Preview

Food systems

Advanced search

Development of identification criteria for fruit vodkas (Part 1. Sample preparation ways)

https://doi.org/10.21323/2618-9771-2022-5-4-298-307

Abstract

The  development of reliable identification criteria for various  types of foods,  including fruit  vodkas,  is one  of the top-priority directions of scientific research in the field of quality control. The review examines different approaches to solution to a problem of searching identification criteria for fruit vodkas that will allow differentiating products by a type of fruit  raw materials, their grade  and region of origin.  To this  end, instrumental methods of analysis were used, including spectral, high performance liquid chromatography (HPLC) and gas chromatography coupled to mass  spectrometry (GC–MS) as the  main  method. When  detecting minor  aroma-forming substances using  the  latter method, it is necessary, first  of all, to  carry  out  the  special  sample preparation that includes extraction and  concentration of target substances. The  present review  examines three main  types of sample preparation (liquid  extraction, solid-phase extraction, supercritical fluid extraction) and  modifications of these methods. Their  comparative analysis was carried out  with  respect to  labor  intensity, extraction effectiveness, volatile aroma-forming compounds significantly different by polarity, reproducibility and  sustainability. It has been  shown  that a type of sample preparation affects  reproducibility and sensitivity of an instrumental analytic method, which is especially important for identification of some  minor  compounds, which concentration can be regarded as indicators for identification of fruit  raw materials. It has been  concluded that among  the  examined methods of sample preparation, the most  promising for the development of identification criteria for fruit vodkas is headspace solid-phase microextraction (HS-SPME) as this  method is highly  effective in terms of extraction of target components including minor.

About the Authors

L. N. Krikunova
All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry
Russian Federation

Ludmila N. Krikunova - Doctor  of Technical Sciences, Professor, Leading Researcher, Department of Spirits, All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry

7, Rossolimo str., 119021, Moscow

Tel.: +7–910–465–95–88



E. V. Ulyanova
All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry
Russian Federation

Ekaterina V. Uljanova - Candidate of Сhemical sciences, Junior Researcher, All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry.

7, Rossolimo str., 119021, Moscow

Tel.: +7–903–228–31–27



S. M. Tomgorova
All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry
Russian Federation

Svetlana M. Tomgorova - Сandidate of Technical Sciences, Researcher, All-Russian  Scientific Research Institute of Brewing, Beverage  and Wine Industry.

7, Rossolimo str., 119021, Moscow, Russia

Tel.: +7–916–771–58–97



D. V. Andrievskaya
All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry
Russian Federation

Darya V. Andrievskaya - Candidate of Technical Sciences, Junior  Researcher, Department of Spirits, All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry.

7, Rossolimo str., 119021, Moscow

Tel.: +7–906–753–84–28



V. A. Trofimchenko
All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry
Russian Federation

Vladimir A. Trofimchenko - Сandidate of Technical Sciences, Researcher, Department of Spirits, All-Russian Scientific Research Institute of Brewing, Beverage and Wine Industry.

7, Rossolimo str., 119021, Moscow

Tel.: +7–499–246–66–12



References

1. Oganesiants, L. A.,Peschanskaia,V. A., Osipova, V. P., Dubinina, E. V., Alieva, G. A. (2013). Qualitative and quantitative composition of volatile components of fruit vodkas. Winemaking and Viticulture, 6, 22–24. (In Russian)

2. Dubinina, E. V., Alieva, G. A. (2015). Correlation study between organoleptic evaluation and the content of volatile components of fruit vodkas. Winemaking and Viticulture, 3, 29–34. (In Russian)

3. Oganesiants, L. A., Lorian, G. V. (2015). Volatile components of mulberry distillates. Winemaking and Viticulture, 2, 17–20. (In Russian)

4. Trofimchenko,V. A., Sevost’ianova, E. M., Osipova,V. P., Presniakova, O. P. (2019). The criteria for evaluation of prepared water in the production of fruit brandies. Beer and Drinks, 4, 10–14. https://doi.org/10.24411/2072–9650–2019–10011 (In Russian)

5. Dubinina, E.V., Sevostyanova, E. M., Krikunova, L. N., Obodeeva, O. N. (2021). Influence of mineral composition of softwater water for qualitative indicators of alcoholic drinks from vegetable raw materials. Polzunovskiy Vestnik, 1, 11–19. https://doi.org/10.25712/ASTU.2072–8921.2021.01.002 (In Russian)

