204. https://doi.org/10.1016/j.tifs.2023.02.010
50. Feng, H., Zhang, M., Gecevska, V., Chen, B., Saeed, R., Zhang, X. (2022). Modeling and evaluation of quality monitoring based on wireless sensor and blockchain technology for live fish waterless transportation. Computers and Electronics in Agriculture, 193, Article 106642. https://doi.org/10.1016/j.compag.2021.106642
51. Xiao, X., Mu, B., Cao, G. (2021). Light-energy-harvested flexible wireless temperature-sensing patch for food cold storage. ACS Applied Electronic Materials, 3(7), 3015–3022. https://doi.org/10.1021/acsaelm.1c00251
52. Mu, B., Cao, G., Zhang, L., Zou, Y., Xiao, X. (2021). Flexible wireless pH sensor system for fish monitoring. Sensing and BioSensing Research, 34, Article 100465. https://doi.org/10.1016/j.sbsr.2021.100465
53. Xiao, X., Mu, B., Cao, G., Yang, Y., Wang, M. (2022). Flexible battery-free wireless electronic system for food monitoring. Journal of Science: Advanced Materials and Devices, 7(2), Article 100430. https://doi.org/10.1016/j.jsamd.2022.100430
54. Xu, J., Yang, Z., Wang, Z., Li, J., Zhang, X. (2023). Flexible sensing enabled packaging performance optimization system (FS-PPOS) for lamb loss reduction control in E-commerce supply chain. Food Control, 145, Article 109394. https://doi.org/10.1016/j.foodcont.2022.109394
55. Wang, M., Luo, D., Liu, M., Zhang, R., Wu, Z., Xiao, X. (2023). Flexible wearable optical wireless sensing system for fruit monitoring. Journal of Science: Advanced Materials and Devices, 8(2), Article 100555. https://doi.org/10.1016/j.jsamd.2023.100555
56. Boahen, E.K, Pan, B., Kweon, H., Kim, J.S., Choi, H., Konget, Z. et al. (2022). Ultrafast, autonomous self-healable iontronic skin exhibiting piezo-ionic dynamics. Nature Communications, 13(1), Article 7699. https://doi.org/10.1038/s41467-022-35434-8
57. Gao, W., Emaminejad, S., Nyein, H.Y.Y., Challa, S., Chen, K., Pecket, A. et al. (2016). Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529(7587), 509–514. https://doi.org/10.1038/nature16521
58. Escobedo, P., Bhattacharjee, M., Nikbakhtnasrabadi, F., Dahiya, R. (2021). Flexible strain and temperature sensing NFC tag for smart food packaging applications. IEEE Sensors Journal, 21(23), 26406–26414. https://doi.org/10.1109/JSEN.2021.3100876
59. Molina-Lopez, F., Briand, D., de Rooij, N.F. (2012). All additive inkjet printed humidity sensors on plastic substrate. Sensors and Actuators B: Chemical, 166–167, 212–222. https://doi.org/10.1016/j.snb.2012.02.042
60. Jović, M., Hidalgo-Acosta, J.C., Lesch, A., Bassetto, V.C., Smirnov, E., Cortés-Salazar, F. et al. (2018). Large-scale layer-by-layer inkjet printing of flexible iridium-oxide based pH sensors. Journal of Electroanalytical Chemistry, 819, 384–390. https://doi.org/10.1016/j.jelechem.2017.11.032
61. Mu, B., Dong, Y., Qian, J., Wang, M., Yang, Y., Nikitina, M.A. et al. (2022). Hydrogel coating flexible pH sensor system for fish spoilage monitoring. Materials Today Chemistry, 26, Article 101183. https://doi.org/10.1016/j.mtchem.2022.101183
62. Won, S., Won, K. (2021). Self-powered flexible oxygen sensors for intelligent food packaging. Food Packaging and Shelf Life, 29, Article 100713. https://doi.org/10.1016/j.fpsl.2021.100713
63. Giaretta, J.E., Duan, H., Farajikhah, S., Oveissi, F., Dehghani, F., Naficy, S. (2022). A highly flexible, physically stable, and selective hydrogel-based hydrogen peroxide sensor. Sensors and Actuators B: Chemical, 371, Article 132483. https://doi.org/10.1016/j.snb.2022.132483
64. Meng, Z., Stolz, R.M., Mendecki, L., Mirica, K.A. (2019). Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chemical Reviews, 119(1), 478–598. https://doi.org/10.1021/acs.chemrev.8b00311
65. Wang, X., Liu, Z., Zhang, T. (2017). Flexible sensing electronics for wearable/attachable health monitoring. Small, 13(25), Article 1602790. https://doi.org/10.1002/smll.201602790
66. Gao, Y., Yu, L., Yeo, J.C., Lim, C.T. (2020). Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability. Advanced Materials, 32(15), Article 1902133. https://doi.org/10.1002/adma.201902133
67. Bag, A., Lee, N.E. (2021). Recent advancements in development of wearable gas sensors. Advanced Materials Technologies, 6(3), Article 2000883. https://doi.org/10.1002/admt.202000883
68. Liang, J., Li, L., Niu, X., Pei, Q. (2013). Elastomeric polymer light-emitting devices and displays. Nature Photonics, 7(10), 817–824. https://doi.org/10.1038/nphoton.2013.242
