Preview

Пищевые системы

Расширенный поиск

Микроводоросли и насекомые как альтернативные источники белка: преимущества и риски

https://doi.org/10.21323/2618-9771-2023-6-4-497-503

Аннотация

Продукты животного происхождения традиционно считаются основными источниками белка, однако ввиду увеличения населения планеты и загрязнения окружающей среды возникает необходимость поиска новых решений для удовлетворения базовой потребности человека в питании. Альтернативой могут стать насекомые и микроводоросли — группы организмов, которые по своим питательным свойствам и химическому составу не уступают продуктам животного происхождения. Они способны оказывать благоприятное воздействие на организм человека за счет высокого содержания витаминов, полиненасыщенных жирных кислот и антиоксидантов. Введение съедобных насекомых или микроводорослей в рацион питания человека имеет множество преимуществ и для окружающей среды, включая сокращение общего объема парниковых газов, снижение потребления земельных ресурсов и воды. В настоящем обзоре рассмотрен химический состав микроводорослей и некоторых видов насекомых, отмечено влияние компонентов сырья на здоровье человека, описаны сопутствующие биологически активные соединения, а также основные технологии культивирования и примеры коммерческого использования. В России ввиду климатических особенностей возможно только сезонное выращивание микроводорослей в открытых бассейнах. Фитобиореакторы для круглогодичной работы требуют значительных финансовых вложений, особенно на дополнительное освещение и обогрев. Микроводоросли в России не пользуются большой популярностью, преимущественно применяются в составе биологически активных добавок. Съедобные насекомые могут быть выращены с использованием вторичных ресурсов и требуют меньших первоначальных вложений. На сегодняшний день они рассматриваются учеными в качестве источника белка для сельскохозяйственных животных.

Об авторах

Г. И. Сутула
Всероссийский научно-исследовательский институт пищевых добавок
Россия

Сутула Глеб Игоревич — младший научный  сотрудник, лаборатория промышленных  биотехнологических инноваций

191014, Санкт-Петербург, Литейный проспект, 55 Тел.: +7–812–273–75–24



Д. С. Рябухин
Всероссийский научно-исследовательский институт пищевых добавок
Россия

Рябухин Дмитрий Сергеевич — кандидат химический наук, заведующий лабораторией промышленных биотехнологических инноваций

191014, Санкт-Петербург, Литейный проспект, 55 Тел.: +7–812–273–75–24



Список литературы

1. United Nations (2022). Revision of world population prospects. Retrieved from https://esa.un.org/unpd/wpp/publications/files/keyfindingswpp2015.pdf. Accessed June 2, 2023.

2. Alexandratos, N., Bruinsma, J. (2012). World Agriculture towards 2030/2050: the 2012 revision. Working paper No. 12–03. Rome, FAO, 2012.

3. Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J. et al (2013). Tackling climate change through livestock — A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome, 2013.

4. Beusen, A. H. W., Bouwman, A. F., Heuberger, P. S. C., Van Drecht, G., Van Der Hoek, K. W. (2008). Bottom-up uncertainty estimates of global ammonia emissions from global agricultural production systems. Atmospheric Environment, 42(24), 6067–6077. https://doi.org/10.1016/J.ATMOSENV.2008.03.044

5. Eisler, M. C., Lee, M. R. F., Tarlton, J. F., Martin, G. B., Beddington, J., Dungait, J. A. J. et al. (2014). Agriculture: Steps to sustainable livestock. Nature, 507(7490), 32–34. https://doi.org/10.1038/507032a

6. Hedenus, F., Wirsenius, S., Johansson, D. J. A. (2014). The importance of reduced meat and dairy consumption for meeting stringent climate change targets. Climatic Change, 124 (1–2), 79–91. https://doi.org/10.1007/s10584-014-1104-5

7. Dittami, S. M., Heesch, S., Olsen, J. L., Collén, J. (2017). Transitions between marine and freshwater environments provide new clues about the origins of multicellular plants and algae. Journal of Phycology, 53(4), 731–745. https://doi.org/10.1111/jpy.12547

