Preview

Food systems

Advanced search

In vitro study of biologically active properties of complexes isolated from biomass of microscopic algae

https://doi.org/10.21323/2618-9771-2022-5-3-212-222

Abstract

Microalgae are rich in biologically active substances: proteins, carbohydrates, lipids, polyunsaturated fatty acids, vitamins, pigments, phycobiliproteins, enzymes, which are able to provide antioxidant, immunostimulating, antibacterial, antiviral, antitumor, antihypertensive, regenerative and neuroprotective effects on a body. The aim of this study is to run in vitro study of the antioxidant, antibacterial, fungicidal, antihypertensive and prebiotic properties of protein concentrate (PC), lipid-pigment complex (LPC) and carbohydrate-mineral complexes (CMC) obtained from the biomass of microscopic algae. To determine in vitro the antioxidant, antibacterial, fungicidal, antihypertensive and prebiotic properties of protein concentrates, lipid-pigment complexes and carbohydratemineral complexes obtained from the biomass of microscopic algae, the following methods were used: method of diffusion (on a solid nutritional medium); optical density method (in a liquid nutritional medium); the method for determining the antioxidant activity of the researched samples by their ability to restore free radicals; the method of inhibition of the angiotensin-converting enzyme. It was shown in this study that among the studied samples the carbohydrate-mineral complex provided the most pronounced antioxidant effect. It was found that both protein concentrates, and lipid-pigment complexes and carbohydrate-mineral complexes feature antibacterial and fungicidal properties. It was proven that among the studied samples the carbohydrate-mineral complex provided the least pronounced antihypertensive effect. It was found that the lipid-pigment complexes and carbohydrate-mineral complexes practically have no prebiotic properties. The biological activity (antimicrobial, fungicidal, antioxidant and prebiotic activities), as well as the antihypertensive properties, were confirmed in the protein concentrates, lipid-pigment complexes and carbohydrate-mineral complexes obtained from the biomass of microscopic algae (Chlorella vulgaris, Arthrospira platensis, Nostoc sp., Dunaliella salina, Pleurochrysis carterae). All these factors open up promising prospects for the practical application of protein concentrates, as well as lipid-pigment complexes and carbohydrate-mineral complexes.

About the Authors

V. F. Dolganyuk
Immanuel Kant Baltic Federal University
Russian Federation

Vyacheslav F. Dolganyuk, Candidate of Technical Sciences, Researcher, Institute of Living Systems

14, A. Nevsky str., 236041, Kaliningrad

Tel.: +7–961–707–24–53 



O. O. Babich
Immanuel Kant Baltic Federal University
Russian Federation

Olga O. Babich, Doctor of Technical Sciences, Docent, Director of the Scientific and Educational Center

14, A. Nevsky str., 236041, Kaliningrad

Тел.: +7–906–922–09–92 



S. A. Sukhikh
Immanuel Kant Baltic Federal University
Russian Federation

Stanislav A. Sukhikh — Doctor of Technical Sciences., Docent, Head of Laboratory

14, A. Nevsky str., 236041, Kaliningrad

Тел.: +7–960–903–62–81 



E. V. Ulrikh
Kaliningrad State Technical University
Russian Federation

Elena V. Ulrikh, Doctor of Technical Sciences, Deputy Director of the Institute of Agroengineering and Food Systems for Scientific and International Activities

1, Prospekt Sovetskiy, 236022, Kaliningrad

Tel.: +7–904–960–94–96 



E. V. Kashirskikh
Immanuel Kant Baltic Federal University
Russian Federation

Egor V. Kashirskikh, Candidate of Technical Sciences, Researcher, Institute of Living Systems

14, A. Nevsky str., 236041, Kaliningrad

Tel.: +7–923–504–23–23 



A. P. Andreeva
Immanuel Kant Baltic Federal University
Russian Federation

Anna P. Andreeva, Candidate of Biological Sciences, Head of Laboratory

14, A. Nevsky str., 236041, Kaliningrad

Tel.: +7–921–854–98–62 



References

1. Rizwan, M., Mujtaba, G., Memon, S. A., Lee, K., Rashid, N. (2018). Exploring the potential of microalgae for new biotechnology applications and beyond: A review. Renewable and Sustainable Energy Reviews, 92, 394-404. https://doi.org/10.1016/j.rser.2018.04.034

