Microalgae and insects as alternative protein sources: Benefits and risks
https://doi.org/10.21323/2618-9771-2023-6-4-497-503
Abstract
Animal products have traditionally been considered the main sources of protein, but due to the increasing population of the planet and environmental pollution, there is a need to find new solutions to meet basic human nutritional needs. An alternative can be insects and microalgae — groups of organisms that, in their nutritional properties and chemical composition, are not inferior to products of animal origin. They are able to have a beneficial effect on the human body due to their high content of vitamins, polyunsaturated fatty acids and antioxidants. Introducing edible insects or microalgae into the human diet has many environmental benefits, including reducing overall greenhouse gases and reducing land and water consumption. This review examines the chemical composition of microalgae and some types of insects, notes the influence of raw material components on human health, describes associated biologically active compounds, as well as basic cultivation technologies and examples of commercial use. In Russia, due to climatic conditions, only seasonal cultivation of microalgae in open pools is possible. Phytobioreactors for year-round operation require significant financial investments, especially for additional lighting and heating. Microalgae are not very popular in Russia; they are mainly used as part of dietary supplements. Edible insects can be grown using recycled resources and require less initial investment. Today they are considered by scientists as a source of protein for farm animals.
About the Authors
G. I. SutulaRussian Federation
Gleb I. Sutula, Junior Researcher, Laboratory of Industrial Biotechnological Innovations
55, Liteyny Prospekt, Saint Petersburg, 191014, Tel.: +7–812–273–75–24
D. S. Ryabukhin
Russian Federation
Dmitry S. Ryabukhin, Candidate of Chemical Sciences, Head of Laboratory of Industrial Biotechnological Innovations
55, Liteyny Prospekt, Saint Petersburg, 191014, Tel.: +7–812–273–75–24
References
1. United Nations (2022). Revision of world population prospects. Retrieved from https://esa.un.org/unpd/wpp/publications/files/keyfindingswpp2015.pdf. Accessed June 2, 2023.
2. Alexandratos, N., Bruinsma, J. (2012). World Agriculture towards 2030/2050: the 2012 revision. Working paper No. 12–03. Rome, FAO, 2012.
3. Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J. et al (2013). Tackling climate change through livestock — A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome, 2013.
4. Beusen, A. H. W., Bouwman, A. F., Heuberger, P. S. C., Van Drecht, G., Van Der Hoek, K. W. (2008). Bottom-up uncertainty estimates of global ammonia emissions from global agricultural production systems. Atmospheric Environment, 42(24), 6067–6077. https://doi.org/10.1016/J.ATMOSENV.2008.03.044
5. Eisler, M. C., Lee, M. R. F., Tarlton, J. F., Martin, G. B., Beddington, J., Dungait, J. A. J. et al. (2014). Agriculture: Steps to sustainable livestock. Nature, 507(7490), 32–34. https://doi.org/10.1038/507032a
6. Hedenus, F., Wirsenius, S., Johansson, D. J. A. (2014). The importance of reduced meat and dairy consumption for meeting stringent climate change targets. Climatic Change, 124 (1–2), 79–91. https://doi.org/10.1007/s10584-014-1104-5
7. Dittami, S. M., Heesch, S., Olsen, J. L., Collén, J. (2017). Transitions between marine and freshwater environments provide new clues about the origins of multicellular plants and algae. Journal of Phycology, 53(4), 731–745. https://doi.org/10.1111/jpy.12547
8. Gouveia, L., Raymundo, A., Batista, A. P., Sousa, I., Empis, J. (2006). Chlorella vulgaris and Haematococcus pluvialis biomass as colouring and antioxidant in food emulsions. European Food Research and Technology, 222(3–4), 362–367. https://doi.org/10.1007/s00217-005-0105-z
9. Nagappan, S., Das, P., AbdulQuadir, M., Thaher, M., Khan, S., Mahata, C. et al. (2021). Potential of microalgae as a sustainable feed ingredient for aquaculture. Journal of Biotechnology, 341, 1–20. https://doi.org/10.1016/j.jbiotec.2021.09.003
10. Zhuang, D., He, N., Khoo, K. S., Ng, E.-P., Chew, K. W., Ling, T. C. (2022). Application progress of bioactive compounds in microalgae on pharmaceutical and cosmetics. Chemosphere, 291, Article 132932. https://doi.org/10.1016/j.chemosphere.2021.132932
11. Yin, Z., Zhu, L., Li, S., Hu, T., Chu, R., Mo, F. et al. (2020). A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: Environmental pollution control and future directions. Bioresource Technology, 301, Article 122804. https://doi.org/10.1016/j.biortech.2020.122804
12. Mutum, L., Janda, T., Ördög, V., Molnár, Z. (2022). Biologia Futura: potential of different forms of microalgae for soil improvement. Biologia Futura, 73(1), 1–8. https://doi.org/10.1007/s42977-021-00103-2
13. Gellenbeck, K. W. (2012). Utilization of algal materials for nutraceutical and cosmeceutical applications — what do manufacturers need to know? Journal of Applied Phycology, 24(3), 309–313. https://doi.org/10.1007/s10811-011-9722-z
14. FAO (2021). Global seaweeds and microalgae production, 1950–2019 WAPI factsheet to facilitate evidence-based policy-making and sector management in aquaculture. Retrieved from https://www.fao.org/3/cb4579en/cb4579en.pdf. Accessed June 10, 2023.