69. Yu, Z., Niu, X., Liu, Z., Pei, Q. (2011). Intrinsically stretchable polymer lightemitting devices using carbon nanotube-polymer composite electrodes. Advanced Materials, 23(34), 3989–3994. https://doi.org/10.1002/adma.201101986
70. Yan, C., Wang, J., Wang, X., Kang, W., Cui, M., Foo, C.Y. et al. (2014). An intrinsically stretchable nanowire photodetector with a fully embedded structure. Advanced Materials, 26(6), 943–950. https://doi.org/10.1002/adma.201304226
71. Ho, D.H., Sun, Q., Kim, S.Y., Han, J.T., Kim, D.H., Cho, J.H. (2016). Stretchable and multimodal all graphene electronic skin. Advanced Materials, 28(13), 2601–2608. https://doi.org/10.1002/adma.201505739
72. Li, W., Chen, R., Qi, W., Cai, L., Sun, Y., Sun, M. et al. (2019). Reduced graphene oxide/mesoporous ZnO NSs hybrid fibers for flexible, stretchable, twisted, and wearable NO 2 E-textile gas sensor. ACS Sensors, 4(10), 2809–2818. https://doi.org/10.1021/acssensors.9b01509
73. Dai, X., Huang, L.B., Du, Y., Han, J., Kong, J. (2021). Self-healing flexible strain sensors based on dynamically cross-linked conductive nanocomposites. Composites Communications, 24, Article 100654. https://doi.org/10.1016/j.coco.2021.100654
74. Gupta, A.K., Mishra, P., Senapati, M., Sahu, P.P. (2021). A novel electrochemical device for naringin quantification and removal from bitter variety of citrus fruits. Journal of Food Engineering, 306, Article 110637. https://doi.org/10.1016/j.jfoodeng.2021.110637
75. Lan, K., Wang, Z., Yang, X., Wei, J., Qin, Y., Qin, G. (2022). Flexible silicon nanowires sensor for acetone detection on plastic substrates. Nanotechnology, 33(15), Article 155502. https://doi.org/10.1088/1361–6528/ac46b3
76. Lonsdale, W., Wajrak, M., Alameh, K. (2018). Manufacture and application of RuO 2 solid-state metal-oxide pH sensor to common beverages. Talanta, 180, 277–281. https://doi.org/10.1016/j.talanta.2017.12.070
77. Han, S.T., Peng, H., Sun, Q., Venkatesh, S., Chung, K.-S., Lau, S.C. et al. (2017). An overview of the development of flexible sensors. Advanced Materials, 29(33), Article 1700375. https://doi.org/10.1002/adma.201700375
78. Zhang, J., Wang, X., Xia, J., Xing, S., Zhang, X. (2022). Flexible sensing enabled intelligent manipulator system (FSIMS) for avocados (Persea Americana Mill) ripeness grading. Journal of Cleaner Production, 363, Article 132599. https://doi.org/10.1016/j.jclepro.2022.132599
79. Root, S.E., Savagatrup, S., Printz, A.D., Rodriquez, D., Lipomi, D.J. (2017). Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics. Chemical Reviews, 117(9), 6467–6499. https://doi.org/10.1021/acs.chemrev.7b00003
80. Onorato, J., Pakhnyuk, V., Luscombe, C.K. (2017). Structure and design of polymers for durable, stretchable organic electronics. Polymer Journal, 49(1), 41–60. https://doi.org/10.1038/pj.2016.76
81. Huang, W.D., Deb, S., Seo, Y.S., Rao, S., Chiao, M., J.C. (2011). A passive radiofrequency pH-sensing tag for wireless food-quality monitoring. IEEE Sensors Journal, 12(3), 487–495. https://doi.org/10.1109/JSEN.2011.2107738
82. Yousefi, H., Ali, M.M., Su, H.M., Filipe, C.D.M., Didar, T.F. (2018). Sentinel wraps: real-time monitoring of food contamination by printing DNAzyme probes on food packaging. ACS Nano, 12(4), 3287–3294. https://doi.org/10.1021/acsnano.7b08010
83. Shu, J., Qiu, Z., Tang, D. (2018). Self-referenced smartphone imaging for visual screening of H2S using Cu x O-polypyrrole conductive aerogel doped with graphene oxide framework. Analytical Chemistry, 90(16), 9691–9694. https://doi.org/10.1021/acs.analchem.8b03011
84. Fallatah, A., Kuperus, N., Almomtan, M., Padalkar, S. (2022). Sensitive biosensor based on shape-controlled ZnO Nanostructures grown on flexible porous substrate for pesticide detection. Sensors, 22(9), Article 3522. https://doi.org/10.3390/s22093522
85. Zhang, S., Hubis, E., Tomasello, G., Soliveri, G., Kumar, P., Cicoira, F. (2017). Patterning of stretchable organic electrochemical transistors. Chemistry of Materials, 29(7), 3126–3132. https://doi.org/10.1021/acs.chemmater.7b00181
86. Wang, L., Yue, X., Sun, Q., Zhang, L., Ren, G., Lu, G. et al. (2021). Flexible organic electrochemical transistors for chemical and biological sensing. Nano Research, 15, 2433–2464. https://doi.org/10.1007/s12274-021-3856-3
87. Paschoalin, R.T., Gomes, N.O., Almeida, G.F., Bilatto, S., Farinas, C.S., Machado, S.A.S. et al. (2022). Wearable sensors made with solution-blow spinning poly (lactic acid) for non-enzymatic pesticide detection in agriculture and food safety. Biosensors and Bioelectronics, 199, Article 113875. https://doi.org/10.1016/j.bios.2021.113875