2. Villarruel-Lopez, A., Ascencio, F., Nuno, K. (2017). Microalgae, a potential natural functional food source — A review. Polish Journal of Food and Nutrition Sciences, 67(4), 251-263. https://doi.org/10.1515/pjfns-2017-0017

3. Sprague, M., Betancor, M. B., Tocher, D. R. (2017). Microbial and genetically engineered oils as replacements for fish oil in aquaculture feeds. Biotechnology Letters, 39(11), 1599-1609. https://doi.org/10.1007/s10529-017-2402-6

4. Ferreira, G. F., Ríos Pinto, L. F., Maciel Filho, R., Fregolente, L. V. (2019). A review on lipid production from microalgae: Association between cultivation using waste streams and fatty acid profiles. Renewable and Sustainable Energy Reviews, 109, 448-466. https://doi.org/10.1016/j.rser.2019.04.052

5. Scharff, C., Domurath, N., Wensch-Dorendorf, M., Schröder, F.-G. (2017). Effect of different photoperiods on the biochemical profile of the green algae C. vulgaris and S. obliquus. Acta Horticulturae, 1170, 1149-1156. https://doi.org/10.17660/ActaHortic.2017.1170.148

6. Borowitzka, M. A. (2013). High-value products from microalgae — their development and commercialization. Journal of Applied Phycology, 25(3), 743-756. https://doi.org/10.1007/s10811-013-9983-9

7. Suganya. T., Varman, M., Masjuki, H. H., Renganathan, S. (2016). Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renewable and Sustainable Energy Reviews, 55, 909-941. https://doi.org/10.1016/j.rser.2015.11.026

8. Santiago-Morales, I. S., Trujillo-Valle, L., Márquez-Rocha, F. J., Hernández, J.F.L. (2018). Tocopherols, phycocyanin and superoxide dismutase from microalgae: As potential food antioxidants. Applied Food Biotechnology 5(1), 19-27. https://doi.org/10.22037/afb.v5i1.17884

9. Hu, J., Nagarajan, D., Zhang, Q., Chang, J.-S., Lee, D.-J. (2018). Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnology Advances, 36(1), 54-67. https://doi.org/10.1016/j.biotechadv.2017.09.009

10. Mazumdar, N., Novis, P. M., Visnovsky, G., Gostomski, P. A. (2019). Effect of nutrients on the growth of a new alpine strain of Haematococcus (Chlorophyceae) from New Zealand. Phycological Research, 67(1), 21-27. https://doi.org/10.1111/pre.12344

11. Mantzorou, A., Ververidis, F. (2019). Microalgal biofilms: A further step over current microalgal cultivation techniques Science of the Total Environment, 651, 3187-3201. https://doi.org/10.1016/j.scitotenv.2018.09.355

12. Nguyen, H. C., Su, C.-H., Yu, Y.-K., Huong, D. T.M. (2018). Sugarcane bagasse as a novel carbon source for heterotrophic cultivation of oleaginous microalga Schizochytrium sp. Industrial Crops and Products, 121, 99-105. https://doi.org/10.1016/j.indcrop.2018.05.005

13. Lafarga, T. (2019). Cultured microalgae and compounds derived thereof for food applications: Strain selection and cultivation, drying, and processing strategies. Food Reviews International, 1. 36(6), 559-583. https://doi.org/10.1080/87559129.2019.1655572

14. Li, Z., Li, Y., Zhang, X. (2015). Lipid extraction from non-broken and high water content microalgae Chlorella spp. by three-phase partitioning. Algal Research, 10, 218-223. https://doi.org/10.1016/j.algal.2015.04.021

15. Zhao, G., Chen, X., Wang, L. Zhou, S., Feng, H., Chen, W. N. et al. (2013). Ultrasound assisted extraction of carbohydrates from microalgae as feedstock for yeast fermentation. Bioresource Technology, 128, 337-344. https://doi.org/10.1016/j.biortech.2012.10.038

16. Bleakley, S., Hayes, M. (2017). Algal proteins: extraction, application, and challenges concerning production. Foods, 6(5), 1-34, Article 33. https://doi.org/10.3390/foods6050033

17. Chen, J., Li, J., Dong, W., Zhang, X., Tyagi, R. D., Drogui, P. et al. (2018). The potential of microalgae in biodiesel production. Renewable and Sustainable Energy Reviews, 90, 336-346. https://doi.org/10.1016/j.rser.2018.03.073

