Squalene — a natural biologically active component of nutrition of the 21st century
https://doi.org/10.21323/2618-9771-2025-8-4-583-594
Abstract
Squalene is a carbon-containing organic compound of the triterpene series. It is a precursor of many vitamins, hormones and sterols in a body of mammals, plants, fungi and bacteria. The purpose of this scientific literature review was to systematize data on the physicochemical properties of squalene, sources and methods of its production, as well as to reveal the advantages of using squalene in the formulations of modern functional foods and nutrients. Squalene is easily oxidized by molecular oxygen, as a result of which double bonds are converted into an oxidized form by the chain reactions in which Pi-bonds or π-bonds (unsaturated carbon atoms) are broken and active oxygen radicals are attached to them; as a result saturated forms of the molecule are produced. Squalene is especially abundant in vegetable oils of olive, amaranth, palm, as well as in lupine bean and rice germ oils. Squalene is involved in the biosynthesis of phytosterol, cholesterol, and vitamin D; it protects human skin from UV radiation and other oxidative effects, regulates the cardiovascular system, has the ability to capture free radicals and bind toxic compounds and carcinogens. In the case of using exogenous squalene, it is possible to slow down the growth of tumor cells and reduce the negative impact of oxidative stress. This study presents the main physicochemical properties of natural squalene, provides information on various sources and various strategies for obtaining squalene. The article discusses the therapeutic potential of squalene and the prospects for its application in the formulation of modern functional food products and nutrients. This study will contribute to the search process for new research directions in the field of obtaining squalene from plant raw materials, bacteria, fungi, microalgae, and will also serve as a potential for the development of strategies for increasing the stability and bioavailability of squalene, as well as the development of engineering approaches to large-scale production of functional foods and nutrients based on squalene.
Keywords
About the Authors
E. V. UlrikhRussian Federation
Elena V. Ulrikh, Doctor of Technical Sciences, Professor, Department of Technological Equipment Engineering
1, Prospekt Sovetskiy, 236022, Kaliningrad
S. A. Sukhikh
Russian Federation
Stanislav A. Sukhikh, Doctor of Technical Sciences., Docent, Head of Laboratory
14, Nevsky str., 236041, Kaliningrad
I. G. Samusev
Russian Federation
Ilya G. Samusev, Candidate of Physico-Mathematical Sciences, Acting ViceRector for Research
14, Nevsky str., 236041, Kaliningrad
O. O. Babich
Russian Federation
Olga O. Babich, Doctor of Technical Sciences, Docent, Director of the Scientific and Educational Center
14, Nevsky str., 236041, Kaliningrad
References
1. Spanova, M., Daum, G. (2011). Squalene — biochemistry, molecular biology, process biotechnology, and applications. European Journal of Lipid Science and Technology, 113(11), 1299–1320. https://doi.org/10.1002/ejlt.201100203
2. Lozano-Grande, M. A., Gorinstein, S., Espitia-Rangel, E., Dávila-Ortiz, G., Martínez-Ayala, A. L. (2018). Plant sources, extraction methods, and uses of squalene. International Journal of Agronomy, 2018(1), Article 1829160. https://doi.org/10.1155/2018/1829160
3. Shalu, S., Karthikanath, P. K. R., Vaidyanathan, V. K., Blank, L. M., Germer, A., Balakumaran, P. A. (2024). Microbial squalene: A sustainable alternative for the cosmetics and pharmaceutical industry — A review. Engineering in Life Sciences, 24(10), Article e202400003. https://doi.org/10.1002/elsc.202400003
4. Popa, O., Băbeanu, N. E., Popa, I., Niță, S., Dinu-Pârvu, C. E. (2015). Methods for obtaining and determination of squalene from natural sources. BioMed Research International, 2015(1), Article 367202. https://doi.org/10.1155/2015/367202
5. Yarkent, Ç., Oncel, S. S. (2022). Recent progress in microalgal squalene production and its cosmetic application. Biotechnology and Bioprocess Engineering, 27(3), 295–305. https://doi.org/10.1007/s12257-021-0355-z
6. Kim, S. K., Karadeniz, F. (2012). Biological importance and applications of squalene and squalane. Advances in Food and Nutrition Research, 65, 223–233. https://doi.org/10.1016/B978-0-12-416003-3.00014-7
7. Naziri, E., Tsimidou, M. Z. (2013). Formulated squalene for food related applications. Recent Patents on Food, Nutrition and Agriculture, 5(2), 83–104. https://doi.org/10.2174/1876142911305020001
8. Cheng, L., Ji, T., Zhang, M., Fang, B. (2024). Recent advances in squalene: Biological activities, sources, extraction, and delivery systems. Trends in Food Science and Technology, 146, Article 104392. https://doi.org/10.1016/j.tifs.2024.104392
9. Gohil, N., Bhattacharjee, G., Khambhati, K., Braddick, D., Singh, V. (2019). Engineering strategies in microorganisms for the enhanced production of squalene: Advances, challenges and opportunities. Frontiers in Bioengineering and Biotechnology, 7, Article 50. https://doi.org/10.3389/fbioe.2019.00050
10. Kumar, L. R. G., Tejpal, C. S., Anas, K. K., Chatterjee, N. S., Anandan, R., Mathew, S. et al. (2023). Squalene: Bioactivity, extraction, encapsulation, and future perspectives. Chapter in a book: Marine Antioxidants. Academic Press, 2023. https://doi.org/10.1016/B978-0-323-95086-2.00038-2