15. Enzing, C., Ploeg, M., Barbosa, M., Sijtsma, L. (2014). Microalgae-based products for the food and feed sector: An outlook for Europe. Luxembourg (Luxembourg): Publications Office of the European Union; 2014. https://doi.org/10.2791/3339
16. Günerken, E., D’Hondt, E., Eppink, M. H. M., Garcia-Gonzalez, L., Elst, K., Wijffels, R. H. (2015). Cell disruption for microalgae biorefineries. Biotechnology Advances, 33 (2), 243–260. https://doi.org/10.1016/j.biotechadv.2015.01.008
17. Fernández, F. G. A., Reis, A., Wijffels, R. H., Barbosa, M., Verdelho, V., Llamas, B. (2021). The role of microalgae in the bioeconomy. New Biotechnology, 61, 99–107. https://doi.org/10.1016/j.nbt.2020.11.011
18. Andrade, L. M., Andrade, C. J., Dias, M., Nascimento, C. A. O., Mendes, M. A. (2018). Chlorella and Spirulina microalgae as sources of functional foods, nutraceuticals, and food supplements; an overview. MOJ Food Processing and Technology, 6(1), 45–58. https://doi.org/10.15406/mojfpt.2018.06.00144
19. Chisti, Yu. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001
20. Jacob-Lopes, E., Maroneze, M. M., Deprá, M. C., Sartori, R. B., Dias, R. R., Zepka, L. Q. (2019). Bioactive food compounds from microalgae: an innovative framework on industrial biorefineries. Current Opinion in Food Science, 25, 1–7. https://doi.org/10.1016/j.cofs.2018.12.003
21. McCann, J. C., Ames, B. N. (2005). Is docosahexaenoic acid, an n-3 long-chain polyunsaturated fatty acid, required for development of normal brain function? An overview of evidence from cognitive and behavioral tests in humans and animals. The American Journal of Clinical Nutrition, 82(2), 281–295. https://doi.org/10.1093/ajcn.82.2.281
22. Soares, A. T., Marques Júnior, J. G., Lopes, R. G., Derner, R. B., Antoniosi Filho, N. R. (2016). Improvement of the extraction process for high commercial value pigments from Desmodesmus sp. microalgae. Journal of the Brazilian Chemical Society, 27(6), 1083–1093. https://doi.org/10.5935/0103-5053.20160004
23. Mohammed, M. K., Mohd, M. K. (2011). Production of carotenoids (antioxidants/colourant) in Spirulina Platensis in response to indole acetic acid (IAA). International Journal of Engineering, Science and Technology, 3(6), 4973–4979.
24. Woodside, J. V., McGrath, A. J., Lyner, N., McKinley, M. C. (2015). Carotenoids and health in older people. Maturitas, 80(1), 63–68. https://doi.org/10.1016/j.maturitas.2014.10.012
25. Molino, A., Iovine, A., Casella, P., Mehariya, S., Chianese, S., Cerbone, A. et al. (2018). Microalgae Characterization for Consolidated and New Application in Human Food, Animal Feed and Nutraceuticals. International Journal of Environmental Research and Public Health, 15(11), Article 2436. https://doi.org/10.3390/ijerph15112436
26. Barzkar, N., Jahromi, S. T., Poorsaheli, H. B., Vianello, F. (2019). Metabolites from marine microorganisms, micro, and macroalgae: Immense scope for pharmacology. Marine Drugs, 17(8), Article 464. https://doi.org/10.3390/md17080464
27. Milledge, J. (2012). Microalgae — Commercial potential for fuel, food and feed. Food Science and Technology, 26(1), 26–28.
28. van Huis, A. (2017). Did early humans consume insects? Journal of Insects as Food and Feed, 3(3), 161–163. https://doi.org/10.3920/JIFF2017.x006
29. Liceaga, A. M. (2022). Edible insects, a valuable protein source from ancient to modern times. Chapter in a book: Advances in Food and Nutrition Research. Elsevier Academic Press Inc., London, UK; San Diego, CA, USA; Cambridge, MA, USA; Kidlington, Oxford, UK. https://doi.org/10.1016/bs.afnr.2022.04.002
30. National Nutrient Database for Standart reference: report 05062 Chiken. (2019). Retrieved from https://fdc.nal.usda.gov/fdc-app.html#/food-details/171077/nutrients. Accessed June 15, 2023.