88. Raymundo-Pereira, P.A., Gomes, N.O., Shimizu, F.M., Machado, S.A.S., Oliveira Jr., O.N. (2021). Selective and sensitive multiplexed detection of pesticides in food samples using wearable, flexible glove-embedded non-enzymatic sensors. Chemical Engineering Journal, 408, Article 127279. https://doi.org/10.1016/j.cej.2020.127279
89. Xu, X.Y., Yan, B., Lian, X. (2018). Wearable glove sensor for non-invasive organophosphorus pesticide detection based on a double-signal fluorescence strategy. Nanoscale, 10(28), 13722–13729. https://doi.org/10.1039/c8nr03352h
90. Mishra, R.K., Hubble, L.J., Martín, A., Kumar, R., Barfidokht, A., Kim, J. et al. (2017). Wearable flexible and stretchable glove biosensor for on-site detection of organophosphorus chemical threats. ACS Sensors, 2(4), 553–561. https://doi.org/10.1021/acssensors.7b00051
91. Vanegas, D.C., Patiño, L., Mendez, C., de Oliveira, D.A., Torres, A.M., Gomes, C.L. et al. (2018). Laser scribed graphene biosensor for detection of biogenic amines in food samples using locally sourced materials. Biosensors, 8(2), Article 42. https://doi.org/10.3390/bios8020042
92. Aparicio-Martínez, E., Ibarra, A., Estrada-Moreno, I.A., Osuna, V., Dominguez, R.B. (2019). Flexible electrochemical sensor based on laser scribed Graphene/Ag nanoparticles for non-enzymatic hydrogen peroxide detection. Sensors and Actuators B: Chemical, 301, Article 127101. https://doi.org/10.1016/j.snb.2019.127101
93. Escobedo, P., Erenas, M.M., Lopez-Ruiz, N., Carvajal, M.A., Gonzalez-Chocano, S., de Orbe-Payá, I. et al. (2017). Flexible passive near field communication tag for multigas sensing. Analytical Chemistry, 89(3), 1697–1703. https://doi.org/10.1021/acs.analchem.6b03901
94. Vahidpour, F., Oberländer. J., Schöning, M.J. (2018). Flexible calorimetric gas sensors for detection of a broad concentration range of gaseous hydrogen peroxide: A step forward to online monitoring of food-package sterilization processes. Physica Status Solidi, 215(15), Article 1800044. https://doi.org/10.1002/pssa.201800044
95. Lahcen, A.A., Rauf, S., Beduk, T., Durmus, C., Aljedaibi, A., Timur, S. et al. (2020). Electrochemical sensors and biosensors using laser-derived graphene: A com‑ prehensive review. Biosensors and Bioelectronics, 168, Article 112565. https://doi.org/10.1016/j.bios.2020.112565
96. Geim, A.K. (2011). Random walk to graphene (Nobel Lecture). Angewandte Chemie International Edition, 50(31), 6966–6985. https://doi.org/10.1002/anie.201101174
97. Morales-Narváez, E., Baptista-Pires, L., Zamora-Gálvez, A., Merkoçi, A. (2017). Graphene-based biosensors: Going simple. Advanced Materials, 29(7), Article 1604905. https://doi.org/10.1002/adma.201604905
98. Huang, J.Y., Ding, F., Yakobson, B.I., Li, J. (2009). In situ observation of graphene sublimation and multi-layer edge reconstructions. Proceedings of the National Academy of Sciences, 106(25), 10103–10108. https://doi.org/10.1073/pnas.0905193106
99. Soares, R.R.A., Hjort, R.G., Pola, C.C., Parate, K., Reis, E.L., Soares, N.F.F. et al. (2020). Laser-induced graphene electrochemical immunosensors for rapid and label-free monitoring of Salmonella enterica in chicken broth. ACS Sensors, 5(7), 1900–1911. https://doi.org/10.1021/acssensors.9b02345
100. Tang, N., Zhou, C., Xu, L., Jiang, Y., Qu, H., Duan, X. (2019). A fully integrated wireless flexible ammonia sensor fabricated by soft nano-lithography. ACS Sensors, 4(3), 726–732. https://doi.org/10.1021/acssensors.8b01690
101. Alrammouz, R., Podlecki, J., Abboud, P., Sorli, B., Habchi, R. (2018). A review on flexible gas sensors: From materials to devices. Sensors and Actuators A: Physical, 284, 209–231. https://doi.org/10.1016/j.sna.2018.10.036
102. Lin, L., Hu, Y., Xu, C., Zhang, Y., Zhang, R., Wen, X. et al. (2013). Transparent flexible nanogenerator as self-powered sensor for transportation monitoring. Nano Energy, 2(1), 75–81. https://doi.org/10.1016/j.nanoen.2012.07.019
103. Liaw, D.J., Hsu, P.N., Chen, W.H., Lin, S.-L. (2002). High glass transitions of new polyamides, polyimides, and poly (amide– imide) s containing a triphenylamine group: Synthesis and characterization. Macromolecules, 35(12), 4669–4676. https://doi.org/10.1021/ma001523u
104. Polyethylene terephthalate (Polyester, PET, PETP) — Film- Material information. Retrieved from http://www.goodfellow.com. Accessed April 20, 2023
105. Polyesters (Thermoplastic) PETP, PBT, PET. Retrieved from http://www.bpf.co.uk/plastipedia/polymers/Polyesters.aspx. Accessed April 20, 2023