11. Xu, W., Ma X., Wang, Y. (2016). Production of squalene by microbes: An update. World Journal of Microbiology and Biotechnology, 32(12), Article 195. https://doi.org/10.1007/s11274-016-2155-8
12. Lyon, C. K., Becker, R. (1987). Extraction and refining of oil from amaranth seed. Journal of the American Oil Chemists’ Society, 64, 233–236. https://doi.org/10.1007/bf02542008
13. Paramasivan, K., Mutturi, S. (2022). Recent advances in the microbial production of squalene. World Journal of Microbiology and Biotechnology, 38(5), Article 91. https://doi.org/10.1007/s11274-022-03273-w
14. Bhattacharjee, P., Shukla, V. B., Singhal, R. S., Kulkarni, P. R. (2001). Studies on fermentative production of squalene. World Journal of Microbiology and Biotechnology, 17, 811–816. https://doi.org/10.1023/A:1013573912952
15. Wei, L.-J., Kwak, S., Liu, J.-J., Lane, S., Hua, Q., Kweon, D.-H. et al. (2018). Improved squalene production through increasing lipid contents in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 115(7), 1793–1800. https://doi.org/10.1002/bit.26595
16. Ibrahim, H., Ali, A. (2023). Facile synthetical method of squalene from vegetable residue. Journal of Chemical Engineering and Industrial Biotechnology, 9(1), 8–12. https://doi.org/10.15282/jceib.v9i1.9369
17. Langdon, R. G., Bloch, K. (1953). The biosynthesis of squalene. Journal of Biological Chemistry, 200(1), 129–134. https://doi.org/10.1016/S0021-9258(18)38445-X
18. Liu, G. C. K., Ahrens, E. H. Jr, Schreibman, P. H., Crouse, J. R. (1976). Measurement of squalene in human tissues and plasma: Validation and application. Journal of Lipid Research, 17(1), 38–45. https://doi.org/10.1016/S0022-2275(20)37014-0
19. Micera, M., Botto, A., Geddo, F., Antoniotti, S., Bertea, C. M., Levi, R. et al. (2020). Squalene: More than a step toward sterols. Antioxidants, 9(8), Article 688. https://doi.org/10.3390/antiox9080688
20. Aguilera, Y., Dorado, M. E., Prada, F. A., Martínez, J. J., Quesada, A., RuizGutiérrez, V. (2005). The protective role of squalene in alcohol damage in the chick embryo retina. Experimental Eye Research, 80(4), 535–543. https://doi.org/10.1016/j.exer.2004.11.003
21. Pham, D. M., Boussouira, B., Moyal, D., Nguyen, Q. L. (2015). Oxidization of squalene, a human skin lipid: A new and reliable marker of environmental pollution studies. International Journal of Cosmetic Science, 37(4), 357–365. https://doi.org/10.1111/ics.12208
22. Xu, L., Porter, N. A. (2015). Free radical oxidation of cholesterol and its precursors: Implications in cholesterol biosynthesis disorders. Free Radical Research, 49(7), 835–849. https://doi.org/10.3109/10715762.2014.985219
23. Brunner, G., Saure, C., Buss, D. (2009). Phase equilibrium of hydrogen, carbon dioxide, squalene, and squalane. Journal of Chemical and Engineering Data, 54(5), 1598–1609. https://doi.org/10.1021/je800926z
24. Psomiadou, E., Tsimidou, M. (1999). On the role of squalene in olive oil stability. Journal of Agricultural and Food Chemistry, 47(10), 4025–4032. https://doi.org/10.1021/jf990173b
25. Wołosik, K., Knaś, M., Zalewska, A., Niczyporuk, M., Przystupa, A. W. (2013). The importance and perspective of plant-based squalene in cosmetology. Journal of Cosmetic Science, 64(1), 59–65.
26. Lopez, S., Bermudez, B., Montserrat-de la Paz, S. (2014). Membrane composition and dynamics: A target of bioactive virgin olive oil constituents. Biochimica et Biophysica Acta (BBA) — Biomembranes, 1838(6), 1638–1656. https://doi.org/10.1016/j.bbamem.2014.01.007
27. Fox, C. B. (2009). Squalene emulsions for parenteral vaccine and drug delivery. Molecules, 14(9), 3286–3312. https://doi.org/10.3390/molecules14093286
28. Martinez-Correa, H. A., Gomes, D. C. A., Kanehisa, S. L., Cabral, F. A. (2010). Measurements and thermodynamic modeling of the solubility of squalene in supercritical carbon dioxide. Journal of Food Engineering, 96(1), 43–50. https://doi.org/10.1016/j.jfoodeng.2009.06.041
29. Yao, Y., Zheng, Y., Dai, H., Jia, Y., Li, C. (2024). Kinetics of squalene quenching singlet oxygen and the thermal degradation products identification. Journal of Agricultural and Food Chemistry, 72(28), 15755–15764. https://doi.org/10.1021/acs.jafc.4c03329
30. Tetko, I. V., Gasteiger, J., Todeschini, R., Mauri, A., Livingstone, D., Ertl, P. et al. (2005). Virtual computational chemistry laboratory — design and description. Journal of Computer-Aided Molecular Design, 19, 453–463. https://doi.org/10.1007/s10822-005-8694-y
31. Catchpole, O. J., Von Kamp, J.-C., Grey, J. B. (1997). Phase equilibrium for the extraction of squalene from shark liver oil using supercritical carbon dioxide. Industrial and Engineering Chemistry Research, 36(10), 4318–4324. https://doi.org/10.1021/ie9702237
32. Rosales-Garcia, T., Rosete-Barreto, J. M., Pimentel-Rodas, A., Davila-Ortiz, G., Galicia-Luna, L. A. (2018). Solubility of squalene and fatty acids in carbon dioxide at supercritical conditions: Binary and ternary systems. Journal of Chemical and Engineering Data, 63(1), 69–76. https://doi.org/10.1021/acs.jced.7b00620
33. Ruivo, R. M., Paiva, A., Simões, P. C. (2004). Phase equilibria of the ternary system methyl oleate/squalene/carbon dioxide. The Journal of Supercritical Fluids, 29(1–2), 77–85. https://doi.org/10.1016/S0896-8446(03)00069-X