31. National Nutrient Database for Standart Reference: Report 23572 Beef, Ground, 80% Lean Meat /20% Fat, Raw. (2023). Retrieved from https://fdc.nal.usda.gov/fdc-app.html#/food-details/2514744/nutrients. Accessed June 15, 2023.
32. Liceaga, A. M., Aguilar-Toalá, J. E., Vallejo-Cordoba, B., González-Córdova, A. F., Hernández-Mendoza, A. (2022). Insects as an alternative protein source. Annual Review of Food Science and Technology, 13(1), 19–34. https://doi.org/10.1146/annurev-food-052720-112443
33. Clarkson, C., Mirosa, M., Birch, J. (2018). Potential of extracted Locusta Migratoria protein fractions as value-added ingredients. Insects, 9(1), Article 20. https://doi.org/10.3390/insects9010020
34. Montowska, M., Kowalczewski, P. Ł., Rybicka, I., Fornal, E. (2019). Nutritional value, protein and peptide composition of edible cricket powders. Food Chemistry, 289, 130–138. https://doi.org/10.1016/j.foodchem.2019.03.062
35. Nsevolo Miankeba, P., Taofic, A., Kiatoko, N., Mutiaka, K., Francis, F., Caparros Megido, R. (2022). Protein xontent and amino acid profiles of selected edible insect species from the Democratic Republic of Congo relevant for transboundary trade across Africa. Insects, 13(11), Article 994. https://doi.org/10.3390/insects13110994
36. Liceaga, A. M. (2021). Processing insects for use in the food and feed industry. Current Opinion in Insect Science, 48, 32–36.https://doi.org/10.1016/j.cois.2021.08.002
37. Kim, T.-K., Cha, J. Y., Yong, H. I., Jang, H. W., Jung, S., Choi, Y.-S. (2022). Application of edible insects as novel protein sources and strategies for improving their processing. Food Science of Animal Resources, 42(3), 372–388. https://doi.org/10.5851/kosfa.2022.e10
38. Melgar-Lalanne, G., Hernández-Álvarez, A., Salinas-Castro, A. (2019). Edible insects processing: Traditional and innovative technologies. Comprehensive Reviews in Food Science and Food Safety, 18(4), 1166–1191. https://doi.org/10.1111/1541-4337.12463
39. Anankware, J. P., Roberts, B. J., Cheseto, X., Osuga, I., Savolainen, V., Collins, C. M. (2021). The nutritional profiles of five important edible insect species from West Africa — An analytical and literature synthesis. Frontiers in Nutrition, 8, Article 792941. https://doi.org/10.3389/fnut.2021.792941
40. Purschke, B., Stegmann, T., Schreiner, M., Jäger, H. (2017). Pilot-scale supercritical CO 2 extraction of edible insect oil from Tenebrio molitor L. larvae — Influence of extraction conditions on kinetics, defatting performance and compositional properties. European Journal of Lipid Science and Technology, 119(2), Article 1600134. https://doi.org/10.1002/ejlt.201600134
41. Tzompa-Sosa, D. A., Yi, L., van Valenberg, H. J. F., van Boekel, M. A. J. S., Lakemond, C. M. M. (2014). Insect lipid profile: aqueous versus organic solvent-based extraction methods. Food Research International, 62, 1087–1094. https://doi.org/10.1016/j.foodres.2014.05.052
42. Ghosh, S., Lee, S.-M., Jung, C., Meyer-Rochow, V. B. (2017). Nutritional composition of five commercial edible insects in South Korea. Journal of AsiaPacific Entomology, 20 (2), 686–694. https://doi.org/10.1016/j.aspen.2017.04.003
43. Rumpold, B. A., Schlüter, O. K. (2013). Nutritional composition and safety aspects of edible insects. Molecular Nutrition and Food Research, 57(5), 802–823. https://doi.org/10.1002/mnfr.201200735
44. Wang, J., Wang, C., Zhao, M., He, Z., Sun, L., Feng, Y. (2019). Contents of mercury and selenium in common edible and medicinal insects in Yunnan and their correlation analysis. Journal of Yunnan Agricultural University (Natural Science), 34(6), 1033–1040. https://doi.org/10.12101/j.issn.1004-390X(n).201903014 (In Chinese)
45. He, Z., Sun, L., Wang, C. Y., Feng, Y., Zhao, M. (2021). Nutritional composition analysis and evaluation of the two-spotted cricket Gryllus bimaculatus (Orthoptera: Gryllidae). Biotic Resources, 3, 303–308. http://doi.org/10.14188/j.ajsh.2021.03.012 (In Chinese)
