Preview

Food systems

Advanced search

Revolutionizing curcumin bioavailability: From health benefits to placement in food packaging products

https://doi.org/10.21323/2618-9771-2025-8-3-343-354

Abstract

Curcumin, the principal bioactive compound in turmeric (Curcuma longa L.), is widely recognized for its pharmacological properties, including antioxidant, anti-inflammatory, and anticancer activities. However, its low bioavailability remains a major obstacle in the development of curcumin-based applications in food and pharmaceutical sectors. This review provides a comprehensive overview of recent technological advancements aimed at enhancing curcumin’s bioavailability, including encapsulation techniques, lipid-based delivery systems, and chemically modified curcumin derivatives. These innovations have demonstrated significant potential in improving the solubility, stability, and absorption of curcumin in the human body. Furthermore, recent trends in research utilizing natural carriers such as plant-derived proteins and polysaccharides are discussed, aligning with sustainable and food-safe delivery approaches. The review emphasizes an interdisciplinary approach that integrates food material science, biodegradable packaging, bioactive compound chemistry, and nanotechnology engineering. As formulation technologies continue to evolve, the application of curcumin in functional foods and health supplements becomes increasingly promising. The article also highlights existing research gaps and future directions, focusing on biological efficacy, long-term safety, and production scalability. This review aims to serve as a valuable reference for researchers and industry stakeholders in accelerating the utilization of curcumin through effective and sustainable smart delivery systems.

About the Authors

B. P. Pratama
Research Center for Agroindustry, National Research and Innovation Agency (BRIN), South Tangerang
Indonesia

Bima P. Pratama, PhD in Post-harvest Technology, Researcher

Jl. Raya Serpong, South Tangerang, Banten, West Java, 15310



A. R. Khairullah
Research Center for Veterinary Science, National Research and Innovation Agency (BRIN)
Indonesia

Aswin R. Khairullah, PhD in Veterinary Science, Researcher

Jl. Raya Bogor Km. 46 Cibinong, Bogor, West Java, 16911



I. F. Ma’ruf
Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN)
Indonesia

Ilma F. Ma’ruf, PhD in Chemistry, Researcher

Jl. Raya Bogor Km. 46 Cibinong, Bogor, West Java, 16911



A. O. Akintunde
Babcock University
Nigeria

Adeyinka O.  Akintunde, PhD in Agriculture, Lecturer, Department of Agriculture and Industrial Technology

Ilishan-Remo 121103, Ogun State



I. Mustofa
Universitas Airlangga
Indonesia

Imam Mustofa, PhD in Veterinary Reproduction, Professor, Division of Veterinary Reproduction, Faculty of Veterinary Medicine

Kampus C Mulyorejo, Jl. Dr. Ir. H. Soekarno, Surabaya, East Java, 60115



S. Mulyati
Universitas Airlangga
Indonesia

Sri Mulyati, PhD in Veterinary Reproduction, Associate Professor, Division of Veterinary Reproduction, Faculty of Veterinary Medicine

Kampus C Mulyorejo, Jl. Dr. Ir. H. Soekarno, Surabaya, East Java, 60115



R. Z. Ahmad
National Research and Innovation Agency (BRIN)
Indonesia

Riza Z. Ahmad, PhD in Veterinary Micology, Researcher, Research Center for Veterinary Science

Jl. Raya Bogor Km. 46 Cibinong, Bogor, West Java, 16911



A. N. M. Ansori
Postgraduate School, Universitas Airlangga; Medical Biotechnology Research Group, Virtual Research Center for Bioinformatics and Biotechnology; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University
Indonesia

Arif N. M. Ansori, PhD in Veterinary Science, Researcher

Jl. Airlangga 4–6, Surabaya, East Java, 60286



References

1. Alamri, M. S., Qasem, A. A. A., Mohamed, A. A., Hussain, S., Ibraheem, M. A., Shamlan, G. et al. (2021). Food packaging's materials: A food safety perspective. Saudi Journal of Biological Sciences, 28(8), 4490–4499. https://doi.org/10.1016/j.sjbs.2021.04.047

2. Evode, N., Qamar, S. A., Bilal, M., Barceló, D., Iqbal, H. M. N. (2021). Plastic waste and its management strategies for environmental sustainability. Case Studies in Chemical and Environmental Engineering, 4(1), Article 100142. https://doi.org/10.1016/j.cscee.2021.100142

3. Bashir, I., Lone, F. A., Bhat, R. A., Mir, S. A., Dar, Z. A., Dar, S. A. (2020). Concerns and threats of contamination on aquatic ecosystems. Chapter in a book: Bioremediation and Biotechnology. Springer Nature Switzerland AG, 2020.