34. Catchpole, O. J., Proells, K. (2001). Solubility of squalene, oleic acid, soya oil, and deepsea shark liver oil in subcritical R134a from 303 to 353 K. Industrial and Engineering Chemistry Research, 40(3), 965–972. https://doi.org/10.1021/ie000590+
35. Al-Darmaki, N., Lu, T., Al-Duri, B., Harris, J. B., Favre, T. L. F., Bhaggan, K. et al. (2011). Solubility measurements and analysis of binary, ternary and quaternary systems of palm olein, squalene and oleic acid in supercritical carbon dioxide. Separation and Purification Technology, 83, 189–195. https://doi.org/10.1016/j.seppur.2011.09.043
36. Whittenton, J., Harendra, S., Pitchumani, R., Mohanty, K., Vipulanandan, C., Thevananther, S. (2008). Evaluation of asymmetric liposomal nanoparticles for encapsulation of polynucleotides. Langmuir, 24(16), 8533–8540. https://doi.org/10.1021/la801133j
37. Allison, A. C. (1999). Squalene and squalane emulsions as adjuvants. Methods, 19(1), 87–93. https://doi.org/10.1006/meth.1999.0832
38. Reddy, L. H., Couvreur, P. (2009). Squalene: A natural triterpene for use in disease management and therapy. Advanced Drug Delivery Reviews, 61(15), 1412– 1426. https://doi.org/10.1016/j.addr.2009.09.005
39. Eilam, Y., Pintel, N., Khattib, H., Shagug, N., Taha, R., Avni, D. (2022). Regulation of cholesterol metabolism by phytochemicals derived from algae and edible mushrooms in non-alcoholic fatty liver disease. International Journal of Molecular Sciences, 23(22), Article 13667. https://doi.org/10.3390/ijms232213667
40. Moore, K. J., Rayner, K. J., Suárez, Y., Fernández-Hernando, C. (2010). MicroRNAs and cholesterol metabolism. Trends in Endocrinology and Metabolism, 21, 699–706. https://doi.org/10.1016/j.tem.2010.08.008
41. Ali, A. M. M., Bavisetty, S. C. B., Prodpran, T., Benjakul, S. (2019). Squalene from fish livers extracted by ultrasound-assisted direct in situ saponification: Purification and molecular characteristics. Journal of the American Oil Chemists’ Society, 96(9), 1059–1071. https://doi.org/10.1002/aocs.12262
42. Ali, A. M. M., Prodpran, T., Benjakul, S. (2019). Effect of squalene rich fraction from shark liver on mechanical, barrier and thermal properties of fish (Probarbus Jullieni) skin gelatin film. Food Hydrocolloids, 96, 123–133. https://doi.org/10.1016/j.foodhyd.2019.05.019
43. López-Puebla, S., Arias-Santé, M. F., Romero, J., de Camargo, A. C., RincónCervera, M. Á. (2025). Analysis of fatty acid profile, α-tocopherol, squalene and cholesterol content in edible parts and by-products of south pacific wild fishes. Marine Drugs, 23(3), Article 104. https://doi.org/10.3390/md23030104
44. Orban, E., Di Lena, G., Nevigato, T., Masci, M., Casini, I., Caproni, R. (2011). Proximate, unsaponifiable lipid and fatty acid composition of bogue (Boops boops) and horse mackerel (Trachurus trachurus) from the Italian trawl fishery Journal of Food Composition and Analysis, 24(8), 1110–1116. https://doi.org/10.1016/j.jfca.2011.03.009
45. Purkiewicz, A., Czaplicki, S., Pietrzak-Fiećko, R. (2022). The occurrence of squalene in human milk and infant formula. Health International Journal of Environmental Research and Public Health, 19(19), Article 12928. https://doi.org/10.3390/ijerph191912928
46. Piesiewicz, H. (2024). Squalene — an extremely valuable organic compound for health and beauty. AURA, 50(8), Article 149940. https://doi.org/10.15199/2.2024.8.1 (In Polish)
47. Goudjil, H., Torrado, S., Fontecha, J., Martínez-Castro, I., Fraga, M. J., Juárez, M. (2003). Composition of cholesterol and its precursors in ovine milk. Le Lait, 83(2), 153–160. https://doi.org/10.1051/lait:2003005
48. Kallio, M. J., Siimes, M. A., Perheentupa, J., Salmenperä, L., Miettinen, T. A. (1989). Cholesterol and its precursors in human milk during prolonged exclusive breast-feeding. The American Journal of Clinical Nutrition, 50(4), 782–785. https://doi.org/10.1093/ajcn/50.4.782
49. Ushakova, T. M., Eller, K. I., Medvedev, F. A., Aksiuk, I. N. (1979). Carbohydrates of the chicken egg yolk. Problems of Nutrition, 3, 69–74. (In Russian)
50. Deprez, P. P., Volkman, J. K., Davenport, S. R. (1990). Squalene content and neutral lipis composition of Livers from Deep-sea sharks caught in Tasmanian waters. Marine and Freshwater Research, 41(3), 375–387. https://doi.org/10.1071/MF9900375
51. Bakes, M. J., Nichols, P. D. (1995). Lipid, fatty acid and squalene composition of liver oil from six species of deep-sea sharks collected in southern Australian waters. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 110(1), 267–275. https://doi.org/10.1016/0305-0491(94)00083-7
52. Wetherbee, B. M., Nichols, P. D. (2000). Lipid composition of the liver oil of deep-sea sharks from the Chatham Rise, New Zealand. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 125(4), 511–521. https://doi.org/10.1016/s0305-0491(00)00154-1
53. Lozano-Grande, M. A., Gorinstein, S., Espitia-Rangel, E., Dávila-Ortiz, G., Martínez-Ayala, A. L. (2018). Plant sources, extraction methods, and uses of squalene. International Journal of Agronomy, 2018(1), Article 1829160. https://doi.org/10.1155/2018/1829160
54. Turchini, G. M., Ng, W. K., Tocher, D. R. (2011). Fish Oil Replacement and Alternative Lipid Sources in Aquaculture Feeds. CRC Press, Boca Raton, FL, USA, 2011.