6. Belkin, Yu. D., Pastukhova, V. O. (January 20, 2018). New approaches to the identification and examination of the fruit vodkas quality. Abstracts of the VII International Scientific and Practical Conference “Innovative Technologies in Science and Education. Penza, Russia, 2018. (In Russian)

7. Baldovini, N., Chaintreau, A. (2020). Identification of key odorants in complex mixtures occurring in nature. Natural Product Reports, 37(12), 1589–1626. https://doi.org/10.1039/d0np00020e

8. Magdas, D. A., David, M., Berghian-Grosan, C. (2022). Fruit spirits fingerprint pointed out through artificial intelligence and FT-Raman spectroscopy. Food Control, 133, Article 108630. https://doi.org/10.1016/j.foodcont.2021.108630

9. Popović, B. T., Mitrović, O.V., Leposavić, A. P., Paunović, S. A., Jevremović, D. R., Nikićević, N. J. et al. (2019). Chemical and sensory characterization of plum spirits obtained from cultivar Čačanska Rodna and its parent cultivars. Journal of the Serbian Chemical Society, 84(12), 1381–1390. https://doi.org/10.2298/JSC190307061P

10. Jakubíková,M.,Sádecká,J.,Kleinová,A.(2018).On the use of the fluorescence, ultraviolet–visible and near infrared spectroscopy with chemometrics for the discrimination between plum brandies of different varietal origins. Food Chemistry, 239, 889–897. http://doi.org/10.1016/j.foodchem.2017.07.008

11. Jakubíková, M., Sádecká, J., Hroboňová, K. (2019). Classification of plum brandies based on phenol and anisole compounds using HPLC. European Food Research and Technology, 245(8), 1709–1717. https://doi.org/10.1007/s00217–019–03291–3

12. Kamiloglu, S. (2018). Authenticity and traceability in beverages. Food Chemistry, 277, 12–24. https://doi.org/10.1016/j.foodchem.2018.10.091

13. Coldea, T. E., Socaciu, C., Moldovan, Z., Mudura, E. (2014). Minor volatilе compounds in traditional homemade fruit brandies from Transylvania-Romania, as determined by GC–MS analysis. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42(2), 530–537. https://doi.org/10.15835/nbha4229607

14. Bajer, T., Hill, M.,Ventura, K., Bajerová, P. (2020). Authentification of fruit spirits using HS-SPME/GC-FID and OPLS methods. Scientific Reports, 10(1), Article 18965. https://doi.org/10.1038/s41598–020–75939–0

15. Winterová, R., Mikulíková, R., Mazáč, J., Havelec, P. (2008). Assessment of the authenticity of fruit spirits by gas chromatography and stable isotope ratio analyses. Czech Journal of Food Sciences, 26(5), 368–375. https://doi.org/10.17221/1610-CJFS

16. Śliwińska, M., Wiśniewska, P., Dymerski, T., Wardencki, W., Namieśnik, J. (2015). The flavour of fruit spirits and fruit liqueurs: A review. Flavour and Fragrance Journal, 30(3), 197–207. https://doi.org/10.1002/ffj.3237

17. Coldea, T. E., Mudura, E., Socaciu, C. (2017). Advances in distilled beverages authenticity and quality testing. Chapter in a book: Ideas and Applications Toward Sample Preparation for Food and Beverage Analysis. IntechOpen, United Kingdom, 2017. http://doi.org/10.5772/intechopen.72041

18. Zhang, X., Wang, C., Wang, L., Chen, S., Xu, Y. (2020). Optimization and validation of a head space solid-phase microextraction-arrow gas chromatography-mass spectrometry method using central composite design for determination of aroma compounds in Chinese liquor (Baijiu). Journal of Chromatography A, 1610, Article 460584. https://doi.org/10.1016/j.chroma.2019.460584

19. Wiśniewska, P., Śliwińska, M., Dymerski, T., Wardencki, W., Namieśnik, J. (2016). The analysis of raw spirits — A review of methodology. Journal of the Institute of Brewing, 122(1), 5–10. https://doi.org/10.1002/jib.288

20. Egea, M. B., Bertolo, M. R. V., Filho, J. G. O., Lemes, A. C. (2021). A narrative review of the current knowledge on fruit active aroma using gas chromatography — olfactometry (GC-O) analysis. Molecules, 26(17), Article 5181. https://doi.org/10.3390/molecules26175181