4. Baranwal, J., Barse, B., Fais, A., Delogu, G. L., Kumar, A. (2022). Biopolymer: A sustainable material for food and medical applications. Polymers, 14(5), Article 983. https://doi.org/10.3390/polym14050983

5. Díaz-Montes, E., Castro-Muñoz, R. (2021). Edible films and coatings as food-quality preservers: An overview. Foods, 10(2), Article 249. https://doi.org/10.3390/foods10020249

6. Vasile, C., Baican, M. (2021). Progresses in food packaging, food quality, and safety-controlled-release antioxidant and/or antimicrobial packaging. Molecules, 26(5), Article 1263. https://doi.org/10.3390/molecules26051263

7. Filho, J. G. O., Egea, M. B. (2022). Edible bioactive film with curcumin: A potential "functional" packaging? International Journal of Molecular Sciences, 23(10), Article 5638. https://doi.org/10.3390/ijms23105638

8. Fuloria, S., Mehta, J., Chandel, A., Sekar, M., Rani, N. N. I. M., Begum, M. Y. et al. (2022). A comprehensive review on the therapeutic potential of Curcuma longa Linn. in relation to its major active constituent curcumin. Frontiers in Pharmacology, 13(1), Article 820806. https://doi.org/10.3389/fphar.2022.820806

9. El-Saadony, M. T., Yang, T., Korma, S. A., Sitohy, M., Abd El-Mageed, T. A., Selim, S. et al. (2023). Impacts of turmeric and its principal bioactive curcumin on human health: Pharmaceutical, medicinal, and food applications: A comprehensive review. Frontiers in Nutrition, 9(1), Article 1040259. https://doi.org/10.3389/fnut.2022.1040259

10. Sharifi-Rad, J., Rayess, Y. E., Rizk, A. A., Sadaka, C., Zgheib, R., Zam, W. et al. (2020). Turmeric and its major compound curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Frontiers in Pharmacology, 11(1), Article 01021. https://doi.org/10.3389/fphar.2020.01021

11. Cvek, M., Paul, U. C., Zia, J., Mancini, G., Sedlarik, V., Athanassiou, A. (2022). Biodegradable films of PLA/PPC and. curcumin as packaging materials and smart indicators of food spoilage. ACS Applied Materials and Interfaces, 14(12), 14654–14667. https://doi.org/10.1021/acsami.2c02181

12. Zheng, B., McClements, D. J. (2020). Formulation of more efficacious curcumin delivery systems using colloid science: Enhanced solubility, stability, and bioavailability. Molecules, 25(12), Article 2791. https://doi.org/10.3390/molecules25122791

13. Kaya, E., Kahyaoglu, L. N., Sumnu, G. (2022). Development of curcumin incorporated composite films based on chitin and glucan complexes extracted from Agaricus bisporus for active packaging of chicken breast meat. International Journal of Biological Macromolecules, 221(1), 536–546. https://doi.org/10.1016/j.ijbiomac.2022.09.025

14. Ghoran, S. H., Calcaterra, A., Abbasi, M., Taktaz, F., Nieselt, K., Babaei, E. (2022). Curcumin-based nanoformulations: A promising adjuvant towards cancer treatment. Molecules, 27(16), Article 5236. https://doi.org/10.3390/molecules27165236

15. Chen, Y., Lu, Y., Lee, R. J., Xiang, G. (2020). Nano encapsulated curcumin: and its potential for biomedical applications. International Journal of Nanomedicine, 15(1), 3099–3120. https://doi.org/10.2147/IJN.S210320