8. Gouveia, L., Raymundo, A., Batista, A. P., Sousa, I., Empis, J. (2006). Chlorella vulgaris and Haematococcus pluvialis biomass as colouring and antioxidant in food emulsions. European Food Research and Technology, 222(3–4), 362–367. https://doi.org/10.1007/s00217-005-0105-z

9. Nagappan, S., Das, P., AbdulQuadir, M., Thaher, M., Khan, S., Mahata, C. et al. (2021). Potential of microalgae as a sustainable feed ingredient for aquaculture. Journal of Biotechnology, 341, 1–20. https://doi.org/10.1016/j.jbiotec.2021.09.003

10. Zhuang, D., He, N., Khoo, K. S., Ng, E.-P., Chew, K. W., Ling, T. C. (2022). Application progress of bioactive compounds in microalgae on pharmaceutical and cosmetics. Chemosphere, 291, Article 132932. https://doi.org/10.1016/j.chemosphere.2021.132932

11. Yin, Z., Zhu, L., Li, S., Hu, T., Chu, R., Mo, F. et al. (2020). A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: Environmental pollution control and future directions. Bioresource Technology, 301, Article 122804. https://doi.org/10.1016/j.biortech.2020.122804

12. Mutum, L., Janda, T., Ördög, V., Molnár, Z. (2022). Biologia Futura: potential of different forms of microalgae for soil improvement. Biologia Futura, 73(1), 1–8. https://doi.org/10.1007/s42977-021-00103-2

13. Gellenbeck, K. W. (2012). Utilization of algal materials for nutraceutical and cosmeceutical applications — what do manufacturers need to know? Journal of Applied Phycology, 24(3), 309–313. https://doi.org/10.1007/s10811-011-9722-z

14. FAO (2021). Global seaweeds and microalgae production, 1950–2019 WAPI factsheet to facilitate evidence-based policy-making and sector management in aquaculture. Retrieved from https://www.fao.org/3/cb4579en/cb4579en.pdf. Accessed June 10, 2023.

15. Enzing, C., Ploeg, M., Barbosa, M., Sijtsma, L. (2014). Microalgae-based products for the food and feed sector: An outlook for Europe. Luxembourg (Luxembourg): Publications Office of the European Union; 2014. https://doi.org/10.2791/3339

16. Günerken, E., D’Hondt, E., Eppink, M. H. M., Garcia-Gonzalez, L., Elst, K., Wijffels, R. H. (2015). Cell disruption for microalgae biorefineries. Biotechnology Advances, 33 (2), 243–260. https://doi.org/10.1016/j.biotechadv.2015.01.008

17. Fernández, F. G. A., Reis, A., Wijffels, R. H., Barbosa, M., Verdelho, V., Llamas, B. (2021). The role of microalgae in the bioeconomy. New Biotechnology, 61, 99–107. https://doi.org/10.1016/j.nbt.2020.11.011

18. Andrade, L. M., Andrade, C. J., Dias, M., Nascimento, C. A. O., Mendes, M. A. (2018). Chlorella and Spirulina microalgae as sources of functional foods, nutraceuticals, and food supplements; an overview. MOJ Food Processing and Technology, 6(1), 45–58. https://doi.org/10.15406/mojfpt.2018.06.00144

19. Chisti, Yu. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001

20. Jacob-Lopes, E., Maroneze, M. M., Deprá, M. C., Sartori, R. B., Dias, R. R., Zepka, L. Q. (2019). Bioactive food compounds from microalgae: an innovative framework on industrial biorefineries. Current Opinion in Food Science, 25, 1–7. https://doi.org/10.1016/j.cofs.2018.12.003

21. McCann, J. C., Ames, B. N. (2005). Is docosahexaenoic acid, an n-3 long-chain polyunsaturated fatty acid, required for development of normal brain function? An overview of evidence from cognitive and behavioral tests in humans and animals. The American Journal of Clinical Nutrition, 82(2), 281–295. https://doi.org/10.1093/ajcn.82.2.281

22. Soares, A. T., Marques Júnior, J. G., Lopes, R. G., Derner, R. B., Antoniosi Filho, N. R. (2016). Improvement of the extraction process for high commercial value pigments from Desmodesmus sp. microalgae. Journal of the Brazilian Chemical Society, 27(6), 1083–1093. https://doi.org/10.5935/0103-5053.20160004

23. Mohammed, M. K., Mohd, M. K. (2011). Production of carotenoids (antioxidants/colourant) in Spirulina Platensis in response to indole acetic acid (IAA). International Journal of Engineering, Science and Technology, 3(6), 4973–4979.