55. Lyashenko, S., Chileh-Chelh, T., Rincón-Cervera, M. A., Lyashenko, S. P., Ishenko, Z., Denisenko, O. et al. (2023). Screening of lesser-known salted-dried fish species for fatty acids, tocols, and squalene. Foods, 12(5), Article 1083. https://doi.org/10.3390/foods12051083
56. Khorsandmanesh, S., Gharachorloo, M., Bahmaie, M., Azizinezhad, R. (2020). Sterol and squalene as indicators of adulteration of milk fat with palm oil and its fractions. Journal of Agricultural Science and Technology, 22(5), 1257–1266.
57. Indyk, H. E. (1990). Simultaneous liquid chromatographic determination of cholesterol, phytosterols and tocopherols in foods. Analyst, 115(12), 1525–1530. https://doi.org/10.1039/an9901501525
58. Cerbulis, J., Flanagan, V. P., Farrell, H. M. (1985). Composition of the hydrocarbon fraction of goats’ milk. Journal of Lipid Research, 26(12), 1438–1443. https://doi.org/10.1016/S0022-2275(20)34249-8
59. Wu, L., Zhao, J., Wu, L., Zhang, Y., Li, J. (2022). Simultaneous determination of squalene, tocopherols and phytosterols in edible vegetable oil by SPE combined with saponification and GC–MS. LWT, 169, Article 114026. https://doi.org/10.1016/j.lwt.2022.114026
60. Pacetti, D., Scortichini, S., Boarelli, M. C., Fiorini, D. (2019). Simple and rapid method to analyse squalene in olive oils and extra virgin olive oils. Food Control, 102, 240–244. https://doi.org/10.1016/j.foodcont.2019.03.005
61. Yuan, C., Xie, Y., Jin, R., Ren, L., Zhou, L., Zhu, M. et al. (2017). Simultaneous analysis of tocopherols, phytosterols, and squalene in vegetable oils by highperformance liquid chromatography. Food Analytical Methods, 10, 3716–3722. https://doi.org/10.1007/s12161-017-0927-x
62. Park, S. Y., Choi, S. J., Park, H. J., Ma, S. Y., Moon, Y. I., Park, S.-K. et al. (2020). Hexane extract of green tea (Camellia sinensis) leaves is an exceptionally rich source of squalene. Food Science and Biotechnology, 29, 769–775. https://doi.org/10.1007/s10068-019-00724-3
63. Ryan, E., Galvin, K., O’Connor, T. P., Maguire, A. R., O’Brien, N. M. (2007). Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods for Human Nutrition, 62, 85–91. https://doi.org/10.1007/s11130-007-0046-8
64. Popa, O., Băbeanu, N. E., Popa, I., Niță, S., Dinu-Pârvu, C. E. (2015). Methods for obtaining and determination of squalene from natural sources. Biomed Research International, 2015(1), Article 367202. https://doi.org/10.1155/2015/367202
65. Nergiz, C., Çelikkale, D. (2011). The effect of consecutive steps of refining on squalene content of vegetable oils. Journal of Food Science and Technology, 48, 382–385. https://doi.org/10.1007/s13197-010-0190-2
66. Kalogeropoulos, N., Andrikopoulos, N. K. (2004). Squalene in oils and fats from domestic and commercial fryings of potatoes. International Journal of Food Sciences and Nutrition, 55(2), 125–129. https://doi.org/10.1080/09637480410001666531
67. Xu, W., Ma, X., Wang, Y. (2016). Production of squalene by microbes: An update. World Journal of Microbiology and Biotechnology, 32, Article 195. https://doi.org/10.1007/s11274-016-2155-8
68. Spanova, M., Daum, G. (2011). Squalene — biochemistry, molecular biology, process biotechnology, and applications. Euvropian Journal of Lipid Science and Technology, 113(11), 1299–1320. https://doi.org/10.1002/ejlt.201100203
69. Craciun, B. F., Vasiliu, T., Marangoci, N., Pinteala, M. (2018). Pegylated squalene: A biocompatible polymer as precursor for drug delivery. Revue Roumaine de Chimie, 63(7–8), 621–628.
