Preview

Food systems

Advanced search

PROTEOLYTIC ACTIVITY OF MILK-CLOTTING ENZYMES OF DIFFERENT ORIGIN

https://doi.org/10.21323/2618-9771-2022-5-1-47-54

Abstract

The ratio of the milk-clotting activity (MCA) and proteolytic activity (PA) was compared for milk-clotting enzyme preparations (MEP) based on recombinant chymosin, chymosin of animal origin and microbial origin. The MCA value was measured in the international milk-clotting units (IMCU), the PA value was determined by the Anson method on the substrate from hemoglobin at 30 °C and рН 5.3. It was found that recombinant chymosins had the highest level of MCA/ PA: the group with MCA/ PA < ~1000 includes MEPs Chy-max® Extra 2235 Powder, Chy-max® Extra 600 Liquid and Renifer® 1800; the group with ~1000 < MCA/ PA < 1400 includes Chy-max® M 1000, Maxiren® 1800 and Chymax® Extra 2235 Powder; the group with MCA/ PA > 3500 includes MEP Chy-max® Supreme 1000. MEPs of animal origin had a lower indicator of MCA/ PA compared to recombinant chymosins, which for different trademarks of MEPs with different ratios of%chymosin to%pepsin was equal to: Naturen® Extra 220 (95/5) = 199.7 ± 8.0; rennet SF “Extra” (90/10) = 122.1 ±1.9; Kalase® 150 (80/20) = 115.1 ± 0.7; Naturen® Stamix (50/50) = 86.2 ± 0.2; rennet FS10 “Bovine pepsin” (10/90) = 38.7 ± 1.8. MEP of microbial origin had the lowest level of MCA/ PA among all three types of MEPs under study. MCA/ PA for different trademarks of MEPs of microbial origin was as follows: Meito® Microbial Rennet = 36.35 ± 0.48; Marzyme® 2200 MT = 31.03 ± 0.13; Fromase® 2200 TL = 18.57 ± 0.13; Fromase® 750 XLG = 16.06 ± 0.49.

About the Authors

D. S. Myagkonosov
All-Russian Scientific Research Institute of Butter- and Cheesemaking
Russian Federation

Dmitry S. Myagkonosov, Сandidate of Technical Sciences, Senior Researcher, Head of Research Department in Applied Biochemistry and Enzymology

152613, Yaroslavl Region, Uglich, Krasnoarmeysky Boulevard, 19
Tel.: +7–915–973–63–13



D. V. Abramov
All-Russian Scientific Research Institute of Butter- and Cheesemaking
Russian Federation

Dmitry V.  Abramov, Candidate of Biological Sciences, Senior Researcher, Head of Biochemical Research in Cheesemaking and Buttermaking

152613, Yaroslavl Region, Uglich, Krasnoarmeysky Boulevard, 19
Tel.:+ 7–910–970–42–97



I. N. Delitskaya
All-Russian Scientific Research Institute of Butter- and Cheesemaking
Russian Federation

Irina N.  Delitskaya, Candidate of Technical Sciences, Senior Researcher, Department of Cheesemaking

152613, Yaroslavl Region, Uglich, Krasnoarmeysky Boulevard, 19
Tel.: +7–48532–98–1–28



E. G. Ovchinnikova
All-Russian Scientific Research Institute of Butter- and Cheesemaking
Russian Federation

Elena G. Ovchinnikova, Researcher, Department of Biochemistry

152613, Yaroslavl Region, Uglich, Krasnoarmeysky Boulevard, 19
Tel.: + 7–48532–98–1–94



References

1. Langholm Jensen J., Mølgaard A., Navarro Poulsen J.-C., Harboe M. K., Simonsen J. B., Lorentzen A. M. et al. (2013). Camel and bovine chymosin: The relationship between their structures and cheese-making properties. Acta Crystallographica Section D. Biological Crystallography, 69(5), 901–913. https://doi.org/10.1107/S0907444913003260

2. Guinee, T. P., Wilkinson, M. G. (1992). Rennet coagulation and coagulants in cheese manufacture. Journal of Society of Dairy Technology, 45(4), 94–10. https://doi.org/10.1111/j.1471–0307.1992.tb01791.x

3. Dekker, P. (2019). Dairy Enzymes. Chapter in a book: Industrial Enzyme Applications. (Ed. by Vogel A. and May O.), 1st Ed. — Weinheim: WileyVCH Verlag GmbH & Co., 2019

4. Abd El-Salam, B. A. E.-Y., Ibrahim, O. A. E.-H., El-Sayed, H. A. E.-R. (2017). Purification and characterization of milk clotting enzyme from artichoke (Cynara cardunculus L.) flowers as coagulant on white soft cheese. International Journal of Dairy Science, 12(4), 254–265. https://doi.org/10.3923/ijds.2017.254.265

5. Kumar, A., Sharma, J., Mohanty, A. K., Grover, S., Batish, V. K. (2006). Purification and characterization of milk clotting enzyme from goat (Capra hircus). Comparative Biochemistry and Physiology — B Biochemistry and Molecular Biology, 145(1), 108–113. https://doi.org/10.1016/j.cbpb.2006.06.010