21. Guillot, S., Peytavi, L., Bureau, S., Boulanger, R., Lepoutre, J.-P., Crouzet, J. et al. (2006). Aroma characterization of various apricot varieties using headspace–solid phase microextraction combined with gas chromatography–mass spectrometry and gas chromatography–olfactometry. Food Chemistry, 96(1), 147–155. https://doi.org/10.1016/j.foodchem.2005.04.016

22. Wang, H., Ma, Y., Li, M., Shi, L., Zhang, S., Wang, W. et al. (2018). Volatiles of ripe fruit Prunus salicina L. cv. Friar as determined by gas chromatography-mass spectrophotometry as developed during cold storage. International Journal of Food Properties, 21(1), 2622–2631. https://doi.org/10.1080/10942912.2018.1536149

23. Dubinina, E. V., Krikunova, L. N., Peschanskaja, V. A., Trishkaneva, M. V. (2021). Scientific aspects of identification criteria for fruit distillates. Food Processing: Techniques and Technology, 51(3), 480–491. http://doi.org/10.21603/2074–9414–2021–3–480–491 (In Russian)

24. Cherepica, S., Sytova, S., Kavalenka, A., Sobolenko, L., Shauchenka, Y., Kostyuk, N. et al. (2021). The method for direct gas chromatographic determination of acetaldehyde, methanol, and other volatiles using ethanol as a reference substance: application for a wide range of alcoholic beverages. Food Analytical Methods, 14(10), 2088–2100. https://doi.org/10.1007/s12161–021–02047–8

25. Cherepica, S. V., Sytova, S. N., Korban, A. L., Sobolenko, L. N., Egorov, V. V., Leshhev, S. M. et al. (2020). Interlaboratory study of the method for direct determination of volatile compounds in alcoholic products using ethanol as internal standard. Journal of the Belarusian State University. Chemistry, 1, 74–87. https://doi.org/10.33581/2520–257X-2020–1–74–87 (In Russian)

26. Charapitsa, S. V., Sytova, S. N. Korban, A. L., Sobolenko, L. N. (2019). Single-laboratory validation of a gas chromatographic method of direct determination of volatile compounds in spirit drinks: need for an improved interlaboratory study. Journal of AOAC International, 102(2), 669–672. https://doi.org/10.5740/jaoacint.18–0258

27. Charapitsa, S., Sytova, S., Korban, A., Sobolenko, L., Egorov, V., Leschev, S. et al. (October 23, 2019). Interlaboratory study of ethanol usage as an internal standard in direct determination of volatile compounds in alcoholic products. Web of Conferences, 15, Article 02030. https://doi.org/10.1051/bioconf/20191502030

28. Cherepitsa, S. V., Sytova, S. N., Egorov, V. V., Leshchev, S. M., Korban, A. L., Sobolenko, L. N. et al. (2019). Validation of the method of direct determination of the quantitative content of volatile components in alcohol containing products. Beer and Drinks, 4, 41–45. https://doi.org/10.24411/2072–9650–2019–10005 (In Russian)

29. Charapitsa, S., Sytova, S., Kavalenka, A., Sobolenko, L., Kostyuk, N., Egorov, V. et al. (2021). The study of the matrix effect on the method of direct determination of volatile compounds in a wide range of alcoholic beverages. Food Control, 120, Article 107528. https://doi.org/10.1016/j.foodcont.2020.107528

30. Charapitsa, S., Sytova, S., Kavalenka, A., Sobolenko, L., Shauchenka, Ya., Kostyuk, N. et al. (2021). Development of a quality control material for the analysis of volatile compounds in alcoholic beverages. Journal of Chemical Metrology, 15(2), 113–123. http://doi.org/10.25135/jcm.66.2111.2259

31. Cherepica, S. V., Sytova, S. N., Kovalenko, A. N. (2021). Reference method for determining the quantitative content of volatile components in alcoholic products. Science, nutrition and health: Collection of scientific papers in 2 parts. Minsk, 2021. (In Russian)

32. Tomková, M., Sádecká, J., Hrobonová, K. (2015). Synchronous fluorescence spectroscopy for rapid classification of fruit spirits. Food Analytical Methods, 8(5), 1258–1267. https://doi.org/10.1007/s12161–014–0010–9