16. Tabanelli, R., Brogi, S., Calderone, V. (2021). Improving curcumin bioavailability: Current strategies and future perspectives. Pharmaceutics, 13(10), Article 1715. https://doi.org/10.3390/pharmaceutics13101715

17. Xu, Y., Yan, X., Zheng, H., Li, J., Wu, X., Xu, J. et al. (2024). The application of encapsulation technology in the food industry: Classifications, recent advances, and perspectives. Food Chemistry: X, 21(1), Article 101240. https://doi.org/10.1016/j.fochx.2024.101240

18. Roy, S., Priyadarshi, R., Ezati, P., Rhim, J. -W. (2022). Curcumin and its uses in active and smart food packaging applications — A comprehensive review. Food Chemistry, 375(1), Article 131885. https://doi.org/10.1016/j.foodchem.2021.131885

19. Hsu, K. Y., Ho, C. T., Pan, M. H. (2023). The therapeutic potential of curcumin and its related substances in turmeric: From raw material selection to application strategies. Journal of Food and Drug Analysis, 31(2), 194–211. https://doi.org/10.38212/2224-6614.3454

20. Islam, M. R., Rauf, A., Akash, S., Trisha, S. I., Nasim, A. H., Akter, M. et al. (2024). Targeted therapies of curcumin focus on its therapeutic benefits in cancers and human health: Molecular signaling pathway-based approaches and future perspectives. Biomedicine and Pharmacotherapy, 170(1), Article 116034. https://doi.org/10.1016/j.biopha.2023.116034

21. Sohn, S. I., Priya, A., Balasubramaniam, B., Muthuramalingam, P., Sivasankar, C., Selvaraj, A. et al. (2021). Biomedical applications and bioavailability of curcumin — An updated overview. Pharmaceutics, 13(12), Article 2102. https://doi.org/10.3390/pharmaceutics13122102

22. Hewlings, S. J., Kalman, D. S. (2017). Curcumin: A Review of its effects on human health. Foods, 6(10), Article 92. https://doi.org/10.3390/foods6100092

23. Ak, T., Gülçin, I. (2008). Antioxidant and radical scavenging properties of curcumin. Chemico — Biological Interactions, 174(1), 27–37. https://doi.org/10.1016/j.cbi.2008.05.003

24. Raduly, F. M., Raditoiu, V., Raditoiu, A., Purcar, V. (2021). Curcumin: Modern applications for a versatile additive. Coatings, 11(5), Article 519. https://doi.org/10.3390/coatings11050519

25. Oyagbemi, A. A., Saba, A. B., Ibraheem, A. O. (2009). Curcumin: From food spice to cancer prevention. Asian Pacific Journal of Cancer Prevention, 10(6), 963–967.

26. Urošević, M., Nikolić, L., Gajić, I., Nikolić, V., Dinić, A., Miljković, V. (2022). Curcumin: Biological activities and modern pharmaceutical forms. Antibiotics, 11(2), Article 135. https://doi.org/10.3390/antibiotics11020135

27. Sivani, B. M., Azzeh, M., Patnaik, R., Stoian, A. P., Rizzo, M., Banerjee, Y. (2022). Reconnoitering the therapeutic role of curcumin in disease prevention and treatment: Lessons learnt and future directions. Metabolites, 12(7), Article 639. https://doi.org/10.3390/metabo12070639

28. Ucisik, M. H., Küpcü, S., Schuster, B., Sleytr, U. B. (2013). Characterization of CurcuEmulsomes: Nanoformulation for enhanced solubility and delivery of curcumin. Journal of Nanobiotechnology, 11(1), Article 37. https://doi.org/10.1186/1477-3155-11-37

29. Takahashi, M., Ishiko, T., Kamohara, H., Hidaka, H., Ikeda, O., Ogawa, M. et al. (2007). Curcumin (1,7-bis(4-hydroxy 3-methoxyphenyl)-1,6-heptadiene 3,5- dione) blocks the chemotaxis of neutrophils by inhibiting signal transduction through IL 8 receptors. Mediators of Inflammation, 2007(1), Article 10767. https://doi.org/10.1155/2007/10767

30. Majeed, Y., Ziaf, K., Ghani, M. A., Ahmad, I., Ahmad, M. A., Abbasi, K. Y. et al. (2020). Effect of different combinations of organic and synthetic sources of nutrients on growth, yield and quality parameters of turmeric under Faisalabad conditions. Journal of Environmental and Agricultural Sciences, 22(4), 1–7.

