Preview

Food systems

Advanced search

Antimicrobial potato starch — based films incorporating lactic acid

https://doi.org/10.21323/2618-9771-2025-8-4-498-505

Abstract

The aim of the work was to produce and assess properties of biodegradable antimicrobial films based on potato starch, glycerin and lactic acid as functional additives for food packaging. Films were produced by the casting method from the solution: 2 % (w/v) starch dispersion was gelatinized (70 ± 1 °C, 30 min), glycerin (0.4 %) and lactic acid (1.0 %) were added, the mixture was degased, poured and dried (60 °C, 24 h), and then conditioned (48 h, 23 ± 2 °C). Thickness, mechanical and barrier properties as well as the antimicrobial activity were measured. The antimicrobial activity was determined by the disc diffusion method on the LB nutrient medium with Escherichia coli and Bacillus subtilis as test cultures, 30 µg tetracycline as a positive control and sterile filter paper disc as a negative control (comparison with free lactic acid). The films obtained were optically homogeneous, without macro defects, and had a thickness of 0.09–0.11 mm. Films demonstrated high tensile strength of 74.8 ± 7.4 MPa and elongation of 23.7 ± 4.6 % (n = 10). Water vapor transmission rate was 1290.7 ± 60.8 g · m–2 · day, vapor permeability coefficient was 2.05 ´ 10–4 g · m · m–2 · day–1 · Pa–1 (90 % relative humidity of air). With that, in dry conditions (relative humidity of about 0 %), quite low gas permeability in terms of O2/CO2 was recorded (lower than the threshold of the calculation of the stationary permeability). Analysis of the antimicrobial activity by the disc diffusion method showed that the films formed inhibition zones (E. coli: 10.67 ± 1.53 mm; B. subtilis: 10.67 ± 0.58 mm) that were comparable with free lactic acid (9.67 ± 0.58 and 12.00 ± 1.00 mm, respectively). The combined results confirm that starch films with lactic acid have high barrier properties (in the dry phase) and antimicrobial activity (upon contact with the moist surface), which make them promising for using as active packaging for chilled meat and dairy products and as a functional layer in multi-layer films.

About the Authors

V. E. Putilov
All-Russian Research Institute of Food Additives; ITMO University
Russian Federation

Vladislav E. Putilov, Research Assistant, Laboratory of Biotechnology and Bioengineering, All-Russian Research Institute of Food Additives; Master’s Student, Faculty of Biotechnology, ITMO University 

55, Liteiny pr., 190000, St. Petersburg,

9, Lomonosova Str., 191002, St. Petersburg



A. P. Nepomnyashchiy
All-Russian Research Institute of Food Additives
Russian Federation

Anatoliy P. Nepomnyashchiy, Research Scientist, Laboratory of Biotechnology and Bioengineering

55, Liteiny pr., 190000, St. Petersburg



A. O. Prichepa
All-Russian Research Institute of Food Additives
Russian Federation

Artem O. Prichepa, Junior Research Scientist, Laboratory of Biotechnology and Bioengineering

55, Liteiny pr., 190000, St. Petersburg



D. D. Belova
All-Russian Research Institute of Food Additives
Russian Federation

Daria D. Belova, Senior Research Scientist, Laboratory of Biotechnology and Bioengineering

55, Liteiny pr., 190000, St. Petersburg



N. Yu. Sharova
All-Russian Research Institute of Food Additives; ITMO University
Russian Federation

Natalya Yu. Sharova, Doctor of Technical Sciences, Professor of the Russian Academy of Sciences, Deputy Director for Research, All-Russia Research Institute for Food Additives; Docent of the Practice, Faculty of Biotechnology, ITMO University

55, Liteiny pr., 190000, St. Petersburg,

9, Lomonosova Str., 191002, St. Petersburg



References

1. Santos, R. G., Machovsky-Capuska, G. E., Andrades, R. (2021). Plastic ingestion as an evolutionary trap: Toward a holistic understanding. Science, 373(6550), 56–60. https://doi.org/10.1126/science.abh0945