24. Woodside, J. V., McGrath, A. J., Lyner, N., McKinley, M. C. (2015). Carotenoids and health in older people. Maturitas, 80(1), 63–68. https://doi.org/10.1016/j.maturitas.2014.10.012

25. Molino, A., Iovine, A., Casella, P., Mehariya, S., Chianese, S., Cerbone, A. et al. (2018). Microalgae Characterization for Consolidated and New Application in Human Food, Animal Feed and Nutraceuticals. International Journal of Environmental Research and Public Health, 15(11), Article 2436. https://doi.org/10.3390/ijerph15112436

26. Barzkar, N., Jahromi, S. T., Poorsaheli, H. B., Vianello, F. (2019). Metabolites from marine microorganisms, micro, and macroalgae: Immense scope for pharmacology. Marine Drugs, 17(8), Article 464. https://doi.org/10.3390/md17080464

27. Milledge, J. (2012). Microalgae — Commercial potential for fuel, food and feed. Food Science and Technology, 26(1), 26–28.

28. van Huis, A. (2017). Did early humans consume insects? Journal of Insects as Food and Feed, 3(3), 161–163. https://doi.org/10.3920/JIFF2017.x006

29. Liceaga, A. M. (2022). Edible insects, a valuable protein source from ancient to modern times. Chapter in a book: Advances in Food and Nutrition Research. Elsevier Academic Press Inc., London, UK; San Diego, CA, USA; Cambridge, MA, USA; Kidlington, Oxford, UK. https://doi.org/10.1016/bs.afnr.2022.04.002

30. National Nutrient Database for Standart reference: report 05062 Chiken. (2019). Retrieved from https://fdc.nal.usda.gov/fdc-app.html#/food-details/171077/nutrients. Accessed June 15, 2023.

31. National Nutrient Database for Standart Reference: Report 23572 Beef, Ground, 80% Lean Meat /20% Fat, Raw. (2023). Retrieved from https://fdc.nal.usda.gov/fdc-app.html#/food-details/2514744/nutrients. Accessed June 15, 2023.

32. Liceaga, A. M., Aguilar-Toalá, J. E., Vallejo-Cordoba, B., González-Córdova, A. F., Hernández-Mendoza, A. (2022). Insects as an alternative protein source. Annual Review of Food Science and Technology, 13(1), 19–34. https://doi.org/10.1146/annurev-food-052720-112443

33. Clarkson, C., Mirosa, M., Birch, J. (2018). Potential of extracted Locusta Migratoria protein fractions as value-added ingredients. Insects, 9(1), Article 20. https://doi.org/10.3390/insects9010020

34. Montowska, M., Kowalczewski, P. Ł., Rybicka, I., Fornal, E. (2019). Nutritional value, protein and peptide composition of edible cricket powders. Food Chemistry, 289, 130–138. https://doi.org/10.1016/j.foodchem.2019.03.062

35. Nsevolo Miankeba, P., Taofic, A., Kiatoko, N., Mutiaka, K., Francis, F., Caparros Megido, R. (2022). Protein xontent and amino acid profiles of selected edible insect species from the Democratic Republic of Congo relevant for transboundary trade across Africa. Insects, 13(11), Article 994. https://doi.org/10.3390/insects13110994

36. Liceaga, A. M. (2021). Processing insects for use in the food and feed industry. Current Opinion in Insect Science, 48, 32–36.https://doi.org/10.1016/j.cois.2021.08.002

