Modern non-thermal method of processing plant raw materials used to increase its storability
https://doi.org/10.21323/2618-9771-2023-6-1-4-10
Abstract
Along with thermal methods of processing plant raw materials, non-thermal processing methods have been actively developed in recent decades, which make it possible to preserve the qualitative characteristics of the initial raw materials to the maximum and increase the shelf life of the finished product. When using these methods, slight heating of the product can occur, for example, as in the processing by ultraviolet radiation (UVR). In the case of using such a type of processing as filtration, heating is completely absent; under the conditions of high pressure processing of the product (hereinafter HPP), a low temperature regime is observed. These methods are distinguished by minimizing the impact on the organoleptic characteristics of the finished product (texture, appearance, color, odor), as well as the preservation of micro- and macronutrients. The article discusses the main non-thermal methods of processing plant materials: high pressure (HPP), processing in a pulsed electric field (PEF), radioactive radiation, ultraviolet radiation (UVR), filtration. The advantages and factors hindering their widespread use on an industrial scale are noted. It is noted that high pressure, ultraviolet radiation and filtration to one degree or another are widely used in food production, while processing in a pulsed electric field and radioactive radiation are of extremely limited use due to the need to ensure the safety of processing for service personnel. It should also be noted that processing only by non-thermal methods leads to a limited shelf life of finished products and often requires lower storage temperatures. If it is necessary to increase the shelf life, it makes sense to combine thermal and non-thermal processing methods, for example, microfiltration (ultrafiltration) of juice, bottling into consumer packaging, gentle pasteurization. The undoubted advantage of this combination can be a reduction in the thermal load on a product, since the initial microbiological contamination is reduced by filtration. And, as a result, we get a stably stored product with minimal quality loss and preserved native potential.
Keywords
About the Authors
N. E. PosokinaRussian Federation
Natalia E. Posokina, Candidate of Technical Sciences, Head of the Laboratory of Food Canning Technology
78, Shkolnaya str., Vidnoe, 142703, Moscow region
Tel.: +7–926–367–75–07
A. I. Zakharova
Russian Federation
Anna I. Zakharova, Researcher, Laboratory of Food Canning Technology
78, Shkolnaya str., Vidnoe, 142703, Moscow region
Tel.: +7–926–367–75–07
References
1. Jackson, L. S., AI-Taher, F. (2022). Processing issues: acrylamide, furan, and trans fatty acids. Chapter in a book: Ensuring Global Food Safety: Exploring Global Harmonization. Academic Press, 2022. https://doi.org/10.1016/B978–0–12–816011–4.00021–5
2. Chiozzi, V., Agriopoulou, S., Varzakas, T. (2022). Advances, applications, and comparison of thermal (pasteurization, sterilization, and aseptic packaging) against non-thermal (ultrasounds, UV radiation, ozonation, high hydrostatic pressure) technologies in food processing. Applied Sciences (Switzerland), 12(4), Article 2202. https://doi.org/10.3390/app12042202
3. Chacha, J.S., Zhang, L., Ofoedu, C.E., Suleiman, R.A., Dotto, J.M., Roobab, U. et al. (2021). Revisiting non-thermal food processing and preservation methods — action mechanisms, pros and cons: A technological update (2016–2021). Foods, 10(6), Article 1430 https://doi.org/10.3390/foods10061430
4. Pingen, S., Sudhaus, N., Becker, A., Krischek, C., Klein, G. (2016). High pressure as an alternative processing step for ham production. Meat Science, 118, 22–27. https://doi.org/10.1016/j.meatsci.2016.03.014
5. Tsevdou, M., Eleftheriou, E., Taoukis, P. (2013) Transglutaminase treatment of thermally and high pressure processed milk: Effects on the properties and storage stability of set yoghurt. Innovative Food Science and Emerging Technologies, 17, 144–152. https://doi.org/10.1016/j.ifset.2012.11.004
6. Marangoni Junior, L., Cristianini, M., Padula, M., Anjos, C.A.R. (2019). Effect of high-pressure processing on characteristics of flexible packaging for foods and beverages. Food Research International, 119, 920–930. https://doi.org/10.1016/j.foodres.2018.10.078