2. van Grinsven, S., Schubert, C. (2023). Soil-biodegradable plastic films do not decompose in a lake sediment over 9 months of incubation. Biogeosciences, 20(19), 4213–4220. https://doi.org/10.5194/bg-20-4213-2023

3. Campanale, C., Galafassi, S., Di Pippo, F., Pojar, I., Massarelli, C., Uricchio, V. F. (2024). A critical review of biodegradable plastic mulch films in agriculture: Definitions, scientific background and potential impacts. TrAC Trends in Analytical Chemistry, 170, Article 117391. https://doi.org/10.1016/j.trac.2023.117391

4. Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A. et al. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768–771. https://doi.org/10.1126/science.1260352

5. Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J. H. et al. (2020). Degradation rates of plastics in the environment. ACS Sustainable Chemistry and Engineering, 8(9), 3494–3511. https://doi.org/10.1021/acssuschemeng.9b06635

6. Koelmans, A. A., Bakir, A., Burton, G. A., Janssen, C. R. (2016). Microplastic as a vector for chemicals in the aquatic environment: Critical review and modelsupported reinterpretation of empirical studies. Environmental Science and Technology, 50(7), 3315–3326. https://doi.org/10.1021/acs.est.5b06069

7. Bjedov, D., Velki, M., Toth, L., Marijić, V. F., Mikuška, T., Jurinović, L. et al. (2023). Heavy metal (loid) effect on multi-biomarker responses in apex predator: Novel assays in the monitoring of white stork nestlings. Environmental Pollution, 324, Article 121398. https://doi.org/10.1016/j.envpol.2023.121398

8. Xiong, L., Li, Z., Shah, F., Wang, P., Yuan, Q., Wu, W. (2024). Biodegradable mulch film enhances the environmental sustainability compared with traditional polyethylene film from multidimensional perspectives. Chemical Engineering Journal, 492, Article 152219. https://doi.org/10.1016/j.cej.2024.152219

9. de Sadeleer, I., Woodhouse, A. (2024). Environmental impact of biodegradable and non-biodegradable agricultural mulch film: A case study for Nordic conditions. The International Journal of Life Cycle Assessment, 29(2), 275–290. https://doi.org/10.1007/s11367-023-02253-y

10. Nikiema, J., Asiedu, Z. (2022). A review of the cost and effectiveness of solutions to address plastic pollution. Environmental Science and Pollution Research, 29(17), 24547–24573. https://doi.org/10.1007/s11356-021-18038-5

11. Cordier, M., Uehara, T., Jorgensen, B., Baztan, J. (2024). Reducing plastic production: Economic loss or environmental gain? Cambridge Prisms: Plastics, 2, Article e2. https://doi.org/10.1017/plc.2024.3

12. Döhler, N., Wellenreuther, C., Wolf, A. (2022). Market dynamics of biodegradable bio-based plastics: Projections and linkages to European policies. EFB Bioeconomy Journal, 2, Article 100028. https://doi.org/10.1016/j.bioeco.2022.100028

13. Vroman, I., Tighzert, L. (2009). Biodegradable polymers. Materials, 2(2), 307– 344. https://doi.org/10.3390/ma2020307

14. Onyeaka, H., Obileke, K., Makaka, G., Nwokolo, N. (2022). Current research and applications of starch-based biodegradable films for food packaging. Polymers, 14(6), Article 1126. https://doi.org/10.3390/polym14061126

15. Henning, F. G., Ito, V. C., Demiate, I. M., Lacerda, L. G. (2022). Non-conventional starches for biodegradable films: A review focussing on characterisation and recent applications in food packaging. Carbohydrate Polymer Technologies and Applications, 4, Article 100157. https://doi.org/10.1016/j.carpta.2021.100157

16. Mukherjee, C., Varghese, D., Krishna, J. S., Boominathan, T., Rakeshkumar, R., Dineshkumar, S. et al. (2023). Recent advances in biodegradable polymers–properties, applications and future prospects. European Polymer Journal, 192, Article 112068. https://doi.org/10.1016/j.eurpolymj.2023.112068