70. Patel, A., Bettiga, M., Rova, U., Christakopoulos, P., Matsakas, L. (2022). Microbial genetic engineering approach to replace shark livering for squalene. Trends in Biotechnology, 40(10), 1261–1273. https://doi.org/10.1016/j.tibtech.2022.03.008
71. Manfrão-Netto, J. H. C., Queiroz, E. B., de Oliveira Junqueira, A. C., Gomes, A. M. V., de Morais, D. G., Paes, H. C. et al. (2022). Genetic strategies for improving hyaluronic acid production in recombinant bacterial culture. Journal of Applied Microbiology, 132(2), 822–840. https://doi.org/10.1111/jam.15242
72. Xu, W., Chai, C., Shao, L., Yao, J., Wang, Y. (2016). Metabolic engineering of Rhodopseudomonas palustris for squalene production. Journal of Industrial Microbiology and Biotechnology, 43(5), 719–725. https://doi.org/10.1007/s10295-016-1745-7
73. Mendes, A., Azevedo-Silva, J., Fernandes, J. C. (2022). From sharks to yeasts: Squalene in the development of vaccine adjuvants. Pharmaceuticals, 15(3), Article 265. https://doi.org/10.3390/ph15030265
74. Blagović, B., Rupvcić, J., Mesarivc, M., Georgiú, K., Marić, V. (2001). Lipid composition of brewer’s yeast. Food Technology and Biotechnology, 39(3), 175–181.
75. Li, Q., Chen, G.-Q., Fan, K.-W., Lu, F.-P., Aki, T., Jiang, Y. (2009). Screening and characterization of squalene-producing thraustochytrids from hong kong mangroves. Journal of Agricultural and Food Chemistry, 57(10), 4267–4272. https://doi.org/10.1021/jf9003972
76. Chang, M.-H., Kim, H.-J., Jahng, K.-Y., Hong, S.-C. (2008). The isolation and characterization of Pseudozyma sp. JCC207, a novel producer of squalene. Applied Microbiology and Biotechnology, 78, 963–972. https://doi.org/10.1007/s00253-008-1395-4
77. Han, J. Y., Seo, S. H., Song, J. M., Lee, H., Choi, E.-S. (2018). High-level recombinant production of squalene using selected Saccharomyces cerevisiae strains. Journal of Industrial Microbiology and Biotechnology, 45(4), 239–251. https://doi.org/10.1007/s10295-018-2018-4
78. Jiang, Y., Fan, K.-W., Wong, R. T.-Y., Chen, F. (2004). Fatty acid composition and squalene content of the marine microalga Schizochytrium mangrovei. Journal of Agricultural and Food Chemistry, 52(5), 1196–1200. https://doi.org/10.1021/jf035004c
79. Ha, N. C., Hien, H. T. M., Thom, L. T., Quynh, H. T. H., Hong, D. D. (2017). Optimization of fermentation conditions for squalene production by heterotrophic marine microalgae Schizochytrium mangrovei PQ6. Academia Journal of Biology, 39(3), 349–358. https://doi.org/10.15625/0866–7160/v39n3.9130
80. Schütte, L., Hanisch, P. G., Scheler, N., Haböck, K. C., Huber, R., Ersoy, F., Berger, R. G. (2024). Squalene production under oxygen limitation by Schizochytrium sp. S31 in different cultivation systems. Applied Microbiology and Biotechnology, 108(1), Article 201. https://doi.org/10.1007/s00253-024-13051-3
81. Shakeri, S., Khoshbasirat, F., Maleki, M. (2021). Rhodosporidium sp. DR37: A novel strain for production of squalene in optimized cultivation conditions. Biotechnology for Biofuels and Bioproducts, 14(1), Article 95. https://doi.org/10.1186/s13068-021-01947-5
82. Paramasivan, K., Aneesha, A., Gupta, N., Mutturi, S. (2021). Adaptive evolution of engineered yeast for squalene production improvement and its genomewide analysis. Yeast, 38(7), 424–437. https://doi.org/10.1002/yea.3559
83. Furubayashi, M., Li L., Katabami, A., Saito, K., Umeno, D. (2014). Construction of carotenoid biosynthetic pathways using squalene synthase. FEBS Letters, 588(3), 436–442. https://doi.org/10.1016/j.febslet.2013.12.003
84. Espinosa, M. I., Williams, T. C., Pretorius, I. S., Paulsen, I. T. (2019). Benchmarking two Saccharomyces Cerevisiae laboratory strains for growth and transcriptional response to methanol. Synthetic and Systems Biotechnology, 4(4), 180–188. https://doi.org/10.1016/j.synbio.2019.10.001
85. Thapa, H., Naik, M., Okada, S., Takada, K., Molnár, I., Xu, I. et al. (2016). A squalene synthase-like enzyme initiates production of tetraterpenoid hydrocarbons in Botryococcus braunii Race L. Nature Communications, 7, Article 11198. https://doi.org/10.1038/ncomms11198
86. Zhang, Y., Wang, W., Wei, W., Xia, L., Gao, S., Zeng, W. et al. (2023). Regulation of ethanol assimilation for efficient accumulation of squalene in Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 71(16), 6389–6397. https://doi.org/10.1021/acs.jafc.3c00515
87. Kajikawa, M., Kinohira, S., Ando, A., Shimoyama, M., Kato, M., Fukuzawa, H. (2015). Accumulation of squalene in a microalga Chlamydomonas reinhardtii by genetic modification of squalene synthase and squalene epoxidase genes. PLoS One, 10(3), Article e0120446. https://doi.org/10.1371/journal.pone.0120446