7. Liu, H., Xu, Y., Zu, S., Wu, X., Shi, A., Zhang, J. et al. (2021). Effects of high hydrostatic pressure on the conformational structure and gel properties of myofibrillar protein and meat quality: A review. Foods, 10(8), Article 1872. https://doi.org/10.3390/foods10081872
8. Mahadevan, S., Karwe M. V. (2016). Effect of high-pressure processing on bioactive compounds. Food Engineering Series, 479–507. https://doi.org/10.1007/978–1–4939–3234–4_22
9. Marciniak, A., Suwal, S., Naderi, N., Pouliot, Y., Doyen, A. (2018). Enhancing enzymatic hydrolysis of food proteins and- production of bioactive peptides using high hydrostatic pressure technology. Trends in Food Science and Technology, 80, 187–198. https://doi.org/10.1016/j.tifs.2018.08.013
10. Wang, B., Liu, F., Luo, S., Li, P., Mu, D., Zhao, Y. et al. (2019). Effects of high hydrostatic pressure on the properties of heat-induced wheat gluten gels. Food and Bioprocess Technology, 12(2), 220–227. https://doi.org/10.1007/s11947–018–2205–3
11. O’Reilly, C., Kelly, L.A., Murphy, M.P., Beresford, P.T. (2001). High pressure treatment: Applications in cheese manufacture and ripening. Trends in Food Science and Technology, 12(2), 51–59. https://doi.org/10.1016/s0924–2244(01)00060–7
12. Oliveira, F.A.D, Neto, O.C., Santos, L.M.R.D., Ferreira, E.H.R., Rosenthal, A. (2017). Effect of high pressure on fish meat quality — A review. Trends in Food Science and Technology, 66, 1–19. https://doi.org/10.1016/j.tifs.2017.04.014
13. Butz, P., Fernandez Garcıa, F., Lindauer, R., Dieterich, S., Bognar, A., Tauscher, B. (2003). Influence of ultra high pressure processing on fruit and vegetable products. Journal of Food Engineering, 56(2–3), 233–236. https://doi.org/10.1016/s0260–8774(02)00258–3
14. Lee, P. Y., Kebede, B. T., Lusk, K., Mirosa, M., Oey, I. (2017). Investigating consumers’ perception of apple juice as affected by novel and conventional processing technologies. International Journal of Food Science and Technology, 52(12), 2564–2571. https://doi.org/10.1111/ijfs.13542
15. Kim, Y.-S., Park, S.-J., Cho, Y.-H., Park, J. (2001). Effects of combined treatment of high hydrostatic pressure and mild heat on the quality of carrot juice. Journal of Food Science, 66(9), 1355–1360. https://doi.org/10.1111/j.1365–2621.2001.tb15214.x
16. Dede, S., Alpas, H., Bayındırlı, A. (2007). High hydrostatic pressure treatment and storage of carrot and tomato juices: Antioxidant activity and microbial safety. Journal of the Science of Food and Agriculture, 87(5), 773–782. https://doi.org/10.1002/jsfa.2758
17. Melse-Boonstra, A., Verhoef, P., Konings, E.J.M., Van Dusseldorp, M., Matser, A., Hollman, P.C.H. et al. (2002). Influence of processing on total, monoglutamate and polyglutamate folate contents of leeks, cauliflower, and green beans. Journal of Agricultural and Food Chemistry, 50(12), 3473–3478. https://doi.org/10.1021/jf0112318
18. Huang, H.-W., Wu, S.-J., Lu, J.-K., Shyu, Y.-T., Wang, C.-Y. (2017). Current status and future trends of high-pressure processing in food industry. Food Control, 72, 1–8. https://doi.org/10.1016/j.foodcont.2016.07.019
19. Jin, T.Z., Zhang, H.Q. (2020). Pulsed electric fields for pasteurization: Food safety and shelf life. Food Engineering Series, 553–577. https://doi.org/10.1007/978–3–030–42660–6_21
20. Guerrero-Beltran, J.A., Welti-Chanes, J. (2016). Pulsed electric fields. Chapter in a book: Encyclopedia of Food and Health, Academic Press, 2016. https://doi.org/10.1016/b978–0–12–384947–2.00579–1
21. Jadhav, H.B., Annapure, U.S., Deshmukh, R.R. (2021). Non-thermal technologies for food processing. Frontiers in Nutrition, 8, Article 657090. https://doi.org/10.3389/fnut.2021.657090
22. Mendes-Oliveira, G., Jin, T.Z., Campanella, O.H. (2020). Modeling the inactivation of Escherichia coli O157: H7 and Salmonella Typhimurium in juices by pulsed electric fields: The role of the energy density. Journal of Food Engineering, 282, Article 110001. https://doi.org/10.1016/j.jfoodeng.2020.110001
23. Shamsi, K., Sherkat, F. (2009). Application of pulsed electric field in non-thermal processing of milk. Asian Journal of Food and Agro-Industry, 2(03), 216–244.