17. Thakur, R., Pristijono, P., Scarlett, C. J., Bowyer, M., Singh, S. P., Vuong, Q. V. (2019). Starch-based films: Major factors affecting their properties. International Journal of Biological Macromolecules, 132, 1079–1089. https://doi.org/10.1016/j.ijbiomac.2019.03.190

18. Ramírez-Hernández, A., Aparicio-Saguilán, A., Reynoso-Meza, G., Carrillo-Ahumada, J. (2017). Multi-objective optimization of process conditions in the manufacturing of banana (Musa paradisiaca L.) starch/natural rubber films. Carbohydrate Polymers, 157, 1125–1133. https://doi.org/10.1016/j.carbpol.2016.10.083

19. Pooja, N., Banik, S., Chakraborty, I., Sudeeksha, H. C., Mal, S. S., Srisungsitthisunti, P. et al. (2024). Comparative analysis of biopolymer films derived from corn and potato starch with insights into morphological, structural and thermal properties. Discover Sustainability, 5(1), Article 467. https://doi.org/10.1007/s43621-024-00626-3

20. Sirbu, E. E., Dinita, A., Tănase, M., Portoacă, A.-I., Bondarev, A., Enascuta, C.-E. et al. (2024). Influence of plasticizers concentration on thermal, mechanical, and physicochemical properties on starch films. Processes, 12(9), Article 2021. https://doi.org/10.3390/pr12092021

21. Wang, B., Yu, B., Yuan, C., Guo, L., Liu, P., Gao, W. et al. (2022). An overview on plasticized biodegradable corn starch-based films: The physicochemical properties and gelatinization process. Critical Reviews in Food Science and Nutrition, 62(10), 2569–2579. https://doi.org/10.1080/10408398.2020.1868971

22. Tarique, J. S. M. S., Sapuan, S. M., Khalina, A. (2021). Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers. Scientific Reports, 11(1), Article 13900. https://doi.org/10.1038/s41598-021-93094-y

23. Nasir, N. N., Othman, S. A. (2021). The physical and mechanical properties of corn-based bioplastic films with different starch and glycerol content. Journal of Physical Science, 32(3), 89–100. https://doi.org/10.21315/jps2021.32.3.7

24. Ortega, F., Giannuzzi, L., Arce, V. B., García, M. A. (2017). Active composite starch films containing green synthetized silver nanoparticles. Food Hydrocolloids, 70, 152–162. https://doi.org/10.1016/j.foodhyd.2017.03.036

25. Romainor, A. N., Chin, S. F., Lihan, S. (2022). Antimicrobial starch-based film for food packaging application. Starch, 74(3–4), Article 2100207. https://doi.org/10.1002/star.202100207

26. Wardejn, S., Wacławek, S., Dudek, G. (2024). Improving antimicrobial properties of biopolymer-based films in food packaging: Key factors and their impact. International Journal of Molecular Sciences, 25(23), Article 12580. https://doi.org/10.3390/ijms252312580

27. Pandey, V. K., Islam, R. U., Shams, R., Dar, A. H. (2022). A comprehensive review on the application of essential oils as bioactive compounds in Nano-emulsion based edible coatings of fruits and vegetables. Applied Food Research, 2(1), Article 100042. https://doi.org/10.1016/j.afres.2022.100042

28. Jackson-Davis, A., White, S., Kassama, L. S., Coleman, S., Shaw, A., Mendonca, A. et al. (2023). A review of regulatory standards and advances in essential oils as antimicrobials in foods. Journal of Food Protection, 86(2), Article 100025. https://doi.org/10.1016/j.jfp.2022.100025

29. Kaur, P., Alam, T., Singh, H., Jain, J., Singh, G., Broadway, A. A. (2023). Organic acids modified starch — CMC based biodegradable film: Antibacterial activity, morphological, structural, thermal, and crystalline properties. Journal of Pure and Applied Microbiology, 17(1), 241–257. https://doi.org/10.22207/JPAM.17.1.14

30. Madivoli, E. S., Kisato, J., Gichuki, J., Wangui, C. M., Kimani, P. K., Kareru, P. G. (2024). Antimicrobial and food barrier properties of polyvinyl alcohol–lactic acid food packaging films. Food Science and Nutrition, 12(9), 6563–6577. https://doi.org/10.1002/fsn3.4291

