Preview

Food systems

Advanced search

Studies of the content of optical isomers of amino acids in food

https://doi.org/10.21323/2618-9771-2021-4-3-190-196

Full Text:

Abstract

Food products undergo a wide range of chemical changes during their processing and storage. As a result of such reactions, both new chemical compounds and optical isomerization of compounds already present in the composition can be formed. The second case concerns the formation of D-enantiomers of amino acids from their L-forms. D-forms of amino acids not only have no biological value for the body, but also often have a negative effect on the human body due to the impossibility of metabolizing them and, as a consequence, their accumulation in the body. The aim of the work was to study the quantitative content of D-isomers of amino acids in milk that passed the ultra-pasteurization process and dairy products based on bacterial starter culture. The research results showed that in both cases of the considered technological methods, amino acid isomerization occurs. The highest degree of isomerization was observed in kefir samples relative to other samples. However, from the results obtained, it is not possible to estimate which amino acid is most susceptible to the racemization process, since different samples contained different D-isomers of amino acids. The smallest amount of D-isomers is found in milk that has not undergone any industrial processing. Studies have shown that technological processing of milk inevitably leads to the formation of D-isomers of amino acids, and this, in turn, at least reduces the nutritional and biological value of the product, which makes it necessary to conduct deeper studies in this direction to establish the most important factors in the process of racemization of amino acids in food products.

About the Authors

A. S. Knyazeva
V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences
Russian Federation

Aleksandra S. Knyazeva — junior researcher, Laboratory “Scientific and methodical work, biological and analytical research”, V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences.

26, Talalikhina, 109316, Moscow.

Tel.: +7-495-676-79-61



D. A. Utyanov
V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences
Russian Federation

Dmitry A. Utyanov — candidate of technical sciences, research scientist, Laboratory «Scientific and methodical work, biological and analytical research», V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences.

26, Talalikhina, 109316, Moscow.

Tel.: +7-495-676-79-61



A. V. Kulikovskii
V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences
Russian Federation

Andrey V. Kulikovskii — candidate of technical sciences, a head of laboratory «Scientific and methodical work, biological and analytical research», V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences.

26, Talalikhina, 109316, Moscow.

Tel.: +-495-676-60-11



A. A. Kurzova
V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences
Russian Federation

Anastasiya A. Kurzova — junior researcher, Laboratory “Scientific and methodical work, biological and analytical research”, V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences.

26, Talalikhina, 109316, Moscow.

Tel.: +7-495-676-79-61



References

1. Silva-Adaya, D., Garza-Lombo, C., Gonsebatt, M. E. (2021). Xenobiotic transport and metabolism in the human brain. NeuroToxicology, 86, 125138. https://doi.org/10.1016/j.neuro.2021.08.004

2. Aung, M. T., Song, Y., Ferguson, K. K., Cantonwine, D. E., Zeng, L., McElrath, T. F. et al. (2020). Application of an analytical framework for multivariate mediation analysis of environmental data. Nature Communications, 11(1), Article 5624. https://doi.org/10.1038/s41467-020-19335-2

3. Snyder, S. H., Kim, P. M. (2000). D-amino acids as putative neurotransmitters: Focus on D-serine. Neurochemical Research, 25(5), 553-560. https://doi.org/10.1023/a:1007586314648

4. Furuchi, T., Homma, H. (2005). Free D-aspartate in mammals. Biological and Pharmaceutical Bulletin, 28(9), 1566-1570. https://doi.org/10.1248/bpb.28.1566

5. Bastings, J. J. A. J., van Eijk, H. M., Damink, S. W. O., Rensen, S. S. (2019). D-amino acids in health and disease: A focus on cancer. Nutrients, 11(9), Article 2205. https://doi.org/10.3390/nu11092205

6. Hamase, K. (2007). Sensitive two-dimensional determination of small amounts of D-amino acids in mammals and the study on their functions. Chemical and Pharmaceutical Bulletin, 55(4), 503-510. https://doi.org/10.1248/cpb.55.503