33. Feng, J.-R., Xi, W.-P., Li, W.-H., Liu, H.-N., Liu, X.-F., Lu, X.-Y. (2015). Volatile characterization of major apricot cultivars of southern Xinjiang region of China. Journal of the American Society for Horticultural Science, 140(5), 466–471. https://doi.org/10.21273/JASHS.140.5.466

34. Fratianni, F., Cozzolino, R., d’Acierno, A., Ombra, M. N., Spigno, P., Riccardi, R. et al. (2022). Biochemical characterization of some varieties of apricot present in the Vesuvius area, Southern Italy. Frontiers in Nutrition, 9, Article 854868. https://doi.org/10.3389/fnut.2022.854868

35. Coldea, T., Socaciu, C., Moldovan, Z., Mudura, E. (2014). Minor volatile compounds in traditional homemade fruit brandies from Transylvania-Romania, as determined by GC–MS analysis. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42(2), 530–537. https://doi.org/10.15835/nbha4229607

36. Tesevic, V., Nikicevic, N., Milosavljevic, S., Bajic, D., Vajs, V., Vuckovic, I. et al. (2009). Characterization of volatile compounds of “Drenja”, an alcoholic beverage obtained from the fruits of cornelian cherry. Journal of the Serbian Chemical Society, 74(2), 117–128. https://doi.org/10.2298/JSC0902117T

37. Vyviurska, O., Matura, F., Furdíková, K., Špánik, I. (2017). Volatile fingerprinting of the plum brandies produced from different fruit varieties. Journal of Food Science and Technology, 54(13), 4284–4301. https://doi.org/10.1007/s13197–017–2900–5

38. Puškaš, V., Miljić, U., Vučurović, V., Muzalevski, A. (2017). Aromatic compounds of brandies produced from three apricot varieties cultured in Serbia. Journal on Processing and Energy in Agriculture, 21(2), 101–103. https://doi.org/10.5937/jpea1702101p

39. Uwineza, P. A., Waśkiewicz, A. (2020). Recent advances in supercritical fluid extraction of natural bioactive compounds from natural plant materials.Molecules, 25(17), Article 25173847. https://doi.org/10.3390/molecules25173847

40. Herrero, M., Mendiola, J. A., Cifuentes, A., Ibanez, E. (2010). Supercritical fluid extraction: Recent advances and applications. Journal of Chromatography A, 1217(16), 2495–2511. https://doi.org/10.1016/j.chroma.2009.12.019

41. Dziekońska-Kubczak, U., Pielech-Przybylska, K., Patelski, P., Balcerek, M. (2020). Development of the method for determination of volatile sulfur compounds (VSCs) in fruit brandy with the use of HS–SPME/GC–MS. Molecules, 25(5), Article 1232. https://doi.org/10.3390/molecules25051232

42. Vyviurska, O., Zvrškovcová, H., I. Špánik, (2017). Distribution of enantiomers of volatile organic compounds in selected fruit distillates. Chirality, 29(1), 14–18. https://doi.org/10.1002/chir.22669

43. Stuff, J. R., Whitecavage, J. A., Linthicum, S. J., Pawliszyn, J. (2018). Analysis of beverage samples using Thin Film Solid Phase Microextraction (TF-SPME) and Thermal Desorption GC/MS. GERSTEL Application Note, 200, 1–9.

44. Muñoz-Redondo, J. M., Valcárcel-Muñoz, M. J., Rodríguez Solana, R., Puertas, B., Cantos-Villar, E., Moreno-Rojas, J. M. (2022). Development of a methodology based on headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry for the analysis of esters in brandies. Journal of Food Composition and Analysis, 108, Article 104458. https://doi.org/10.1016/j.jfca.2022.104458

45. Bajer, T., Bajerová, P., Surmová, S., Kremr, D., Ventura, K., Eisner, A. (2017). Chemical profiling of volatile compounds of various home-made fruit spirits using headspace solid-phase microextraction. Journal of the Institute of Brewing, 123(1), 105–112. https://doi.org/10.1002/jib.386

46. Cvetković, D., Stajilcovic, P., Zvezdanovich, J. B., Stanojevic, J., Stanojevic, L., Karabegovic-Stanisavljevic, I. T. (2020). (2020). The identification of volatile aroma compounds from local fruit based spirits using a headspace solid-phase microextraction technique coupled with the gas chromatography-mass spectrometry. Advanced Technologies, 9(2), 19–28. https://doi.org/10.5937/savteh2002019C

47. Pour Nikfardjam, M., Schäfer, L., Schips, C., Farr, T., Endres, A., Hirn, S. et. al. (2022). Ethyl carbamate and aroma compounds in distilled spirits from different stone fruits. Mitteilungen Klosterneuburg, 72(1), 37–50.