31. Wanda, S., Paulsen, P., Budai, M., Vali, S., Smulders, F. J. (2013). Incorporation of lactic acid as an antimicrobial agent in polyamide food-packaging films. Archiv Für Lebensmittelhygiene, 64(1), 8–14. https://doi.org/10.2376/0003-925X-64-8

32. Zhao, Z., Liu, H., Tang, J., He, B., Yu, H., Xu, X. et al. (2023). Pork preservation by antimicrobial films based on potato starch (PS) and polyvinyl alcohol (PVA) and incorporated with clove essential oil (CLO) Pickering emulsion. Food Control, 154, Article 109988. https://doi.org/10.1016/j.foodcont.2023.109988

33. Nikmanesh, A., Baghaei, H., Nafchi, A. M. (2023). Development and characterization of antioxidant and antibacterial films based on potato starch incorporating Viola odorata extract to improve the oxidative and microbiological quality of chicken fillets during refrigerated storage. Foods, 12(15), Article 2955. https://doi.org/10.3390/foods12152955

34. Mei, J., Guo, Q., Wu, Y., Li, Y. (2015). Evaluation of chitosan-starch–based edible coating to improve the shelf life of bod Ljong cheese. Journal of Food Protection, 78(7), 1327–1334. https://doi.org/10.4315/0362-028X.JFP-14-402

35. Wang, Q., Chen, W., Zhu, W., McClements, D. J., Liu, X., Liu, F. (2022). A review of multilayer and composite films and coatings for active biodegradable packaging. npj Science of Food, 6(1), Article 18. https://doi.org/10.1038/s41538-022-00132-8

36. Carpena, M., Nuñez-Estevez, B., Soria-Lopez, A., Garcia-Oliveira, P., Prieto, M. A. (2021). Essential oils and their application on active packaging systems: A review. Resources, 10(1), Article 7. https://doi.org/10.3390/resources10010007

37. Sharma, S., Barkauskaite, S., Jaiswal, A. K., Jaiswal, S. (2021). Essential oils as additives in active food packaging. Food Chemistry, 343, Article 128403. https://doi.org/10.1016/j.foodchem.2020.128403

38. Othman, S. H., Wane, B. M., Nordin, N., Noor Hasnan, N. Z., A. Talib, R., Karyadi, J. N. W. (2021). Physical, mechanical, and water vapor barrier properties of starch/cellulose nanofiber/thymol bionanocomposite films. Polymers, 13(23), Article 4060. https://doi.org/10.3390/polym13234060

39. Schmidt, V. C. R., Porto, L. M., Laurindo, J. B., Menegalli, F. C. (2013). Water vapor barrier and mechanical properties of starch films containing stearic acid. Industrial Crops and Products, 41, 227–234. https://doi.org/10.1016/j.indcrop.2012.04.038

40. Petronilho, S., Oliveira, A., Domingues, M. R., Nunes, F. M., Coimbra, M. A., Gonçalves, I. (2021). Hydrophobic starch-based films using potato washing slurries and spent frying oil. Foods, 10(12), Article 2897. https://doi.org/10.3390/foods10122897

41. Hou, T., Ma, S., Wang, F., Wang, L. (2023). A comprehensive review of intelligent controlled release antimicrobial packaging in food preservation. Food Science and Biotechnology, 32(11), 1459–1478. https://doi.org/10.1007/s10068-023-01344-8

42. Bangar, S. P., Purewal, S. S., Trif, M., Maqsood, S., Kumar, M., Manjunatha, V. et al. (2021). Functionality and applicability of starch-based films: An eco-friendly approach. Foods, 10(9), Article 2181. https://doi.org/10.3390/foods10092181

43. Domene-López, D., García-Quesada, J. C., Martin-Gullon, I., Montalbán, M. G. (2019). Influence of starch composition and molecular weight on physicochemical properties of biodegradable films. Polymers, 11(7), Article 1084. https://doi.org/10.3390/polym11071084