7. D'Aniello, G., Grieco, N., Di Filippo, M. A., Cappiello, F., Topo, E., D'Aniello, E., Ronsini, S. (2007). Reproductive implication of D-aspartic acid in human pre-ovulatory follicular fluid. Human Reproduction, 22(12), 3178-3183. https://doi.org/10.1093/humrep/dem328

8. Karakawa, S., Shimbo, K., Yamada, N., Mizukoshi, T., Miyano, H., Mita, M. et al. (2015). Simultaneous analysis of D-alanine, D-aspartic acid, and D-serine using chiral high-performance liquid chromatography-tandem mass spectrometry and its application to the rat plasma and tissues. Journal of Pharmaceutical and Biomedical Analysis, 115, 123-129. https://doi.org/10.1016/j.jpba.2015.05.024

9. Visser, W. F., Verhoeven-Duif, N. M., Ophoff, R., Bakker, S., Klomp, L. W., Berger, R. et al. (2011). A sensitive and simple ultra-high-performance-liquid chromatography-tandem mass spectrometry based method for the quantification of d-amino acids in body fluids. Journal of Chromatography A, 1218(40), 7130-7136. https://doi.org/10.1016/j.chroma.2011.07.087

10. Ohide, H., Miyoshi, Y., Maruyama, R., Hamase, K., Konno, R. (2011). D-amino acid metabolism in mammals: Biosynthesis, degradation and analytical aspects of the metabolic study. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 879(29), 31623168. https://doi.org/10.1016/j.jchromb.2011.06.028

11. Xing, Y., Li, X., Guo, X., Cui, Y. (2016). Simultaneous determination of 18 d-amino acids in rat plasma by an ultrahigh-performance liquid chromatography-tandem mass spectrometry method: Application to explore the potential relationship between alzheimer's disease and d-amino acid level alterations. Analytical and Bioanalytical Chemistry, 408(1), 141-150. https://doi.org/10.1007/s00216-015-9086-3

12. Man, E. H., Bada, J. L. (1987). Dietary D-amino acids. Annual Review of Nutrition, 7, 209-225. https://doi.org/10.1146/annurev.nu.07.070187.001233

13. Finch, L. R., Hird, F. J. R. (1960). The uptake of amino acids by isolated segments of rat intestine II. A survey of affinity for uptake from rates of uptake and competition for uptake. BBA — Biochimica Et Biophysica Acta, 43(C), 278-287. https://doi.org/10.1016/0006-3002(60)90438-8

14. Cartus, A. T. (2012). D-amino acids and cross-linked amino acids as food contaminants. Chapter in a book: Chemical contaminants and residues in food. Woodhead Publishing Limited. https://doi.org/10.1533/9780857095794.2.286

15. Friedman, M., Levin, C. E. (2012). Nutritional and medicinal aspects of D-amino acids. Amino Acids, 42(5), 1553-1582. https://doi.org/10.1007/s00726-011-0915-1

16. D'Orazio, G., Cifuentes, A., Fanali, S. (2008). Chiral nano-liquid chromatography-mass spectrometry applied to amino acids analysis for orange juice profiling. Food Chemistry, 108(3), 1114-1121.https://doi.org/10.1016/j.foodchem.2007.11.062

17. Guimont, Ch. (2002). Change of free amino acids in M17 medium after growth of Streptococcus thermophilus and identification of a glutamine transport ATP-binding protein. International Dairy Journal, 12(9), 729736. https://doi.org/10.1016/S0958-6946(02)00068-7

18. Mangia, N. P., Murgia, M. A., Garau, G., Sanna, M. G., Deiana, P. (2008). Influence of selected lab cultures on the evolution of free amino acids, free fatty acids and fiore sardo cheese microflora during the ripening. Food Microbiology, 25(2), 366-377. https://doi.org/10.1016/j.fm.2007.09.009

19. Rocco, A., Aturki, Z., Fanali, S. (2013). Chiral separations in food analysis. TrAC — Trends in Analytical Chemistry, 52, 206-225. https://doi.org/10.1016/j.trac.2013.05.022