106. Schneider, F., Fellner, T., Wilde, J., Wallrabe, U. (2008). Mechanical properties of silicones for MEMS. Journal of Micromechanics and Microengineering, 18(6), Article 065008. https://doi.org/10.1088/0960-1317/18/6/065008
107. Hu, S., Ren, X., Bachman, M., Sims, C.E., Li, G.P., Allbritton, N. (2002). Surface modification of poly (dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting. Analytical Chemistry, 74(16), 4117–4123. https://doi.org/10.1021/ac025700w
108. Oishi, Y., Nakaya. M., Matsui, E., Hotta, A. (2015). Structural and mechanical properties of cellulose composites made of isolated cellulose nanofibers and poly (vinyl alcohol). Composites Part A: Applied Science and Manufacturing, 73, 72–79. https://doi.org/10.1016/j.compositesa.2015.02.026
109. Tai, H., Duan, Z., Wang, Y., Wang, S., Jiang, Y. (2020). Paper-based sensors for gas, humidity, and strain detections: A review. ACS Applied Materials and Interfaces, 12(28), 31037–31053. https://doi.org/10.1021/acsami.0c06435
110. Güder, F., Ainla, A., Redston, J., Mosadegh, B., Glavan, A., Martin, T.J. et al. (2019). Paper-based electrical respiration sensor. Angewandte Chemie International Edition, 55(19), 5727–5732. https://doi.org/10.1002/anie.201511805
111. Jiang, Y., Zhu, N. (2020). Flexible and printed electronics for smart clothes. Chapter in a book: Flexible and Wearable Electronics for Smart Clothing. Wiley-VCH Verlag GmbH and Co. KGaA, 2020. https://doi.org/10.1002/9783527818556.ch11
112. Zeng, Y., Li, Q., Wang, W., Wen, Y., Ji, K., Liu, X. et al. (2022). The fabrication of a flexible and portable sensor based on home-made laser-induced porous graphene electrode for the rapid detection of sulfonamides. Microchemical Journal, 182, Article 107898. https://doi.org/10.1016/j.microc.2022.107898
113. Chen, Q., Liu, D., Lin, L., Wu, J. (2019). Bridging interdigitated electrodes by electrochemical-assisted deposition of graphene oxide for constructing flexible gas sensor. Sensors and Actuators B: Chemical, 286, 591–599. https://doi.org/10.1016/j.snb.2019.02.024
114. Xu, G., Li, X., Cheng, C., Yang, J., Liu, Z., Shi, Z. et al. (2020). Fully integrated battery-free and flexible electrochemical tag for on-demand wireless in situ monitoring of heavy metals. Sensors and Actuators B: Chemical, 310, Article 127809. https://doi.org/10.1016/j.snb.2020.127809
115. Zhu, X., Lin, L., Wu, R., Zhu, Y., Sheng, Y., Nie, P. et al. (2021). Portable wireless intelligent sensing of ultra-trace phytoregulator α-naphthalene acetic acid using self-assembled phosphorene/Ti3C2-MXene nanohybrid with high ambient stability on laser induced porous graphene as nanozyme flexible electrode. Biosensors and Bioelectronics, 179, Article 113062. https://doi.org/10.1016/j.bios.2021.113062
116. Shahrbabaki, Z., Farajikhah, S., Ghasemian, M.B., Oveissi, F., Rath, R.J., Yun, J. et al. (2023). A flexible and polymer-based chemiresistive CO2 gas sensor at room temperature. Advanced Materials Technologies, 8(10), Article 2201510. https://doi.org/10.1002/admt.202201510
117. Yan, H., Zhao, G., Lu, W., Hu, C., Wang, X., Liu, G. et al. (2023). A flexible and wearable paper-based chemiresistive sensor modified with SWCNTs-PdNPspolystyrene microspheres composite for the sensitive detection of ethylene gas: A new method for the determination of fruit ripeness and corruption. Analytica Chimica Acta, 1239, Article 340724. https://doi.org/10.1016/j.aca.2022.340724
118. Rim, Y.S., Bae, S.H., Chen, H., De Marco, N., Yang, Y. (2016). Recent progress in materials and devices toward printable and flexible sensors. Advanced Materials, 28(22), 4415–4440. https://doi.org/10.1002/adma.201505118
119. Sinar, D., Knopf, G.K. (2014, 18–21 August). Printed graphene interdigitated capacitive sensors on flexible polyimide substrates. Proceedings of the 14th IEEE International Conference on Nanotechnology, Toronto, ON, Canada. IEEE, 538–542. https://doi.org/10.1109/NANO.2014.6968041
120. Zhang, Y., Xiao, J., Sun, Y., Wang, L., Dong, X., Ren, J. et al. (2018). Flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen doped carbon nanotube arrays: In situ electrochemical detection in live cancer cells. Biosensors and Bioelectronics, 100, 453–461. https://doi.org/10.1016/j.bios.2017.09.038
121. Llobet, E. (2013). Gas sensors using carbon nanomaterials: A review.Sensors and Actuators B: Chemical, 179, 32–45. https://doi.org/10.1016/j.snb.2012.11.014
122. Cosnier, S., Karyakin, A. (2011). Electropolymerization: Concepts, materials and applications. New Jersey: John Wiley & Sons, 2011.