31. Dolase, P., Chaudhari, V. (2024). Review on cultivation practices of Haridra (Curcuma longa Linn.). International Journal of Ayurveda and Pharma Research, 12(9), 56–61. http://doi.org/10.47070/ijapr.v12i9.3394

32. Ibáñez, M. D., Blázquez, M. A. (2020). Curcuma longa L. rhizome essential oil from extraction to its agri-food applications. A review. Plants, 10(1), Article 44. https://doi.org/10.3390/plants10010044

33. Saha, G., Sharangi, A. B., Upadhyay, T. K., Al-Keridis, L. A., Alshammari, N., Alabdallah, N. M. et al. (2022). Dynamics of drying turmeric rhizomes (Curcuma longa L.) with respect to its moisture, color, texture and quality. Agronomy, 12(6), Article 1420. https://doi.org/10.3390/agronomy12061420

34. Kumar, K., Gill, B. S. (2009). Effect of method of planting and harvesting time on growth, yield and quality of turmeric (Curcuma longa L.). Journal of Spices and Aromatic Crops, 18(1), 22–27.

35. Beshah, T. D., Saad, M. A. F., el Gazar, S., Farag, M. A. (2025). Curcuminoids: A multi-faceted review of green extraction methods and solubilization approaches to maximize their food and pharmaceutical applications. Advances in Sample Preparation, 13(1), Article 100159. https://doi.org/10.1016/j.sampre.2025.100159

36. Ciuca, M. D., Racovita, R. C. (2023). Curcumin: Overview of extraction methods, health benefits, and encapsulation and delivery using microemulsions and nanoemulsions. International Journal of Molecular Sciences, 24(10), Article 8874. https://doi.org/10.3390/ijms24108874

37. Priyadarsini, K. I. (2014). The chemistry of curcumin: From extraction to therapeutic agent. Molecules, 19(12), 20091–20112. https://doi.org/10.3390/molecules191220091

38. Widmann, A. K., Wahl, M. A., Kammerer, D. R., Daniels, R. (2022). Supercritical fluid extraction with CO2 of Curcuma longa L. in comparison to conventional solvent extraction. Pharmaceutics, 14(9), Article 1943. https://doi.org/10.3390/pharmaceutics14091943

39. Slaček, G., Kotnik, P., Osmić, A., Postružnik, V., Knez, Ž., Finšgar, M. et al. (2023). The extraction process, separation, and identification of curcuminoids from turmeric Curcuma longa. Foods, 12(21), Article 4000. https://doi.org/10.3390/foods12214000

40. Dandekar, D. V., Gaikar, V. G. (2003). Hydrotropic extraction of curcuminoids from turmeric. Separation Science and Technology, 38(5), 1185–1215. https://doi.org/10.1081/SS120018130

41. Górnicka, J., Mika, M., Wróblewska, O., Siudem, P., Paradowska, K. (2023). Methods to improve the solubility of curcumin from turmeric. Life, 13(1), Article 207. https://doi.org/10.3390/life13010207

42. Obregón-Mendoza, M. A., Meza-Morales, W., Alvarez-Ricardo, Y., EstévezCarmona, M. M., Enríquez, R. G. (2022). High yield synthesis of curcumin and symmetric curcuminoids: A "Click" and "Unclick" chemistry approach. Molecules, 28(1), Article 289. https://doi.org/10.3390/molecules28010289

43. Dandekar, D. V., Gaikar, V. G. (2002). Microwave assisted extraction of curcuminoids from Curcuma longa. Separation Science and Technology, 37(11), 2669– 2690. http://doi.org/10.1081/SS120004458