44. ASTM D882–18 Standard test method for tensile properties of thin plastic sheeting. American Society for Testing and Material, 1995. https://doi.org/10.1520/D0882-18

45. ASTM E96/E96M 22a Standard test methods for gravimetric determination of water vapor transmission rate of materials. American Society for Testing and Materials, 2022. https://doi.org/10.1520/E0096_E0096M-22A

46. ASTM D1434–82(2015) e1 Standard test method for determining gas permeability characteristics of plastic film and sheeting. American Society for Testing and Materials, 2023. https://doi.org/10.1520/D1434-82R15E01

47. Balouiri, M., Sadiki, M., Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005

48. Mali, S., Grossmann, M. V. E., Garcia, M. A., Martino, M. N., Zaritzky, N. E. (2002). Microstructural characterization of yam starch films. Carbohydrate Polymers, 50(4), 379–386. https://doi.org/10.1016/S0144–8617(02)00058–9

49. Romero-Bastida, C. A., Bello-Pérez, L. A., García, M. A., Martino, M. N., SolorzaFeria, J., Zaritzky, N. E. (2005). Physicochemical and microstructural characterization of films prepared by thermal and cold gelatinization from non-conventional sources of starches. Carbohydrate Polymers, 60(2), 235–244. https://doi.org/10.1016/j.carbpol.2005.01.004

50. Singh, G. P., Bangar, S. P., Yang, T., Trif, M., Kumar, V., Kumar, D. (2022). Effect on the properties of edible starch-based films by the incorporation of additives: A review. Polymers, 14(10), Article 1987. https://doi.org/10.3390/polym14101987

51. Basiak, E., Lenart, A., Debeaufort, F. (2018). How glycerol and water contents affect the structural and functional properties of starch-based edible films. Polymers, 10(4), Article 412. https://doi.org/10.3390/polym10040412

52. Majzoobi, M., Beparva, P. (2014). Effects of acetic acid and lactic acid on physicochemical characteristics of native and cross-linked wheat starches. Food Chemistry, 147, 312–317. https://doi.org/10.1016/j.foodchem.2013.09.148

53. Bertuzzi, M. A., Vidaurre, E. F. C., Armada, M., Gottifredi, J. C. (2007). Water vapor permeability of edible starch based films. Journal of Food Engineering, 80(3), 972–978. https://doi.org/10.1016/j.jfoodeng.2006.07.016

54. Santhosh, R., Ahmed, J., Thakur, R., Sarkar, P. (2024). Starch-based edible packaging: Rheological, thermal, mechanical, microstructural, and barrier properties — A review. Sustainable Food Technology, 2(2), 307–330. https://doi.org/10.1039/D3FB00211J

55. ASTM D3985–17 Standard test method for oxygen gas transmission rate through plastic film and sheeting using a coulometric sensor. American Society for Testing and Materials, 2024. https://doi.org/10.1520/D3985-17

56. Muller, J., González-Martínez, C., Chiralt, A. (2017). Combination of poly (lactic) acid and starch for biodegradable food packaging. Materials, 10(8), Article 952. https://doi.org/10.3390/ma10080952

57. Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., Sahari, J. (2016). Development and characterization of sugar palm starch and poly (lactic acid) bilayer films. Carbohydrate Polymers, 146, 36–45. https://doi.org/10.1016/j.carbpol.2016.03.051

58. Hernández-Nolasco, Z., Ríos-Corripio, M. A., Hidalgo-Contreras, J. V., Castellano, P. H., Rubio-Rosas, E., Hernández-Cázares, A. S. (2024). Optimization of sodium alginate, taro starch and lactic acid based biodegradable films: Antimicrobial effect on a meat product. LWT, 192, Article 115718. https://doi.org/10.1016/j.lwt.2023.115718


Review

For citations:


Putilov V.E., Nepomnyashchiy A.P., Prichepa A.O., Belova D.D., Sharova N.Yu. Antimicrobial potato starch — based films incorporating lactic acid. Food systems. 2025;8(4):498-505. (In Russ.) https://doi.org/10.21323/2618-9771-2025-8-4-498-505

Views: 24

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)