123. Kurra, N., Jiang, Q., Nayak, P., Alshareef, H.N. (2019). Laser-derived graphene: A three-dimensional printed graphene electrode and its emerging applications. Nano Today, 24, 81–102. http://doi.org/10.1016/j.nantod.2018.12.003
124. Strong, V., Dubin, S., El-Kady, M.F., Lech, A., Wang, Y., Weiller, B.H. et al. (2012). Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices. ACS Nano, 6(2), 1395–1403. https://doi.org/10.1021/nn204200w
125. Griffiths, K., Dale, C., Hedley, J., Kowal, M.D., Kanerc, R.B., Keegan, N. (2014). Laser-scribed graphene presents an opportunity to print a new generation of disposable electrochemical sensors. Nanoscale, 6(22), 13613–13622. https://doi.org/10.1039/c4nr04221b
126. Shi, H., Liu, C., Jiang, Q., Xu, J. (2015). Effective approaches to improve the electrical conductivity of PEDOT: PSS: A review. Advanced Electronic Materials, 1(4), Article 1500017. https://doi.org/10.1002/aelm.201500017
127. Lang, U., Müller, E., Naujoks, N., Dual, J. (2009). Microscopical investigations of PEDOT: PSS thin films. Advanced Functional Materials, 19(8), 1215–1220. https://doi.org/10.1002/adfm.200801258
128. Fan, Z., Ouyang, J. (2019). Thermoelectric properties of PEDOT: PSS. Advanced Electronic Materials, 5(11), Article 1800769. https://doi.org/10.1002/aelm.201800769
129. Jariwala, D., Sangwan, V.K., Lauhon, L.J., Marksab, T.J., Hersam, M.C. (2013). Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chemical Society Reviews, 42(7), 2824–2860. https://doi.org/10.1039/c2cs35335k
130. Wang, F., Liu, S., Shu, L., Tao, X.-M. (2017). Low-dimensional carbon based sensors and sensing network for wearable health and environmental monitoring. Carbon, 121, 353–367. https://doi.org/10.1016/j.carbon.2017.06.006
131. Iijima, S., Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature, 363(6430), 603–605. https://doi.org/10.1038/363603a0
132. Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K. et al. (2000). Nanotube molecular wires as chemical sensors. Science, 287(5453), 622–625. https://doi.org/10.1126/science.287.5453.622
133. Nguyen, H.Q., Huh, J.S. (2006). Behavior of single-walled carbon nanotube-based gas sensors at various temperatures of treatment and operation. Sensors and Actuators B: Chemical, 117(2), 426–430. https://doi.org/10.1016/j.snb.2005.11.056
134. Peng, S., Cho, K., Qi, P., Dai, H. (2004). Ab initio study of CNT NO2 gas sensor. Chemical Physics Letters, 387(4–6), 271–276. https://doi.org/10.1016/j.cplett.2004.02.026
135. Zhao, J., Buldum, A., Han, J., Lu, J.P. (2002). Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology, 13(2), Article 195. https://doi.org/10.1088/0957-4484/13/2/312
136. Samarasekara, P. (2009). Hydrogen and methane gas sensors synthesis of multi-walled carbon nanotubes. Chinese Journal of Physics, 47(3), 361–369.
137. Geim, A.K., Novoselov, K.S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191. https://doi.org/10.1038/nmat1849
138. Huo, P., Zhao, P., Wang, Y., Yin, G., Dong, M. A. (2018). A roadmap for achieving sustainable energy conversion and storage: Graphene-based composites used both as an electrocatalyst for oxygen reduction reactions and an electrode material for a supercapacitor. Energies, 11(1), Article 167. https://doi.org/10.3390/en11010167
139. Novoselov, K.S., Fal′ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim K. (2012). A roadmap for graphene. Nature, 490(7419), 192–200. https://doi.org/10.1038/nature11458
140. Neto, A.H.C., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81(1), Article 109. https://doi.org/10.1103/RevModPhys.81.109
141. He, Q., Wu, S., Yin, Z., Zhang, H. (2012). Graphene-based electronic sensors. Chemical Science, 3(6), 1764–1772. https://doi.org/10.1039/C2SC20205K
142. Yuan, W., Shi, G. (2013). Graphene-based gas sensors. Journal of Materials Chemistry A, 1(35), 10078–10091. https://doi.org/10.1039/c3ta11774j
143. Yavari, F., Koratkar, N. (2012). Graphene-based chemical sensors. The Journal of Physical Chemistry Letters, 3(13), 1746–1753. https://doi.org/10.1021/jz300358t
144. Stine, R., Mulvaney, S.P., Robinson, J.T., Tamanaha, C.R., Sheehan, P.E. (2013). Fabrication, optimization, and use of graphene field effect sensors. Analytical Chemistry, 85(2), 509–521. https://doi.org/10.1021/ac303190w
145. Fang, Y., Wang, E. (2013). Electrochemical biosensors on platforms of graphene. Chemical Communications, 49(83), 9526–9539. https://doi.org/10.1039/c3cc44735a
146. Yu, X., Cheng, H., Zhang, M., Zhao, Y., Qu, L., Shi, G. (2017). Graphene-based smart materials. Nature Reviews Materials, 2(9), Article 17046. https://doi.org/10.1038/natrevmats.2017.46
147. Guo, Sh., Dong, Sh. (2011). Graphene and its derivative-based sensing materi als for analytical devices. Journal of Materials Chemistry, 21(46), 18503–18516. https://doi.org/10.1039/C1JM13228H