24. Bhattacharjee, C., Saxena, V. K., Dutta, S. (2019). Novel thermal and nonthermal processing of watermelon juice. Trends in Food Science and Technology, 93, 234–243. https://doi.org/10.1016/j.tifs.2019.09.015
25. Koubaa, M., Barba, F.J, Bursać Kovačević, D., Putnik, P., Santos, M.D., Queirós R. P., et al. (2018). Pulsed electric field processing of fruit juices. Chapter in a book: Fruit Juices: Extraction, Composition, Quality and Analysis. Academic Press, 2018. https://doi.org/10.1016/B978–0–12–802230–6.00022–9
26. Wibowo, S., Essel, E. A., De Man, S., Bernaert, N., Van Droogenbroeck, B., Grauwet, T., et al. (2019). Comparing the impact of high pressure, pulsed electric field and thermal pasteurization on quality attributes of cloudy apple juice using targeted and untargeted analyses. Innovative Food Science and Emerging Technologies, 54, 64–77. https://doi.org/10.1016/j.ifset.2019.03.004
27. Timmermans, R.A.H., Mastwijk, H.C., Berendsen, L.B.J.M., Nederhoff, A. L., Matser, A.M., Van Boekel, M.A.J.S. et al. (2019). Moderate intensity Pulsed Electric Fields (PEF) as alternative mild preservation technology for fruit juice. International Journal of Food Microbiology, 298, 63–73. https://doi.org/10.1016/j.ijfoodmicro.2019.02.015
28. Roobab, U., Abida, A., Chacha, J.S., Athar, A., Madni, G.M., Ranjha, M.M.A.N. et al. (2022) Applications of innovative non-thermal pulsed electric field technology in developing safer and healthier fruit juices. Molecules, 27(13), Article 4031. https://doi.org/10.3390/molecules27134031
29. Salehi, F. (2020). Physico-chemical properties of fruit and vegetable juices as affected by pulsed electric field: a review. International Journal of Food Properties, 23(1), 1036–1050. https://doi.org/10.1080/10942912.2020.1775250
30. Rodrigo, D., Martinez, A., Harte, F., Barbosa-Canovas, G., Rodrigo, M. (2001). Study of inactivation of kactobacillus plantarum in orange-carrot juice by means of pulsed electric fields: Comparison of inactivation kinetics models. Journal of Food Protection, 64(2), 259–263. https://doi.org/10.4315/0362–028X-64.2.259
31. Aguilo-Aguayo, I., Soliva-Fortuny, R., Martín-Belloso, O. (2008). Comparative study on color, viscosity and related enzymes of tomato juice treated by high-intensity pulsed electric fields or heat. European Food Research and Technology, 227(2), 599–606. https://doi.org/10.1007/s00217–007–0761–2
32. Ortega-Rivas, E. (2011). Critical issues pertaining to application of pulsed electric fields in microbial control and quality of processed fruit juices. Food and Bioprocess Technology, 4(4), 631–645. https://doi.org/10.1007/s11947–009–0231-x
33. Sharma, P., Sharma, S. R., Mittal, T. C. (2020). Effects and application of ionizing radiation on fruits and vegetables: A review. Journal of Agricultural Engineering, 57(2), 97–126.