20. Kris-Etherton, P. M., Hecker, K. D., Bonanome, A., Coval, S. M., Binkoski, A. E., Hilpert, K. F. et al. (2002). Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. American Journal of Medicine, 113(9 SUPPL.2), 71-88. https://doi.org/10.1016/S0002-9343(01)00995-0

21. Inoue, Y., Sugahara, N., Wada, T. (2001). Vital role of entropy in photo-chirogenesis. Pure and Applied Chemistry, 73(3), 475-480. https://doi.org/10.1351/pac200173030475

22. Kojo, S., Uchino, H., Yoshimura, M., Tanaka, K. (2004). Racemic D, L-as-paragine causes enantiomeric excess of other coexisting racemic D, L-amino acids during recrystallization: A hypothesis accounting for the origin of L-amino acids in the biosphere. Chemical Communications, 19, 2146-2147. https://doi.org/10.1039/b409941a

23. Konno, R., Bruckner, H., D'Aniello, A., Fisher, G.H., Fujii, N., Homma, H. (2009). D-Amino Acids: Practical Methods and Protocols. D-Amino Acids in Peptides and Proteins. Nova Science Publishers, Inc., New York, USA. 2009.

24. Zawirska-Wojtasiak, R. (2006). Chirality and the nature of food authenticity of aroma. Aliment Acta Scientiarum Polonorum, Technologia Alimentaria, 5(1), 21-36.

25. Soyez, D., Toullec, J. -Y., Montagne, N., Ollivaux, C. (2011). Experimental strategies for the analysis of d-amino acid containing peptides in crustaceans: A review. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 879(29), 3102-3107. https://doi.org/10.1016/j.jchromb.2011.03.032

26. Muller, C., Fonseca, J. R., Rock, T. M., Krauss-Etschmann, S., Schmitt-Kopplin, P. (2014). Enantioseparation and selective detection of D-amino acids by ultra-high-performance liquid chromatography/mass spectrometry in analysis of complex biological samples. Journal of Chromatography A, 1324, 109-114. https://doi.org/10.1016/j.chroma.2013.11.026

27. Sakai-Kato, K., Kinouchi, T., Fujii, N., Imai, K., Utsunomiya-Tate, N. (2009). Screening system for D-asp-containing proteins using D-aspartyl endopeptidase and two-dimensional gel electrophoresis. Amino Acids, 36(1), 125-129. https://doi.org/10.1007/s00726-008-0040-y

28. Sadakane, Y., Yamazaki, T., Nakagomi, K., Akizawa, T., Fujii, N., Tanimura, T. et al. (2003). Quantification of the isomerization of asp residue in recombinant human aA-crystallin by reversed-phase HPLC. Journal of Pharmaceutical and Biomedical Analysis, 30(6), 1825-1833.https://doi.org/10.1016/s0731-7085(02)00525-3

29. Csapo, J., Csapo-Kiss, Zs., Schmidt, J., Martin, T. G (2001). Quantitative determination of protein of bacterial origin. TrAC-Trends in Analytical Chemistry, 20(1), 42-48. https://doi.org/10.1016/s0167-2940(01)90105-0

30. Csapo, J., Csapo-Kiss, Z., Stefler, J., Martin, T. G., Nemethy, S. (1995). Influence of mastitis on D-amino acid content of milk. Journal of Dairy Science, 78(11), 2375-2381. https://doi.org/10.3168/jds.S0022-0302(95)76865-5

31. Kehagias, C., Csapo, J., Konteles, S., Kolokitha, E., Koulouris, S., Csapo-Kiss, Z. (2008). Support of growth and formation of d-amino acids by bifidobacterium longum in cows', ewes', goats' milk and modified whey powder products. International Dairy Journal, 18(4), 396-402. https://doi.org/10.1016/j.idairyj.2007.11.014


Review

For citations:


Knyazeva A.S., Utyanov D.A., Kulikovskii A.V., Kurzova A.A. Studies of the content of optical isomers of amino acids in food. Food systems. 2021;4(3):190-196. (In Russ.) https://doi.org/10.21323/2618-9771-2021-4-3-190-196

Views: 287


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)