88. Reddy, L. H., Couvreur, P. (2009). Squalene: A natural triterpene for use in disease management and therapy. Advanced Drug Delivery Reviews, 61(15), 1412– 1426. https://doi.org/10.1016/j.addr.2009.09.005
89. Lou-Bonafonte, J. M., Martínez-Beamonte, R., Sanclemente, T., Surra, J. C., Herrera-Marcos, L. V., Sanchez-Marco, J. et al. (2018). Current insights into the biological action of squalene. Molecular Nutrition and Food Research, 62(15), Article 1800136. https://doi.org/10.1002/mnfr.201800136
90. Sumi, E. S., Dara, P. K., Mannuthy, R. J., Ganesan, B., Anandan, R., Mathew, S. (2020). Antioxidant and hepatoprotective property of squalene for counteracting the oxidative damage induced by methotrex-ate in experimental rats. Acta Biologica Szegediensis, 64(2), 199–206. https://doi.org/10.14232/abs.2020.2.199-206
91. Swamy, M. K., Arumugam, G., Kaur, R., Ghasemzadeh, A., Yusoff, M. M., Sinniah, U. R. (2017). GC–MS based metabolite profiling, antioxidant and antimicrobial properties of different solvent extracts of Malaysian Plectranthus amboinicus leaves. Evidence-Based Complementary and Alternative Medicine, 2017(1), Article 1517683. https://doi.org/10.1155/2017/1517683
92. Nazemi, M., Motallebi, A., Abbasi, E., Khaledi, M., Zare, M. (2022). Antibacterial, antifungal, and cytotoxic activity of the fraction. Iranian Journal of Fisheries Sciences, 21(6), 1495–1507. https://doi.org/10.22092/ijfs.2023.128416
93. Dmitrieva, A., Vesnina, A., Dyshlyuk, L. (October 6–7, 2021). Antioxidant and antimicrobial properties of squalene from Symphytum officinale and chlorogenic acid from trifolium pratense. The 2nd international scientific conference «Ecosystems without borders — 2021» AIP Publishing, 2022. https://doi.org/10.1063/5.0104513
94. Bindu, B. S. C., Mishra, D. P., Narayan, B. (2015). Inhibition of virulence of Staphylococcus aureus — A food borne pathogen — by squalene, a functional lipid. Journal of Functional Foods, 18(Part A), 224–234. https://doi.org/10.1016/j.jff.2015.07.008
95. Dordab, T., Sourinejad, I., Nazemi, M. (2021). Antibacterial effect of the squalene extracted from the liver of the Persian Gulf spot tail shark Carcharhinus sorrah (Müller & Henle, 1839). Journal of Fisheries Science and Technology, 10(2), 251–258. https://doi.org/10.33804/pp.006.03.4332 (In Arabic)
96. Bhat, M. P., Rudrappa, M., Hugar, A., Gunagambhire, P. V., Kumar R. S., Nayaka, S. et al. (2023). In-vitro investigation on the biological activities of squalene derived from the soil fungus Talaromyces pinophilus. Heliyon, 9(11), Article e21461. https://doi.org/10.1016/j.heliyon.2023.e21461
97. Youl, O., Konate, S., Sombié, E. N., Boly, R., Kabore, B., Koala, M. et al. (2024). Phytochemical analysis and antimicrobial activity of Lawsonia inermis leaf extracts from burkina faso. American Journal of Plant Sciences, 15(7), 552–576. https://doi.org/10.4236/ajps.2024.157038
98. Fang, J.-Y., Lin, Y.-K., Wang, P.-W., Alalaiwe, A., Yang, Y.-C., Yang, S.-C. (2019). The droplet-size effect of squalene@cetylpyridinium chloride nanoemulsions on antimicrobial potency against planktonic and biofilm MRSA. International Journal of Nanomedicine, 2019(14), 8133–8147. https://doi.org/10.2147/IJN.S221663
99. Güneş, F. E. (2013). Medical use of squalene as a natural antioxidant. Journal of Marmara University Institute of Health Sciences, 3(4), 221–229. https://doi.org/10.5455/musbed.20131213100404
100. Du Preez, H. E. I. D. I. (2007). Squalene — antioxidant of the future. South African Journal of Natural Medicine, 33, 106–112.
101. Senthilkumar, S., Yogeeta, S. K., Subashini, R., Devaki, T. (2006). Attenuation of cyclophosphamide induced toxicity by squalene in experimental rats. Chemico-Biological Interactions, 160(3), 252–260. https://doi.org/10.1016/j.cbi.2006.02.004
102. Chen, C.-H., Huang, T.-H., Elzoghby, A. O., Wang, P.-W., Chang, C.-W., Fang, J.-Y. (2017). Squarticles as the nanoantidotes to sequester the overdosed antidepressant for detoxification. International Journal of Nanomedicine, 2017(12), 8071–8083. https://doi.org/10.2147/IJN.S143370
103. Kelly, G. S. (1999). Squalene and its potential clinical uses. Alternative Medicine Review: A Journal of Clinical Therapeutic, 44(1), 29–36.
104. Ronco, A. L., De Stéfani, E., Ronco, A. (2013). Squalene: A multi-task link in the crossroads of cancer and aging. Functional Foods in Health and Disease, 3(12), 462–476. https://doi.org/10.31989/ffhd.v3i12.30
105. Renda, G., Gökkaya, İ., Şöhretoğlu, D. (2022). Immunomodulatory properties of triterpenes. Phytochemistry Reviews, 21(2), 537–563. https://doi.org/10.1007/s11101-021-09785-x
106. Uysal, N. (2024). The role of two triterpenes in immune system aging. Shapter in a book: Academic Studies in the Field of Biology, Serüven Vayın Evi, Ankara, 2024.