34. Barbosa-Canovas, G.V., Bermúdez-Aguirre, D. (2010). Novel food processing technologies and regulatory hurdles. Chapter in a book: Ensuring Global Food Safety, Academic Press, 2010. https://doi.org/10.1016/B978–0–12–374845–4.00016–3
35. Mendonca A. F., Daraba, A. (2014). Non-thermal processing: Irradiation. Chapter in a book: Encyclopedia of Food Microbiology: Second Edition, Academic Press, 2014. https://doi.org/10.1016/b978–0–12–384730–0.00399–2
36. Boylston, T.D., Reitmeier, C. A., Moy, J. H., Mosher, G. A., Taladriz, L. (2002). Sensory quality and nutrient composition of three hawaiian fruits treated by X-irradiation. Journal of Food Quality, 25(5), 419–433. https://doi.org/10.1111/j.1745–4557.2002.tb01037.x
37. Alonso, M., Palou, L., Ángel del Rio, M. A., Jacas, J.-A. (2007). Effect of X-ray irradiation on fruit quality of clementine mandarin cv. ‘Clemenules’. Radiation Physics and Chemistry, 76(10), 1631–1635. https://doi.org/10.1016/j.radphyschem.2006.11.015
38. Fan, X., Niemera, B. A, Mattheis, J. E., Zhuang, H., Olson, D. W. (2006). Quality of fresh-cut apple slices as affected by low-dose ionizing radiation and calcium ascorbate treatment. Journal of Food Science, 70(2), S143-S148. https://doi.org/10.1111/j.1365–2621.2005.tb07119.x
39. McDonald, H., Arpaia, M., Caporaso, F., Obenland, D., Were, L., Rakovski, C. et al. (2013). Effect of gamma irradiation treatment at phytosanitary dose levels on the quality of ‘Lane Late’ navel oranges. Postharvest Biology and Technology, 86, 91–99. https://doi.org/10.1016/j.postharvbio.2013.06.018
40. Chawla, A., Lobacz, A., Tarapata, J., Zulewska, J. (2021). UV light application as a mean for disinfection applied in the dairy industry. Applied Scences (Switzerland), 11(16), Article 7285. https://doi.org/10.3390/pp11167285
41. Priyadarshini, A., Rajauria, G., O’Donnell, C., Tiwari, B. (2019). Emerging food processing technologies and factors impacting their industrial adoption. Critical Reviews in Food Science and Nutrition, 59(19), 3082–3101. https://doi.org/10.1080/10408398.2018.1483890
42. Lo´pez-Malo, A., Palou, E. (2004). Ultraviolet light and food preservation. Chapter in a book: Novel Food Processing Technologies. CRC Press, 2004.
43. Shishkina, N.S., Karastoyanova, O.V., Korovkina, N.V., Fedyanina, N.I. (2020). Complex technology for storing plant products using UV radiation. Vsyo o Myase, 5S, 407–411. https://doi.org/10.21323/2071–2499–2020–5S-407–411
44. Elmnasser, N., Guillou, S., Leroi, F., Orange, N., Bakhrouf, A., Federighi, M. (2007). Pulsed-light system as a novel food decontamination technology: A. review. Canadian Journal of Microbiology, 53(7), 813–821. https://doi.org/10.1139/W07–042
45. Schmalwieser, A.W., Weihs, P., Schauberger, G. (2018). UV effects on living organisms. Chapter in a book: Encyclopedia of Sustainability Science and Technology. Springer, New York, 2018. https://doi.org/10.1007/978–1–4939–2493–6_454–3
46. Soni, A., Oey, I., Silcock, P., Bremer, P. (2016). Bacillus spores in the food industry: A review on resistance and response to novel inactivation technologies. Comprehensive Reviews in Food Science and Food Safety, 15(6), 1139–1148. https://doi.org/10.1111/1541–4337.12231
47. Nicholson, W. L., Galeano, B. (2003). UV resistance of Bacillus anthracis spores revisited: Validation of Bacillus subtilis spores as UV surrogates for spores of B. anthracis Sterne. Applied and Environmental Microbiology, 69(2), 1327–1330. https://doi.org/10.1128/AEM.69.2.1327–1330.2003
48. Myasnik, M., Manasherob, R., Ben-Dov, E., Zaritsky, A., Margalith, Y., Barak, Z. (2001). Comparative sensitivity to UV-B radiation of two Bacillus thuringiensis subspecies and other Bacillus sp. Current Microbiology, 43(2), 140–143. https://doi.org/10.1007/s002840010276
49. Setlow, P. (2006). Spores of Bacillus subtilis: Their resistance to and killing by radiation, heat and chemicals. Journal Applied Microbiology, 101(3), 514–525. https://doi.org/10.1111/j.1365–2672.2005.02736.x
50. Csapo, J., Prokischv, J., Albert, C., Sipos, P. (2019). Effect of UV light on food quality and safety. Acta Universitatis Sapientiae, Alimentaria, 12(1), 21–41. https://doi.org/10.2478/ausal-2019–0002
51. Koutchma, T. (2009). Advances in ultraviolet light technology for nonthermal processing of liquid foods. Food and Bioprocess Technology, 2(2), 138–155. https://doi.org/10.1007/s11947–008–0178–3
52. Afendi, N. A., Shah, N.N.A.K. (2022). Impact of UV–C assisted drying treatment on the quality of Malaysian stingless bee honey. Advances in Agricultural and Food Research Journal, 3(2), Article a0000306. https://doi.org/10.36877/aafrj.a0000306
Review
For citations:
Posokina N.E., Zakharova A.I. Modern non-thermal method of processing plant raw materials used to increase its storability. Food systems. 2023;6(1):4-10. (In Russ.) https://doi.org/10.21323/2618-9771-2023-6-1-4-10