148. Wu, J., Pisula, W., Müllen, K. (2007). Graphenes as potential material for electronics. Chemical Reviews, 107(3), 718–747. https://doi.org/10.1021/cr068010r
149. Choi, W., Lahiri, I., Seelaboyina, R., Kang, Y.S. (2010). Synthesis of graphene and its applications: A review. Critical Reviews in Solid State and Materials Sciences, 35(1), 52–71. https://doi.org/10.1080/10408430903505036
150. Pumera, M., Ambrosi, A., Bonanni, A., Chng, E.L.K., Poh, H.L. (2010). Graphene for electrochemical sensing and biosensing. TrAC Trends in Analytical Chemistry, 29(9), 954–965. https://doi.org/10.1016/j.trac.2010.05.011
151. Jang, H., Park, Y.J., Chen. X., Das, T., Kim, M.-S., Ahn, J.-H. (2016). Graphenebased flexible and stretchable electronics. Advanced Materials, 28(22), 4184–4202. https://doi.org/10.1002/adma.201504245
152. Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C. et al. (2006). Electronic confinement and coherence in patterned epitaxial graphene. Science, 312(5777), 1191–1196. https://doi.org/10.1126/science.1125925
153. Emtsev, K.V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G.L., Ley, L. et al. (2009). Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Materials, 8(3), 203–207. https://doi.org/10.1038/nmat2382
154. Geim, A.K. (2009). Graphene: status and prospects. Science, 324(5934), 1530–1534. https://doi.org/10.1126/science.1158877
155. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., et al. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666–669. https://doi.org/10.1126/science.1102896
156. Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D. et al. (2009). Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324(5932), 1312–1314. https://doi.org/10.1126/science.1171245
157. Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V. et al. (2009). Layer area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 9(8), 3087–3087. https://doi.org/10.1021/nl901829a
158. Pumera, M. (2013). Electrochemistry of graphene, graphene oxide and other graphenoids: Review. Electrochemistry Communications, 36, 14–18. https://doi.org/10.1016/j.elecom.2013.08.028
159. Yuan, W., Zhou, Y., Li, Y., Li, C., Peng, H., Zhang, J. et al. (2013). The edge-and basal-plane-specific electrochemistry of a single-layer graphene sheet. Scientific Reports, 3(1), Article 2248. https://doi.org/10.1038/srep02248
160. Nezakati, T., Seifalian, A., Tan, A., Seifalian, A.M. (2018). Conductive polymers: Opportunities and challenges in biomedical applications. Chemical Reviews, 118(14), 6766–6843. https://doi.org/10.1021/acs.chemrev.6b00275
161. Hodgson, A.J., Gilmore, K., Small, C., Wallace, G.G., Mackenzie, I.L., Aoki, T. et al. (1994). Reactive supramolecular assemblies of mucopolysaccharide, polypyrrole and protein as controllable biocomposites for a new generation of ‘intelligent biomaterials’. Supramolecular Science, 1(2), 77–83. https://doi.org/10.1016/0968-5677(94)90013-2
162. Gerard, M., Chaubey, A., Malhotra, B.D. (2002). Application of conducting polymers to biosensors. Biosensors and Bioelectronics, 17(5), 345–359. https://doi.org/10.1016/S0956-5663(01)00312-8
163. Park, A.R., Kim, J.S., Kim, K.S., Zhang, K., Park, J., Park, J.H. et al. (2014). Si–Mn/Reduced graphene oxide nanocomposite anodes with enhanced capacity and stability for lithium-ion batteries. ACS Applied Materials and Interfaces, 6(3), 1702–1708. https://doi.org/10.1021/am404608d
164. Green, R.A., Baek, S., Poole-Warren, L.A., Martens, P.J. (2010). Conducting polymerhydrogels for medical electrode applications. Science and Technology of Advanced Materials, 11(1), Article 014107. https://doi.org/10.1088/1468–6996/11/1/014107
165. Schopf, G., Kossmehl G. (1997). Polythiophenes-electrically conductive polymers. Berlin, Heidelberg: Springer Berlin Heidelberg. 1997.
166. Leclerc, M., Faid, K. (1997). Electrical and optical properties of processable polythiophene derivatives: Structure-property relationships. Advanced Materials, 9(14), 1087–1094. https://doi.org/10.1002/adma.19970091404
167. Yamamoto, T., Sanechika, K., Yamamoto, A. (1980). Preparation of thermostable and electric-conducting poly (2, 5-thienylene). Journal of Polymer Science: Polymer Letters Edition, 18(1), 9–12. https://doi.org/10.1002/pol.1980.130180103
168. Groenendaal, L., Jonas, F., Freitag, D., Pielartzik, H., Reynolds, J.R. (2000). Poly (3, 4-ethylenedioxythiophene) and its derivatives: Past, present, and future. Advanced Materials, 12(7), 481–494. https://doi.org/10.1002/(SICI)1521-4095(200004)12:7<481:: AID-ADMA481>3.0.CO;2-C
169. Dietrich, M., Heinze, J., Heywang, G., Jonas, F. (1994). Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes. Journal of Electroanalytical Chemistry, 369(1–2), 87–92. https://doi.org/10.1016/0022-0728(94)87085-3