37. Kim, T.-K., Cha, J. Y., Yong, H. I., Jang, H. W., Jung, S., Choi, Y.-S. (2022). Application of edible insects as novel protein sources and strategies for improving their processing. Food Science of Animal Resources, 42(3), 372–388. https://doi.org/10.5851/kosfa.2022.e10

38. Melgar-Lalanne, G., Hernández-Álvarez, A., Salinas-Castro, A. (2019). Edible insects processing: Traditional and innovative technologies. Comprehensive Reviews in Food Science and Food Safety, 18(4), 1166–1191. https://doi.org/10.1111/1541-4337.12463

39. Anankware, J. P., Roberts, B. J., Cheseto, X., Osuga, I., Savolainen, V., Collins, C. M. (2021). The nutritional profiles of five important edible insect species from West Africa — An analytical and literature synthesis. Frontiers in Nutrition, 8, Article 792941. https://doi.org/10.3389/fnut.2021.792941

40. Purschke, B., Stegmann, T., Schreiner, M., Jäger, H. (2017). Pilot-scale supercritical CO 2 extraction of edible insect oil from Tenebrio molitor L. larvae — Influence of extraction conditions on kinetics, defatting performance and compositional properties. European Journal of Lipid Science and Technology, 119(2), Article 1600134. https://doi.org/10.1002/ejlt.201600134

41. Tzompa-Sosa, D. A., Yi, L., van Valenberg, H. J. F., van Boekel, M. A. J. S., Lakemond, C. M. M. (2014). Insect lipid profile: aqueous versus organic solvent-based extraction methods. Food Research International, 62, 1087–1094. https://doi.org/10.1016/j.foodres.2014.05.052

42. Ghosh, S., Lee, S.-M., Jung, C., Meyer-Rochow, V. B. (2017). Nutritional composition of five commercial edible insects in South Korea. Journal of Asia­Pacific Entomology, 20 (2), 686–694. https://doi.org/10.1016/j.aspen.2017.04.003

43. Rumpold, B. A., Schlüter, O. K. (2013). Nutritional composition and safety aspects of edible insects. Molecular Nutrition and Food Research, 57(5), 802–823. https://doi.org/10.1002/mnfr.201200735

44. Wang, J., Wang, C., Zhao, M., He, Z., Sun, L., Feng, Y. (2019). Contents of mercury and selenium in common edible and medicinal insects in Yunnan and their correlation analysis. Journal of Yunnan Agricultural University (Natural Science), 34(6), 1033–1040. https://doi.org/10.12101/j.issn.1004-390X(n).201903014 (In Chinese)

45. He, Z., Sun, L., Wang, C. Y., Feng, Y., Zhao, M. (2021). Nutritional composition analysis and evaluation of the two-spotted cricket Gryllus bimaculatus (Orthoptera: Gryllidae). Biotic Resources, 3, 303–308. http://doi.org/10.14188/j.ajsh.2021.03.012 (In Chinese)

46. Lee, J. H., Kim, T.-K., Jeong, C. H., Yong, H. I., Cha, J. Y., Kim, B.-K. et al. (2021). Biological activity and processing technologies of edible insects: a review. Food Science and Biotechnology, 30(8), 1003–1023. https://doi.org/10.1007/s10068-021-00942-8

47. Dossey, A. T., Tatum, J. T., McGill, W. L. (2016). Modern Insect-Based Food Industry: Current Status, Insect Processing Technology, and Recommendations Moving Forward. Chapter in a book: Insects as Sustainable Food Ingredients. Elsevier Academic Press Inc., London, UK; San Diego, CA, USA; Cambridge, MA, USA; Kidlington, Oxford, UK, 2016. https://doi.org/10.1016/B978-0-12-802856-8.00005-3

48. Carcea, M. (2020). Quality and nutritional/textural properties of durum wheat pasta enriched with cricket powder. Foods, 9(9), Article 1298. https://doi.org/10.3390/foods9091298