18. Su, Y., Song, K., Zhang, P. Su, Y., Cheng, J., Chen, X. (2017). Progress of microalgae biofuel’s commercialization. Renewable and Sustainable Energy Reviews, 74, 402-411. https://doi.org/10.1016/j.rser.2016.12.078

19. Amorim, M. L., Soares, J., Coimbra, J. S. D. R., Leite, M. D. O., Albino, L. F. T., Martins, M. A. (2020). Microalgae proteins: Production, separation, isolation, quantification, and application in food and feed. Critical Reviews in Food Science and Nutrition, 61(12), 1976-2002. https://doi.org/10.1080/10408398.2020.1768046

20. Phong, W. N., Show, P. L., Ling, T. C., Juan, J. C., Ng, E.-P., Chang, J.-S. (2018). Mild cell disruption methods for bio-functional proteins recovery from microalgae — Recent developments and future perspectives. Algal Research, 31, 506-516. https://doi.org/10.1016/j.algal.2017.04.005

21. Zielinski, D., Fraczyk, J., Debowski, M., Zielinski, M., Kaminski, Z., Kregiel, D. et al. (2020). Biological activity of hydrophilic extract of Chlorella vulgaris grown on post-fermentation leachate from a biogas plant supplied with stillage and maize silage. Molecules, 25(8), Article 25081790. https://doi.org/10.3390/molecules25081790

22. Frazzini, S., Scaglia, E., Dell’anno, M., Reggi, S., Panseri, S., Giromini, C. et al. (2022). Antioxidant and antimicrobial activity of algal and cyanobacterial extracts: An in vitro study. Antioxidants, 11, Article 992. https://doi.org/10.3390/antiox11050992

23. Selivanova, E. A., Ignatenko, M. E., Nemtseva, N. V. (2014). Antagonistic activity of novel green microalgae strain. Zhurnal Mikrobiologii Epidemiologii i Immunobiologii, 4, 72-76.

24. Pina-Pérez, M. C., Rivas, A., Martínez, A., Rodrigo, D. (2017) Antimicrobial potential of macro and microalgae against pathogenic and spoilage microorganisms in food. Food Chemistry, 235, 34-44. https://doi.org/10.1016/j.foodchem.2017.05.033

25. Singh, M., Singh, S., Prasad, S., Gambhir, I. (2008). Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Digest Journal of Nanomaterials and Biostructures, 3(3), 115-122.

26. Ru, I. T. K., Sung, Y. Y., Jusoh, M., Wahid, M. E. A., Nagappan, T. (2020). Chlorella vulgaris: a perspective on its potential for combining high biomass with high value bioproducts. Applied Phycology, 1(1), 1-10. https://doi.org/10.1080/26388081.2020.1715256

27. Mostafa, S. M. S. (2012). Microalgal biotechnology: Prospects and applications. Chapter in a book: Plant Science. London, UK: IntechOpen Ltd, 2012. https://doi.org/10.5772/53694

28. Ahmad, M. T., Shariff, M., Yusoff, F. M., Goh, Y. M., Banerjee, S. (2018). Applications of microalga Chlorella vulgaris in aquaculture. Reviews in Aquaculture, 12(1), 328-346. https://doi.org/10.1111/raq.12320

29. Safi, C., Zebib, B., Merah, O., Pontalier, P.-Y., Vaca-Garcia, C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews, 35, 265-278. https://doi.org/10.1016/j.rser.2014.04.007

30. Tabarsa, M., Shin, I. -S., Lee, J. H., Surayot, U., Park, W.J., You, S.G. (2015). An immune-enhancing water-soluble α glucan from Chlorella vulgaris and structural characteristics. Food Science and Biotechnology, 24, 1933- 1941. https://doi.org/10.1007/s10068-015-0255-0

31. Scott, A. M., Beller, E., Glasziou, P., Clark, J., Ranakusuma, R. W., Byambasuren, O., Bakhit, M. et al. (2018). Is Antimicrobial Administration to Food Animals a Direct Threat to Human Health? A Rapid Systematic Review. International Journal of Antimicrobial Agents, 52(3), 316-323. https://doi.org/10.1016/j.ijantimicag.2018.04.005