170. Pei, Q., Zuccarello, G., Ahlskog, M., Inganäs, O. (1994). Electrochromic and highly stable poly (3, 4-ethylenedioxythiophene) switches between opaque blue-black and transparent sky blue. Polymer, 35(7), 1347–1351. https://doi.org/10.1016/0032-3861(94)90332-8
171. Karagkiozaki, V., Karagiannidis, P.G., Gioti, M., Kavatzikidou, P., Georgiou, D., Georgaraki, E. et al. (2013). Bioelectronics meets nanomedicine for cardiovascular implants: PEDOT-based nanocoatings for tissue regeneration. Biochimica et Biophysica Acta (BBA)General Subjects, 1830(9), 4294–4304. https://doi.org/10.1016/j.bbagen.2012.12.019
172. Lu, Y., Biswas, M.C., Guo, Z., Jeon, J.-W., Wujcik, E.K. (2019). Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors. Biosensors and Bioelectronics, 123, 167–177. https://doi.org/10.1016/j.bios.2018.08.037
173. Vuorinen, T., Niittynen, J., Kankkunen, T., Kraft, T.M., Mäntysalo, M. (2016). Inkjet-printed graphene/PEDOT: PSS temperature sensors on a skin-conformable polyurethane substrate. Scientific Reports, 6(1), Article 35289. https://doi.org/10.1038/srep35289
174. Zhang, Y., Cui, Y. (2019). Development of flexible and wearable temperature sensors based on PEDOT: PSS. IEEE Transactions on Electron Devices, 66(7), 3129–3133. https://doi.org/10.1109/TED.2019.2914301
175. Zhang, R., Xu, X., Fan, X., Yang, R., Wu, T., Zhang, C. (2018). Application of conducting micelles self-assembled from commercial poly (3, 4-ethylenedioxythiophene): Poly (styrene sulfonate) and chitosan for electrochemical biosensor. Colloid and Polymer Science, 296, 495–502. https://doi.org/10.1007/s00396-018-4270-6
176. Mercante, L.A., Facure, M.H.M., Sanfelice, R.C., Migliorini, F.L., Mattoso, L.H.C., Correa, D.S. (2017). One-pot preparation of PEDOT: PSS-reduced graphene decorated with Au nanoparticles for enzymatic electrochemical sensing of H2O2. Applied Surface Science, 407, 162–170. https://doi.org/10.1016/j.apsusc.2017.02.156
177. Lopes, G.R., Pinto, D.C.G.A., Silva, A.M.S. (2014). Horseradish peroxidase (HRP) as a tool in green chemistry. RSC Advances, 4(70), 37244–37265. https://doi.org/10.1039/C4RA06094F
178. Słoniewska, A., Kasztelan, M., Berbeć, S., Pałys, B. (2020). Influence of buffer solution on structure and electrochemical properties of poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) hydrogels. Synthetic Metals, 263, Article 116363. https://doi.org/10.1016/j.synthmet.2020.116363
179. Mochizuki, Y., Horii, T., Okuzaki, H. (2012). Effect of pH on structure and conductivity of PEDOT/PSS. Transactions of the Materials Research Society of Japan, 37(2), 307–310. https://doi.org/10.14723/tmrsj.37.307
180. Borges, M. H. R., Nagay, B. E., Costa, R. C., Souza, J.G.S., Mathew, M.T., Barão, V.A.R. (2023). Recent advances of polypyrrole conducting polymer film for biomedical application: Toward a viable platform for cell-microbial interactions. Advances in Colloid and Interface Science, 134, Article 102860. https://doi.org/10.1016/j.cis.2023.102860
181. Lei, J., Martin, Ch. R. (1995). Investigations of the chemical interactions between molecular oxygen and pristine (undoped) polypyrrole. Chemistry of Materials, 7(3), 578–584. https://doi.org/10.1021/cm00051a020
182. Li, X.-G., Huang, M.-R., Duan, W., Yang, Y.-L. (2002). Novel multifunctional polymers from aromatic diamines by oxidative polymerizations. Chemical Reviews, 102(9), 2925–3030. https://doi.org/10.1021/cr010423z
183. Wang, L.-X., Li, X.-G., Yang, Y.-L. (2001). Preparation, properties and applications of polypyrroles. Reactive and Functional Polymers, 47(2), 125–139. https://doi.org/10.1016/S1381-5148(00)00079-1
184. Guimard, N.K., Gomez, N., Schmidt, Ch.E. (2007). Conducting polymers in biomedical engineering. Progress in Polymer Science, 32(8–9), 876–921. https://doi.org/10.1016/j.progpolymsci.2007.05.012
185. Garlof, S., Mecklenburg, M., Smazna, D., Mishra, Y.K., Adelung, R., Schulte, K. et al. (2017). 3D carbon networks and their polymer composites: Fabrication and electromechanical investigations of neat Aerographite and Aerographite-based PNCs under compressive load. Carbon, 111, 103–112. https://doi.org/10.1016/j.carbon.2016.09.046
186. Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39(1), 228–240. https://doi.org/10.1039/b917103g
187. Bajaj, B., Joh, H.I., Jo, S.M., Park, J.H., Yi, K.B., Lee, S. (2018). Enhanced reactive H 2S adsorption using carbon nanofibers supported with Cu/CuxO nanoparticles. Applied Surface Science, 429, 253–257. https://doi.org/10.1016/j.apsusc.2017.06.280
188. Liang, X., Kim, T.H., Yoon, J.W., Kwak, C.-H., Lee, J.-H. (2015). Ultrasensitive and ultraselective detection of H 2S using electrospun CuO-loaded In2O3 nanofiber sensors assisted by pulse heating. Sensors and Actuators B: Chemical, 209, 934–942. https://doi.org/10.1016/j.snb.2014.11.130
189. Lakard, B., Carquigny, S., Segut, O., Patois, T., Lakard, S. (2015). Gas sensors based on electrodeposited polymers. Metals, 5(3), 1371–1386. https://doi.org/10.3390/met5031371