49. Liceaga, A. M. (2019). Approaches for utilizing insect protein for human consumption: Effect of enzymatic hydrolysis on protein quality and functionality. Annals of the Entomological Society of America, 112(6), 529–532. https://doi.org/10.1093/aesa/saz010

50. Kröncke, N., Böschen, V., Woyzichovski, J., Demtröder, S., Benning, R. (2018). Comparison of suitable drying processes for mealworms (Tenebrio molitor). Innovative Food Science and Emerging Technologies, 50, 20–25. https://doi.org/10.1016/j.ifset.2018.10.009

51. Schlüter, O., Rumpold, B., Holzhauser, T., Roth, A., Vogel, R. F., Quasigroch, W. et al. (2017). Safety aspects of the production of foods and food ingredients from insects. Molecular Nutrition and Food Research, 61(6), Article 1600520. https://doi.org/10.1002/mnfr.201600520

52. Ruby, M. B., Rozin, P., Chan, C. (2015). Determinants of willingness to eat insects in the USA and India. Journal of Insects as Food and Feed, 1(3), 215–225. https://doi.org/10.3920/JIFF2015.0029

53. Baker, M. A., Shin, J. T., Kim, Y. W. (2016). An exploration and investigation of edible insect consumption: The impacts of image and description on risk perceptions and purchase intent. Psychology and Marketing, 33 (2), 94–112. https://doi.org/10.1002/mar.20847

54. Gmuer, A., Guth, J. N., Hartmann, C., Siegrist, M. (2016). Effects of the degree of processing of insect ingredients in snacks on expected emotional experiences and willingness to eat. Food Quality and Preference, 54, 117–127. https://doi.org/10.1016/j.foodqual.2016.07.003

55. Kitahara, Y., Nomura, H., Nishihara, N., Ueda, T., Watanabe, S., Saito, I. et al. (2022). Survey of arsenic/heavy metals and pesticide residues in edible insects for human consumption or supplied in Japan. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi), 63 (4), 136–140. https://doi.org/10.3358/shokueishi.63.136 (In Japanese)

56. Evans, N. M., Shao, S. (2022). Mycotoxin metabolism by edible insects. Toxins, 14(3), Article 217. https://doi.org/10.3390/toxins14030217

57. Kamemura, N., Sugimoto, M., Tamehiro, N., Adachi, R., Tomonari, S., Watanabe, T. et al. (2019). Cross-allergenicity of crustacean and the edible insect Gryllus bimaculatus in patients with shrimp allergy. Molecular Immunology, 106, 127–134. https://doi.org/10.1016/j.molimm.2018.12.015

58. Agbemafle, I., Hadzi, D., Amagloh, F. K., Zotor, F. B., Reddy, M. B. (2020). Nutritional, microbial, and sensory evaluation of complementary foods made from blends of orange-fleshed sweet potato and edible insects. Foods, 9(9), Article 1225. https://doi.org/10.3390/foods9091225

59. Klunder, H. C., Wolkers-Rooijackers, J., Korpela, J. M., Nout, M. J. R. (2012). Microbiological aspects of processing and storage of edible insects. Food Control, 26(2), 628–631. https://doi.org/10.1016/j.foodcont.2012.02.013

60. Nyangena, D. N., Mutungi, C., Imathiu, S., Kinyuru, J., Affognon, H., Ekesi, S. et al. (2020). Effects of traditional processing techniques on the nutritional and microbiological quality of four tdible insect species used for food and feed in East Africa. Foods, 9(5), Article 574. https://doi.org/10.3390/foods9050574


Рецензия

Для цитирования:


Сутула Г.И., Рябухин Д.С. Микроводоросли и насекомые как альтернативные источники белка: преимущества и риски. Пищевые системы. 2023;6(4):497-503. https://doi.org/10.21323/2618-9771-2023-6-4-497-503

For citation:


Sutula G.I., Ryabukhin D.S. Microalgae and insects as alternative protein sources: Benefits and risks. Food systems. 2023;6(4):497-503. (In Russ.) https://doi.org/10.21323/2618-9771-2023-6-4-497-503

Просмотров: 935


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)