6. Jacob, M. Milchgerinnungsenzyme verschiedener herkunft und ihr einfluss auf käseausbeute und käsequalität. Dissertation. Dresden: Technische Universität Dresden., 2011. Retrieved from http://d-nb.info/1067190643/34 Accessed February 28, 2022

7. Vishwanatha, K. S., Appu Rao, A. G., Singh, S. A. (2010). Production and characterization of a milk-clotting enzyme from Aspergillus oryzae MTCC5341. Applied Microbiology and Biotechnology, 85(6), 1849–1859. https://dx.doi.org/10.1007/s00253–009–2197-z

8. Yuqiu, L., Tan, H., Da, L., Zhoulin, L., Yanping, C., Yuanyuan, J. et al. (2015). Screening and Characterization of a Mutant Fungal Aspartic Proteinase from Mucor pusillus. The Open Biotechnology Journal, 9, 119–126. http://doi.org/10.2174/1874070701509010119

9. Shamtsyan, M., Dmitriyeva, T., Kolesnikov, B., Denisova, N. (2014). Novel milk-clotting enzyme produced by Coprinus lagopides basidial mushroom. LWT — Food Science and Technology, 58(2), 343–347. http://doi.org/10.1016/j.lwt.2013.10.009

10. Zikiou, A., Zidoune, M. N. (2019). Enzymatic extract from flowers of Algerian spontaneous Cynara cardunculus: Milk-clotting properties and use in the manufacture of a Camembert-type cheese. International Journal of Dairy Technology, 72(1), 89–99. https://doi.org/10.1111/1471–0307.12563

11. Brutti, C. B., Pardo, M. F., Caffini, N. O., Natalucci, C. L. (2012). Onopordum acanthium L. (Asteraceae) flowers as coagulating agent for cheesemaking. LWT — Food Science and Technology, 45(2), 172–179. https://doi.org/10.1016/j.lwt.2011.09.001

12. Kobayashi, H., Kusakabe, I., Murakami, K. (1983). Purification and Characterization of Two Milk-clotting Enzymes from Irpex lacteus. Agricultural and Biological Chemistry, 47(3), 551–558. https://doi.org/10.1080/00021369.1983.10865677

13. Montgomery D. C. (2013). Design and analysis of experiments. 8th Ed. Wiley., 2013

14. Working together to produce more cheese from milk. Retrieved from http://sdt-static.s3.amazonaws.com/media/uploads/2019/05/13/1CHR%20HANSEN190508%20SDT%20Presentation%20CHR%20Hansen.pdf Accessed February 28, 2022

15. Fermentation Chymosin: RENIFER Retrieved from https://proquiga.es/en/feed-additives/rennet-coagulants/chymosin/gmx-niv39.htm Accessed February 28, 2022

16. Harboe, M., Hubert, L., Van den Brink, H. La chymosine produite par fermentation. Chapter in book: Présures et coagulants de substitution. Comment faire le bon choix? (Ed. by J.-C. Collin). Editions Quae. 2015

17. Kappeler, S. R., van der Brink, H. J. M., Rahbek-Nielsen, H., Farah, Z., Puhan, Z., Hansen, E. B. et al. (2006). Characterization of recombinant camel chymosin reveals superior properties for the coagulation of bovine and camel milk. Biochemical and Biophysical Research Communications, 342, 647–654. https://doi.org/10.1016/j.bbrc.2006.02.014

18. HA-LA BIOTEC. CHY-MAX® SUPREME — A PRODUÇÃO DE QUEIJO EM UM NOVO PATAMAR Retrieved from http://halabiotec.com.br/wp-content/uploads/2019/06/Ha-La_Biotec_147.pdf Accessed February 28, 2022

19. Harboe, M., Broe, M. L. Qvist, K. B. (2010). The Production, Action and Application of Rennet and Coagulants. Chapter in a book: Technology of cheesemaking. (ed. Law B. A., Tamime A. Y.), 2nd Ed. Chichester: Blackwell Publishing Ltd., 2010

20. Jacob, M., Jaros, D., Rohm, H. (2011). Recent advances in milk clotting enzymes. International Journal of Dairy Technology, 64(1), 14–33. https://doi.org/10.1111/j.1471–0307.2010.00633.x

21. Roller, S., Goodenough, P. W. (2012). Food enzymes. Chapter in book: Genetic Modification in the Food Industry. A Strategy for Food Quality Improvement (Ed. by S. Roller, S. Harlander). Springer. 2012

22. Preetha, S., Boopathy, R. (1997). Purification and characterization of a milk-clotting protease from Rhizomucor miehei. World Journal of Microbiology and Biotechnology, 13(5), 573–578. http://doi.org/10.1023/A:1018525711573

23. PHYSIOLOGY AND MAINTENANCE — Vol. II — Industrial Use of Enzymes — Matti Leisola, Jouni Jokela, Ossi Pastinen, Ossi Turunen, Hans E. Schoemaker. Retrieved from http://www.eolss.net/Sample-Chapters/C03/E6–54–02–10.pdf Accessed February 28, 2022