190. Chu, J., Wang, X., Wang, D., Yang, A., Lva, P., Wu, Y. et al. (2018). Highly selective detection of sulfur hexafluoride decomposition components H2S and SOF2 employing sensors based on tin oxide modified reduced graphene oxide. Carbon, 135, 95–103. https://doi.org/10.1016/j.carbon.2018.04.037
191. Tabish, M., Malik, M.U., Khan, M.A., Yasin, G., Asif, H.M., Anjumet, M.J. et al. (2021). Construction of NiCo/graphene nanocomposite coating with bulgeslike morphology for enhanced mechanical properties and corrosion resistance performance. Journal of Alloys and Compounds, 867, Article 159138. https://doi.org/10.1016/j.jallcom.2021.159138
192. Nadeem, M., Yasin, G., Arif, M., Tabassum, H., Bhatti, M.H., Mehmood, M. et al. (2021). Highly active sites of Pt/Er dispersed N-doped hierarchical porous carbon for trifunctional electrocatalyst. Chemical Engineering Journal, 409, Article 128205. https://doi.org/10.1016/j.cej.2020.128205
193. Yasin, G., Arif, M., Mehtab, T., Shakeel, M., Mushtaq, M.A., Kuma, A. et al. (2020). A novel strategy for the synthesis of hard carbon spheres encapsulated with graphene networks as a low-cost and large-scalable anode material for fast sodium storage with an ultralong cycle life. Inorganic Chemistry Frontiers, 7(2), 402–410. https://doi.org/10.1039/C9QI01105F
194. Ibraheem, S., Chen, S., Peng, L., Li, J., Li, L., Liao, Q. et al. (2020). Strongly coupled iron selenides-nitrogen-bond as an electronic transport bridge for enhanced synergistic oxygen electrocatalysis in rechargeable zinc-O2 batteries. Applied Catalysis B: Environmental, 265, Article 118569. https://doi.org/10.1016/j.apcatb.2019.118569
195. Nadeem, M., Yasin, G., Arif, M, Bhatt, i M.H., Sayin, K., Mehmood, M. et al. (2020). Pt-Ni@ PC900 hybrid derived from layered-structure Cd-MOF for fuel cell ORR activity. ACS Omega, 5(5), 2123–2132. https://doi.org/10.1021/acsomega.9b02741
196. Hangarter, C.M., Chartuprayoon, N., Hernández, S.C., Choa, Y., Myung, N.V. (2013). Hybridized conducting polymer chemiresistive nano-sensors. Nano Today, 8(1), 39–55. https://doi.org/10.1016/j.nantod.2012.12.005
197. Miller, D.R., Akbar, S.A., Morris, P.A. (2014). Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sensors and Actuators B: Chemical, 204, 250–272. https://doi.org/10.1016/j.snb.2014.07.074
198. Zheng, W., Zhang, P., Chen, J., Tian, W.B., Zhangb, Y.M., Sun, Z.M. (2018). In situ synthesis of CNTs@ Ti3C2 hybrid structures by microwave irradiation for high-performance anodes in lithium ion batteries. Journal of Materials Chemistry A, 6(8), 3543–3551. https://doi.org/10.1039/C7TA10394H
199. Guo, X., Zhang, W., Zhang, J., Zhou, D., Tang, X., Xu, X. et al. (2020). Boosting sodium storage in two-dimensional phosphorene/Ti3C2Tx MXene nanoarchitectures with stable fluorinated interphase. ACS Nano, 14(3), 3651–3659. https://doi.org/10.1021/acsnano.0c00177
200. Bard, A.J., Faulkner, L.R., White, H.S. (2022). Electrochemical methods: fundamentals and applications. New York, Chichester, Weinheim, Brisbane, Singapore, Toronto: John Wiley & Sons, 2022.
201. Banica, F.-G. (2012). Chemical sensors and biosensors: Fundamentals and applications. New Jersey: John Wiley & Sons. 2012.
202. McEvoy, M.A., Correll, N. (2015). Materials that couple sensing, actuation, computation, and communication. Science, 347(6228), Article 1261689. https://doi.org/10.1126/science.1261689
203. Paolesse, R., Nardis, S., Monti, D., Stefanelli, M., Natale, C.D. (2017). Porphyrinoids for chemical sensor applications. Chemical Reviews, 117(4), 2517–2583. https://doi.org/10.1021/acs.chemrev.6b00361
204. Watson, J., Ihokura, K. (1999). Gas-sensing materials. MRS Bulletin, 24(6), 14–17. https://doi.org/10.1557/S0883769400052453
205. Poghossian, A., Lüth, H., Schultze, J.W., Schöning, M.J. (2001). (Bio-) chemical and physical microsensor arrays using an identical transducer principle. Electrochimica Acta, 47(1–2), 243–249. https://doi.org/10.1016/S0013-4686(01)00562-X
206. Pirondini, L., Dalcanale, E. (2007). Molecular recognition at the gas–solid interface: A powerful tool for chemical sensing. Chemical Society Reviews, 36(5), 695–706. https://doi.org/10.1039/b516256b
207. Ariga, K., Hill, J.P., Endo, H. (2007). Developments in molecular recognition and sensing at interfaces. International Journal of Molecular Sciences, 8(8), 864–883. https://doi.org/10.3390/i8080864
208. Mu, B., Zhang, J., McNicholas, T.P., Reuel, N.F., Kruss, S., Strano, M.S. (2014). Recent advances in molecular recognition based on nanoengineered platforms. Accounts of Chemical Research, 47(4), 979–988. https://doi.org/10.1021/ar400162w
Review
For citations:
Luo D., Nikitina M.A., Xiao X. Flexible sensors for food monitoring. Part I: Principle. Food systems. 2023;6(4):519-530. https://doi.org/10.21323/2618-9771-2023-6-4-519-530