107. Sánchez-Quesada, C., López-Biedma, A., Toledo, E., Gaforio, J. J. (2018). Squalene stimulates a key innate immune cell to foster wound healing and tissue repair. Evidence-Based Complementary and Alternative Medicine, 2018(1), Article 9473094. https://doi.org/10.1155/2018/9473094
108. Ulrikh, E. V., Smolovskaya, O. V. (2022). Evaluation of anti-inflammatory and wound healing properties of squalene: An important phytochemical component of amaranth oil. International Journal of Chemical and Biochemical Sciences, 21, 54–60.
109. Ibrahim, N. I., Mohamed, I. N. (2021). Interdependence of anti-inflammatory and antioxidant properties of squalene — implication for cardiovascular health. Life, 11(2), Article 103. https://doi.org/10.3390/life11020103
110. Cárdeno, A., Aparicio-Soto, M., la Paz, S. M.-D., Bermudez, B., Muriana, F. J. G., Alarcón-De-La-Lastra, C. (2015). Squalene targets pro- and anti-inflammatory mediators and pathways to modulate over-activation of neutrophils, monocytes and macrophages. Journal of Functional Foods, 14, 779–790. https://doi.org/10.1016/j.jff.2015.03.009
111. Chang, M., Xue, J., Sharma, V., Habtezion, A. (2015). Protective role of Hemeoxygenase 1 in gastrointestinal diseases. Cellular and Molecular Life Sciences, 72, 1161–1173. https://doi.org/10.1007/s00018-014-1790-1
112. Widyawati, T., Syahputra, R. A., Syarifah, S., Sumantri, I. B. (2023). Analysis of antidiabetic activity of squalene via in silico and in vivo assay. Molecules, 28(9), Article 3783. https://doi.org/10.3390/molecules28093783
113. Khullar, M., Al-Shudiefat, A. A. S., Ludke, A., Binepal, G., Singal, P. K. (2010). Oxidative stress: A key contributor to diabetic cardiomyopathy. Canadian Journal of Physiology and Pharmacology, 88, 233–240. https://doi.org/10.1139/Y10-016
114. Rochette, L., Zeller, M., Cottin, Y., Vergely, C. (2014). Diabetes, oxidative stress and therapeutic strategies. Biochimica et Biophysica Acta (BBA) — General Subjects, 1840(9), 2709–2729. https://doi.org/10.1016/j.bbagen.2014.05.017
115. Zhang, P., Liu, N., Xue, M., Zhang, M., Xiao, Z., Xu, C. et al. (2023). Anti-inflammatory and antioxidant properties of squalene in copper sulfate-induced inflammation in zebrafish (Danio rerio). International Journal of Molecular Sciences, 24(10), Article 8518. https://doi.org/10.3390/ijms24108518
116. Fernando, I. P. S., Sanjeewa, K. K. A., Samarakoon, K. W., Lee, W. W., Kim, H.-S., Jeon, Y.-J. (2018). Squalene isolated from marine macroalgae Caulerpa racemosa and its potent antioxidant and anti-inflammatory activities. Journal of Food Biochemistry, 42(5), Article e12628. https://doi.org/10.1111/jfbc.12628
117. Latief, M., Muhaimin, M., Amanda, H., Prahandika, G., Tarigan, I. L. (2020). Anti-inflammatory activities of squalene compound of methanol extract of Abroma augusta L. Jurnal Teknologi Laboratorium, 9(2), 176–185. https://doi.org/10.29238/teknolabjournal.v9i2.228
118. Jose, S. P., Sukumaran, S., Mohanan, R., Saji, S., Asish, A., George, S. M. (2023). Anti-inflammatory effect of squalene isolated from Simarouba glauca in experimental animal model. Pharmacognosy Research, 15(4), 658–666. https://doi.org/10.5530/pres.15.4.069
119. Cheng, Y., Fei, T., Liu, Y., Chen, S., Wang, Z. et al. (2024). Ultrasound-assisted extraction of squalene and 2-Acetyl 1-Pyrroline from pandan leaf: The effects of drying methods and extraction conditions. Foods, 13(24), Article 4010. https://doi.org/10.3390/foods13244010
120. Chan, Y.-J., Chiu, C.-S., Li, P.-H., Lu, W.-C. (2024). Evaluation of different roasting condition on yield, physico-chemical characteristics, and antioxidant activity of cold-pressed sacha inchi (Plukenetia volubilis) oil. LWT, 203, Article 116343. https://doi.org/10.1016/j.lwt.2024.116343
121. Widyawati, T., Syarifah, S., Sumantri, I. B. (August 24–25, 2021). Squalene decreased malondialdehyde level of diabetic rats. 3rd International Conference on Natural Resources and Technology. Medan, Indonesia, 2022. https://doi.org/10.1088/1755-1315/912/1/012054
122. Bidooki, S. H., Alejo, T., Sánchez-Marco, J., Martínez-Beamonte, R., Abuobeid, R., Burillo, J. C. et al. (2022). Squalene loaded nanoparticles effectively protect hepatic AML12 cell lines against oxidative and endoplasmic reticulum stress in aTXNDC5-dependent way. Antioxidants, 11(3), Article 581. https://doi.org/10.3390/antiox11030581
123. Permadi, A., Wilson, M. (2024). Review: Exploration of squalene from natural materials as its potential in health and food fields. Indonesian Journal of Chemical Engineering, 2(2), 79–89.