48. Pati, S., Tufariello, M., Crupi, P., Coletta, A., Grieco, F., Losito, I. (2021). Quantification of volatile compounds in wines by HS-SPME-GC/MS: critical issues and use of multivariate statistics in method optimization. Processes, 9(4), Article 662. https://doi.org/10.3390/pr9040662

49. Niimi, J., Guixer, B., Splivallo, R. (2020). Odour active compounds determined in the headspace of yellow and black plum wines (Prunus domestica L.). LWT, 130, Article 109702. https://doi.org/10.1016/j.lwt.2020.109702

50. Pino, J. A., Quijano, C. E. (2012). Study of the volatile compounds from plum (Prunus domestica L. cv. Horvin) and estimation of their contribution to the fruit aroma. Ciencia e Tecnologia de Alimentos, 32(1), 76–83. http://doi.org/10.1590/S0101–20612012005000006

51. Zaiats, M. F., Yurchenko, R. A., Leshev, S.M., Vinarskiy, V.A., Zubkevich, A.L. (2012). About basic principles vodka products sample preparation in determining its authenticity by gas chromatographic analysis of the equilibrium vapor phase. Bulletin of BSU. Series 2: Chemistry. Biology. Geography, 1, 23–28. (In Russian)

52. Liu, S., Huang, Y., Qian, C., Xiang, Z., Ouyang, G. (2020). Physical assistive technologies of solid-phase microextraction: Recent trends and future perspectives. TrAC — Trends in Analytical Chemistry, 128, Article 115916. https://doi.org/10.1016/j.trac.2020.115916

53. Zhakupbekova, A., Baimatova, N., Kenessov, B. (2019). A critical review of vacuumassisted headspace solid-phase microextraction for environmental analysis. Environmental Analytical Chemistry, 22, Article e00065. https://doi.org/10.1016/j.teac.2019.e00065

54. Sajid, M., Płotka-Wasylka, J. (2018). Combined extraction and microextraction techniques: recent trends and future perspectives. TrAC — Trends in Analytical Chemistry, 103, 74–86. https://doi.org/10.1016/j.trac.2018.03.013

55. Wang, H., Ding, J., Ren, N. (2015). Recent advances in microwave-assisted extraction of trace organic pollutants from food and environmental samples. TrAC — Trends in Analytical Chemistry, 75, 197–208. https://doi.org/10.1016/j.trac.2015.05.005

56. Fernández-Amado, M., Prieto-Blanco, M.C., López-Mahía, P., Muniategui-Lorenzo, S., Prada-Rodríguez, D. (2016). Strengths and weaknesses of in-tube solidphase microextraction: a scoping review. Analytica Chimica Acta, 906, 41–57. https://doi.org/10.1016/j.aca.2015.12.007

57. Mei, M., Huang, X., Luo, Q., Yuan, D. (2016). Magnetism-enhanced monolith-based in-tube solid phase microextraction. Analytical Chemistry, 88(3), 1900–1907. https://doi.org/10.1021/acs.analchem.5b04328

58. Zhou, Q., Qian, Y., Qian, M. C. (2015). Analysis of volatile phenols in alcoholic beverage by ethylene glycol-polydimethylsiloxane based stir bar sorptive extraction and gas chromatography–mass spectrometry. Journal of Chromatography A, 1390, 22–27. https://doi.org/10.1016/j.chroma.2015.02.064

59. Barba, C., Thomas-Danguin, T., Guichard, E. (2017). Comparison of stir bar sorptive extraction in the liquid and vapour phases, solvent-assisted flavour evaporation and headspace solid-phase microextraction for the (non)-targeted analysis of volatiles in fruit juice. LWT, 85, 334–344. http://doi.org/10.1016/j.lwt.2016.09.015


Review

For citations:


Krikunova L.N., Ulyanova E.V., Tomgorova S.M., Andrievskaya D.V., Trofimchenko V.A. Development of identification criteria for fruit vodkas (Part 1. Sample preparation ways). Food systems. 2022;5(4):298-307. (In Russ.) https://doi.org/10.21323/2618-9771-2022-5-4-298-307

Views: 655


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)