44. Stepanova, V. A., Guerrero, A., Schull, C., Christensen, J., Trudeau, C., Cook, J. et al. (2022). Hybrid synthetic and computational study of an optimized, solvent-free approach to curcuminoids. ACS Omega, 7(8), 7257–7277. https://doi.org/10.1021/acsomega.1c07006

45. Pabon, H. J. J. J. (2010). Synthesis of curcumin and related compounds. Recueil des Travaux Chimiques des Pays-Bas, 83(4), 379–386. http://doi.org/10.1002/recl.19640830407

46. Nguyen, V. T., Hoang, M. H. (2021). Principal component analysis based solvent map for optimisation of rate and yield of curcumin synthesis. Egyptian Journal of Chemistry, 64(2), 693–701. http://doi.org/10.21608/ejchem.2020.33197.2700

47. Lee, W. -H., Loo, C. -Y., Bebawy, M., Luk, F., Mason, R. S., Rohanizadeh, R. (2013). Curcumin and its derivatives: Their application in neuropharmacology and neuroscience in the 21st century. Current Neuropharmacology, 11(4), 338–378. https://doi.org/10.2174/1570159X11311040002

48. Vyas, A., Dandawate, P., Padhye, S., Ahmad, A., Sarkar, F. (2013). Perspectives on new synthetic curcumin analogs and their potential anticancer properties. Current Pharmaceutical Design, 19(11), 2047–2069.

49. Racz, C. -P., Racz, L. Z., Floare, C. G., Tomoaia, G., Horovitz, O., Riga, S. et al. (2023). Curcumin and whey protein concentrate binding: Thermodynamic and structural approach. Food Hydrocolloids, 139(1), Article 108547. https://doi.org/10.1016/j.foodhyd.2023.108547

50. Barzegar, A. (2012). The role of electron-transfer and H atom donation on the superb antioxidant activity and free radical reaction of curcumin. Food Chemistry, 135(3), 1369–1376. https://doi.org/10.1016/j.foodchem.2012.05.070

51. Manimaran, S., SambathKumar, K., Gayathri, R., Raja, K., Rajkamal, N., Venkatachalapathy, M. et al. (2018). Medicinal plant using ground state stabilization of natural antioxidant curcumin by keto-enol tautomerisation. Natural Products and Bioprospecting, 8(5), 369–390. https://doi.org/10.1007/s13659-018-0170-1

52. Erez, Y., Simkovitch, R., Shomer, S., Gepshtein, R., Huppert, D. (2014). Effect of acid on the ultraviolet-visible absorption and emission properties of curcumin. The Journal of Physical Chemistry A, 118(5), 872–884. https://doi.org/10.1021/jp411686d

53. Racz, L. Z., Racz, C. P., Pop, L. -C., Tomoaia, G., Mocanu, A., Barbu, I. et al. (2022). Strategies for improving bioavailability, bioactivity, and physical-chemical behavior of curcumin. Molecules, 27(20), Article 6854. https://doi.org/10.3390/molecules27206854

54. Huang, M., Zhai, B. -T., Fan, Y., Sun, J., Shi, Y. -J., Zhang, X. -F. et al. (2023). Targeted drug delivery systems for curcumin in breast cancer therapy. International Journal of Nanomedicine, 18(1), 4275–4311. https://doi.org/10.2147/IJN.S410688

55. Dias, L. D., Blanco, K. C., Mfouo-Tynga, I. S., Inada, N. M., Bagnato, V. S. (2020). Curcumin as a photosensitizer: From molecular structure to recent advances in antimicrobial photodynamic therapy. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 45(1), Article 100384. https://doi.org/10.1016/j.jphotochemrev.2020.100384

56. Nardo, L., Andreoni, A., Masson, M., Haukvik, T., Tønnesen, H. H. (2011). Studies on curcumin and curcuminoids. XXXIX. Photophysical properties of bisdemethoxycurcumin. Journal of Fluorescence, 21(2), 627–635. https://doi.org/10.1007/s10895-010-0750-x