124. Grajzer, M., Szmalcel, K., Kuźmiński, Ł., Witkowski, M., Kulma, A., Prescha, A. (2020). Characteristics and antioxidant potential of cold-pressed oils — possible strategies to improve oil stability. Foods, 9(11), Article 1630. https://doi.org/10.3390/foods9111630
125. Seçmeler, Ö., Güçlü Üstündağ, Ö. (2017). Behavior of lipophilic bioactives during olive oil processing. European Journal of Lipid Science and Technology, 119(9), Article 1600404. https://doi.org/10.1002/ejlt.201600404
126. Manalu, L. P., Adinegoro, H., Yustiningsih, N., Astuti, Luthfyanti, R., Maisaroh, et al. (2025). Impact of drying methods on bioactive compounds and antioxidant properties of Kalanchoe ceratophylla. Scientifica, 2025(1), Article 7146758. https://doi.org/10.1155/sci5/7146758
127. Arora, S., Kumar, G. (2018). Phytochemical screening of root, stem and leaves of Cenchrus biflorus Roxb. Journal of Pharmacognosy and Phytochemistry, 7(1), 1445–1450.
128. Rajamani, K., Thirugnanasambandan, S. S., Natesan, C., Subramaniam, S., Thangavel, B., Aravindan, N. (2021). Squalene deters drivers of RCC disease progression beyond VHL status. Cell Biology and Toxicology, 37, 611–631. https://doi.org/10.1007/s10565-020-09566-w
129. Loganathan, R., Radhakrishnan, A. K., Selvaduray, K. R., Nesaretnam, K. (2015). Selective anti-cancer effects of palm phytonutrients on human breast cancer cells. RSC Advances, 5(3), 1745–1753. https://doi.org/10.1039/c4ra12343c
130. Ahn, Y. K., Kim, J. H. (1992). Effects of squalene on the immune responses in mice (II): Cellular and non-specific immune response and antitumor activity of squalene. Archives of Pharmacal Research, 15, 20–29. https://doi.org/10.1007/BF02973979
131. Yin, G., Zeng, H., He, M., Wang, M. (2009). Extraction of Teucrium manghuaense and evaluation of the bioactivity of its extract. International Journal of Molecular Sciences, 10(10), 4330–4341. https://doi.org/10.3390/ijms10104330
132. Abuobeid, R., Sánchez-Marco, J., Felices, M. J., Arnal, C., Burillo, J. C., Lasheras, R. et al. (2022). Squalene through its post-squalene metabolites is a modulator of hepatic transcriptome in rabbits. International Journal of Molecular Sciences, 23(8), Article 4172. https://doi.org/10.3390/ijms23084172
133. Smith, T. J. (2000). Squalene: Potential chemopreventive agent. Expert Opinion on Investigational Drugs, 9(8), 1841–1848. https://doi.org/10.1517/13543784.9.8.1841
134. Newmark, H. L. (1999). Squalene, olive oil, and cancer risk: Review and hypothesis. Annals of the New York Academy of Sciences, 889(1), 193–203. https://doi.org/10.1111/j.1749-6632.1999.tb08735.x
135. Babich, O., Larina, V., Ivanova, S., Tarasov, A., Povydysh, M., Orlova, A. et al. (2022). Phytotherapeutic approaches to the prevention of age-related changes and the extension of active longevity. Molecules, 27(7), Article 2276. https://doi.org/10.3390/molecules27072276
136. Bhilwade, H.N., Tatewaki, N., Nishida, H., Konishi, T. (2010). Squalene as novel food factor. Current Pharmaceutical Biotechnology, 11(8), 875–880. https://doi.org/10.2174/138920110793262088
137. Sponton, O. E., Perez, A. A., Osella, C., Cuffia, F., Fenoglio, C., Piagentini, A. (2023). Squalene encapsulation by emulsification and freeze-drying process: Effects on bread fortification. Journal of Food Science, 88(6), 2523–2535. https://doi.org/10.1111/1750-3841.16576
138. Kumar, L. R. G., Kumar, H. S., Tejpal, C. S., Anas, K. K., Nayak, B. B., Sarika, K. et al. (2021). Exploring the physical and quality attributes of muffins incorporated with microencapsulated squalene as a functional food additive. Journal of Food Science and Technology, 58, 4674–4684. https://doi.org/10.1007/s13197-020-04955-9
139. Barp, L., Višnjevec, A.M., Moret, S. (2024). Analytical determination of squalene in extra virgin olive oil and olive processing by-products, and its valorization as an ingredient in functional food — A critical review. Molecules, 29(21), Article 5201. https://doi.org/10.3390/molecules29215201
140. Buddhan, S., Sivakumar, R., Dhandapani, N., Ganesan, B., Anandan, R. (2007). Protective effect of dietary squalene supplementation on mitochondrial function in liver of aged rats. Prostaglandins, Leukotrienes and Essential Fatty Acids, 76(6), 349–355. https://doi.org/10.1016/j.plefa.2007.05.001
141. Micera, M., Botto, A., Geddo, F., Antoniotti, S., Bertea, C. M., Levi, R. et al. (2020). Squalene: More than a step toward sterols. Antioxidants, 9(8), Article 688. https://doi.org/10.3390/antiox9080688
Review
For citations:
Ulrikh E.V., Sukhikh S.A., Samusev I.G., Babich O.O. Squalene — a natural biologically active component of nutrition of the 21st century. Food systems. 2025;8(4):583-594. (In Russ.) https://doi.org/10.21323/2618-9771-2025-8-4-583-594
JATS XML
