46. Lee, J. H., Kim, T.-K., Jeong, C. H., Yong, H. I., Cha, J. Y., Kim, B.-K. et al. (2021). Biological activity and processing technologies of edible insects: a review. Food Science and Biotechnology, 30(8), 1003–1023. https://doi.org/10.1007/s10068-021-00942-8
47. Dossey, A. T., Tatum, J. T., McGill, W. L. (2016). Modern Insect-Based Food Industry: Current Status, Insect Processing Technology, and Recommendations Moving Forward. Chapter in a book: Insects as Sustainable Food Ingredients. Elsevier Academic Press Inc., London, UK; San Diego, CA, USA; Cambridge, MA, USA; Kidlington, Oxford, UK, 2016. https://doi.org/10.1016/B978-0-12-802856-8.00005-3
48. Carcea, M. (2020). Quality and nutritional/textural properties of durum wheat pasta enriched with cricket powder. Foods, 9(9), Article 1298. https://doi.org/10.3390/foods9091298
49. Liceaga, A. M. (2019). Approaches for utilizing insect protein for human consumption: Effect of enzymatic hydrolysis on protein quality and functionality. Annals of the Entomological Society of America, 112(6), 529–532. https://doi.org/10.1093/aesa/saz010
50. Kröncke, N., Böschen, V., Woyzichovski, J., Demtröder, S., Benning, R. (2018). Comparison of suitable drying processes for mealworms (Tenebrio molitor). Innovative Food Science and Emerging Technologies, 50, 20–25. https://doi.org/10.1016/j.ifset.2018.10.009
51. Schlüter, O., Rumpold, B., Holzhauser, T., Roth, A., Vogel, R. F., Quasigroch, W. et al. (2017). Safety aspects of the production of foods and food ingredients from insects. Molecular Nutrition and Food Research, 61(6), Article 1600520. https://doi.org/10.1002/mnfr.201600520
52. Ruby, M. B., Rozin, P., Chan, C. (2015). Determinants of willingness to eat insects in the USA and India. Journal of Insects as Food and Feed, 1(3), 215–225. https://doi.org/10.3920/JIFF2015.0029
53. Baker, M. A., Shin, J. T., Kim, Y. W. (2016). An exploration and investigation of edible insect consumption: The impacts of image and description on risk perceptions and purchase intent. Psychology and Marketing, 33 (2), 94–112. https://doi.org/10.1002/mar.20847
54. Gmuer, A., Guth, J. N., Hartmann, C., Siegrist, M. (2016). Effects of the degree of processing of insect ingredients in snacks on expected emotional experiences and willingness to eat. Food Quality and Preference, 54, 117–127. https://doi.org/10.1016/j.foodqual.2016.07.003
55. Kitahara, Y., Nomura, H., Nishihara, N., Ueda, T., Watanabe, S., Saito, I. et al. (2022). Survey of arsenic/heavy metals and pesticide residues in edible insects for human consumption or supplied in Japan. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi), 63 (4), 136–140. https://doi.org/10.3358/shokueishi.63.136 (In Japanese)
56. Evans, N. M., Shao, S. (2022). Mycotoxin metabolism by edible insects. Toxins, 14(3), Article 217. https://doi.org/10.3390/toxins14030217
57. Kamemura, N., Sugimoto, M., Tamehiro, N., Adachi, R., Tomonari, S., Watanabe, T. et al. (2019). Cross-allergenicity of crustacean and the edible insect Gryllus bimaculatus in patients with shrimp allergy. Molecular Immunology, 106, 127–134. https://doi.org/10.1016/j.molimm.2018.12.015
58. Agbemafle, I., Hadzi, D., Amagloh, F. K., Zotor, F. B., Reddy, M. B. (2020). Nutritional, microbial, and sensory evaluation of complementary foods made from blends of orange-fleshed sweet potato and edible insects. Foods, 9(9), Article 1225. https://doi.org/10.3390/foods9091225
59. Klunder, H. C., Wolkers-Rooijackers, J., Korpela, J. M., Nout, M. J. R. (2012). Microbiological aspects of processing and storage of edible insects. Food Control, 26(2), 628–631. https://doi.org/10.1016/j.foodcont.2012.02.013
60. Nyangena, D. N., Mutungi, C., Imathiu, S., Kinyuru, J., Affognon, H., Ekesi, S. et al. (2020). Effects of traditional processing techniques on the nutritional and microbiological quality of four tdible insect species used for food and feed in East Africa. Foods, 9(5), Article 574. https://doi.org/10.3390/foods9050574
Review
For citations:
Sutula G.I., Ryabukhin D.S. Microalgae and insects as alternative protein sources: Benefits and risks. Food systems. 2023;6(4):497-503. (In Russ.) https://doi.org/10.21323/2618-9771-2023-6-4-497-503