32. Sharma, C., Rokana, N., Chandra, M., Singh, B. P., Gulhane, R. D., Gill, J. P. S. et al. (2018). Antimicrobial resistance: Its surveillance, impact, and alternative management strategies in dairy Frontiers in Veterinary Science, 4(JAN), Artilce 237. https://doi.org/10.3389/fvets.2017.00237

33. Caprarulo, V., Hejna, M., Giromini, C., Liu, Y., Dell’anno, M., Sotira, S. et al. (2020). Evaluation of dietary administration of chestnut and quebracho tannins on growth, serum metabolites and fecal parameters of weaned piglets. Animals, 10(11), 1-15. Article 1945. https://doi.org/10.3390/ani10111945

34. Ricky, R., Chiampo, F., Shanthakumar, S. (2022). Efficacy of ciprofloxacin and amoxicillin removal and the effect on the biochemical composition of chlorella vulgaris. Bioengineering, 9(4), Article 134. https://doi.org/10.3390/bioengineering9040134

35. Bhuvaneswari, G. R., Shukla, S. P., Makesh, M., Thirumalaiselvan, S., Sudhagar, S. A., Kothari, D. C. et al. (2013). Antibacterial activity of spirulina (Arthospira platensis geitler) against bacterial pathogens in Aquaculture. The Israeli Journal of Aquaculture — Bamidgeh, 65.

36. Daglia, M. (2012). Polyphenols as antimicrobial agents. Current Opinion in Biotechnology, 23(2), 174-181. https://doi.org/10.1016/j.copbio.2011.08.007

37. Etahiri, S., Bultel-Poncé, V., Caux, C., Guyot, M. (2001). New Bromoditerpenes from the Red Alga Sphaerococcus Coronopifolius. Journal of Natural Products, 64(8), 1024-1027. https://doi.org/10.1021/np0002684

38. Darias, J., Rovirosa, J., San Martin, A., Díaz, A.-R., Dorta, E., Cueto, M. (2001). Furoplocamioids A — C, novel polyhalogenated furanoid monoterpenes from Plocamium cartilagineum. Journal of Natural Products, 64(11), 1383-1387. https://doi.org/10.1021/np010297u

39. Barreto, M., Meyer, J. J. M. (2006). Isolation and antimicrobial activity of a lanosol derivative from Osmundaria serrata (Rhodophyta) and a visual exploration of its biofilm covering. South African Journal of Botany, 72(4), 521-528. https://doi.org/10.1016/j.sajb.2006.01.006

40. Kavita, K., Singh, V. K., Jha, B. (2014). 24-Branched δ5 sterols from Laurencia papillosa red seaweed with antibacterial activity against human pathogenic bacteria. Microbiological Research, 169(4), 301-306. https://doi.org/10.1016/j.micres.2013.07.002

41. dos Santos Amorim, R. N., Rodrigues, J. A. G., Holanda, M. L., Quinderé, A. L. G., de Paula, R. C. M., Melo, V. M. M. et al. (2012). Antimicrobial effect of a crude sulfated polysaccharide from the red seaweed gracilaria ornata. Brazilian Archives of Biology and Technology, 55(2), 171-181. https://doi.org/10.1590/S1516-89132012000200001

42. Stabili, L., Acquaviva, M. I., Biandolino, F., Cavallo, R. A., de Pascali, S. A., Fanizzi, F.P. et al. (2012). The lipidic extract of the seaweed Gracilariopsis longissima (Rhodophyta, Gracilariales): A potential resource for biotechnological purposes? New Biotechnology, 29(3), 443-450. https://doi.org/10.1016/j.nbt.2011.11.003

43. Abdel-Moneim, A.-M. E., El-Saadony, M. T., Shehata, A. M., Saad, A. M., Aldhumri, S. A., Ouda, S. M. et al. (2022). Antioxidant and antimicrobial activities of Spirulina platensis extracts and biogenic selenium nanoparticles against selected pathogenic bacteria and fungi. Saudi Journal of Biological Sciences, 29(2), 1197-1209. https://doi.org/10.1016/j.sjbs.2021.09.046


Review

For citations:


Dolganyuk V.F., Babich O.O., Sukhikh S.A., Ulrikh E.V., Kashirskikh E.V., Andreeva A.P. In vitro study of biologically active properties of complexes isolated from biomass of microscopic algae. Food systems. 2022;5(3):212-222. (In Russ.) https://doi.org/10.21323/2618-9771-2022-5-3-212-222

Views: 536


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)