24. Yegin, S., Dekker, P. (2013). Progress in the field of aspartic proteinases in cheese manufacturing: structures, functions, catalytic mechanism, inhibition, and engineering. Dairy Science and Technology, 93(6), 565– 594. https://doi.org/10.1007/s13594–013–0137–2

25. Nestorovski, T., Velkoska-Markovska, L., Srbinovska, S., Miskoska-Milevska, E., Petanovska-Ilievska, B., Popovski, Z.T. (2019). Different Approaches in Analyzing Chymosin Purity. Journal of Agricultural, Food and Environmental Sciences, 73(3), 24–29

26. Andrén, A. (2011). Cheese: rennets and coagulants. Encyclopedia of dairy science. Pp. 574–578. https://dx.doi.org/10.1016/b978–0–12–374407–4.00069–8

27. Moschopoulou E. Microbial Milk Coagulants. Chapter 11 in book: Microbial Enzyme Technology in Food Applications (Ed. by R. C. Ray and C. M. Rosell). Boca Raton. CRC Press. 2017

28. Garg, S. K., Johri, B. N. (1994). Rennet: current trends and future research. Food Reviews International, 10(3), 313–355. https://doi.org/10.1080/87559129409541005

29. Smith, J. L., Billings, G. E., Yada, R. Y. (1991). Chemical modification of amino groups in mucor miehei aspartyl proteinase, porcine pepsin, and chymosin. I. Structure and function. Agricultural and Biological Chemistry, 55(8), 2009–2016. https://doi.org/10.1080/00021369.1991.10870915

30. Garcia, H. S., Lopez-Hernandez, A., Hill, C. G. (2017). Enzyme Technology — Dairy Industry Applications. Comprehensive Biotechnology (Ed. Moo-Young M.) 3rd Ed. Pergamon. 2017. https://doi.org/10.1016/B978–0–08–088504–9.00005–2

31. Trono, D. (2019). Recombinant Enzymes in the Food and Pharmaceutical Industries. Chapter in a book: Advances in Enzyme Technology. (Ed. by Singh R. S., Singhania R. R., Pandey A., Larroche C.). Elsevier B. V. 2019

32. Meito Microbial Rennet (MR) from Rhizomucor pusillus Lindt / Rhizomucor miehei Mucorpepsin (milk-clotting enzyme) EC3.4.23.23 Retrieved from http://www.meito-sangyo.co.jp/kaseihin/rennet/mr.html Accessed February 28, 2022

33. Thunell, R. K., Duersch, J. W., Ernstrom, C. A. (1979). Thermal inactivation of residual milk clotting enzymes in whey. Journal of Dairy Science, 62(3), 373–377. https://doi.org/10.3168/jds.S0022–0302(79)83254–3

34. Higashi, T., Kobayashi Y., Iwasaki S. (1982). Microbial rennet having increased milk coagulating activity and method and method for production thereof. US Patent US4530906A. Retrieved from http://patents.google.com/patent/US4530906A/en Accessed February 28, 2022

35. Myagkonosov, D. S., Smykov, I. T., Abramov, D. V., Delitskaya, I. N., Ovchinnikova, E. G. (2021). Influence of milk-clotting enzymes of animal and microbial origin on the quality and shelf life of soft cheeses. Food Systems, 4(4), 286–293. https://doi.org/10.21323/2618–9771–2021–4–4–286–293 (In Russian)

36. Myagkonosov, D. S., Mordvinova V. A., Abramov, D. V., Ovchinnikova E. G., Municheva T. E. (2020). Technological properties of milk clotting enzymes of different origin. Part I. The effect of the type of used milk clotting enzyme on processes in a cheesemaking bath. Cheesemaking and Buttermaking, 3, 16–19. https://doi.org/10.31515/2073–4018–2020–3–16–19 (In Russian)

37. Myagkonosov D. S., Mordvinova V. A., Abramov D. V., Ovchinnikova E. G., Municheva T. E. (2020). Technological properties of milk clotting enzymes of different origin. Part II. Influence of the type of milk clotting enzyme used on proteolysis processes during cheese ripening. Cheesemaking and Buttermaking, 5, 10–13. https://doi.org/10.31515/2073–4018–2020–5–10–13 (In Russian)

38. Myagkonosov, D. S., Mordvinova, V. A., Delitskaya, I.N., Abramov, D. V., Ovchinnikova E. G. (2020). The influence of milk-clotting enzymes on the functional properties of pizza-cheeses. Food Systems, 3(3), 42–50. https://doi.org/10.21323/2618–9771–2020–3–3–42–50


Review

For citations:


Myagkonosov D.S., Abramov D.V., Delitskaya I.N., Ovchinnikova E.G. PROTEOLYTIC ACTIVITY OF MILK-CLOTTING ENZYMES OF DIFFERENT ORIGIN. Food systems. 2022;5(1):47-54. (In Russ.) https://doi.org/10.21323/2618-9771-2022-5-1-47-54

Views: 965


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)