57. Nardo, L., Paderno, R., Andreoni, A., Másson, M., Haukvik, T., Tønnesen, H. H. (2008). Role of H bond formation in the photoreactivity of curcumin. Spectroscopy, 22(2–3), 187–198. http://doi.org/10.3233/SPE2008-0335

58. Nardo, L., Andreoni, A., Bondani, M., Másson, M., Haukvik, T., Tønnesen, H. H. (2012). Studies on curcumin and curcuminoids. XLVI. Photophysical properties of dimethoxycurcumin and bis-dehydroxycurcumin. Journal of Fluorescence, 22(2), 597–608. https://doi.org/10.1007/s10895-011-0995-z

59. Nardo, L., Maspero, A., Penoni, A., Palmisano, G., Ferrari, E., Saladini, M. (2017). Excited state dynamics of bis-dehydroxycurcumin tert-butyl ester, a diketo-shifted derivative of the photosensitizer curcumin. PLoS One, 12(4), Article e0175225. https://doi.org/10.1371/journal.pone.0175225

60. Esatbeyoglu, T., Ulbrich, K., Rehberg, C., Rohn, S., Rimbach, G. (2015). Thermal stability, antioxidant, and anti-inflammatory activity of curcumin and its degradation product 4-vinyl guaiacol. Food and Function, 6(3), 887–893. https://doi.org/10.1039/c4fo00790e

61. Kharat, M., Du, Z., Zhang, G., McClements, D. J. (2017). Physical and chemical stability of curcumin in aqueous solutions and emulsions: Impact of pH, temperature, and molecular environment. Journal of Agricultural and Food Chemistry, 65(8), 1525–1532. https://doi.org/10.1021/acs.jafc.6b04815

62. Kamaly, N., Yameen, B., Wu, J., Farokhzad, O. C. (2016). Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chemical Reviews, 116(4), 2602–2663. https://doi.org/10.1021/acs.chemrev.5b00346

63. Schneider, C., Gordon, O. N., Edwards, R. L., Luis, P. B. (2015). Degradation of curcumin: From mechanism to biological implications. Journal of Agricultural and Food Chemistry, 63(35), 7606–7614. https://doi.org/10.1021/acs.jafc.5b00244

64. Azad, A. K., Lai, J., Sulaiman, W. M. A. W., Almoustafa, H., Alshehade, S. A., Kumarasamy, V. et al. (2024). The fabrication of polymer-based curcumin-loaded formulation as a drug delivery system: An updated review from 2017 to the present. Pharmaceutics, 16(2), Article 160. https://doi.org/10.3390/pharmaceutics16020160

65. Lai, D., Zhou, A., Tan, B. K., Tang, Y., Hamzah, S. S., Zhang, Z. et al. (2021). Preparation and photodynamic bactericidal effects of curcumin-β-cyclodextrin complex. Food Chemistry, 361, Article 130117. https://doi.org/10.1016/j.foodchem.2021.130117

66. Tønnesen, H. H., Másson, M., Loftsson, T. (2002). Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: Solubility, chemical and photochemical stability. International Journal of Pharmaceutics, 244(1–2), 127–135. https://doi.org/10.1016/s0378-5173(02)00323-x

67. Scazzocchio, B., Minghetti, L., D'Archivio, M. (2020). Interaction between gut microbiota and curcumin: A new key of understanding for the health effects of curcumin. Nutrients, 12(9), Article 2499. https://doi.org/10.3390/nu12092499

68. Luis, P. B., Kunihiro, A. G., Funk, J. L., Schneider, C. (2020). Incomplete hydrolysis of curcumin conjugates by β-glucuronidase: Detection of complex conjugates in plasma. Molecular Nutrition and Food Research, 64(6), Article e1901037. https://doi.org/10.1002/mnfr.201901037

69. Abd El-Hack, M. E., El-Saadony, M. T., Swelum, A. A., Arif, M., Ghanima, M. M. A., Shukry, M. et al. (2021). Curcumin, the active substance of turmeric: Its effects on health and ways to improve its bioavailability. Journal of the Science of Food and Agriculture, 101(14), 5747–5762. https://doi.org/10.1002/jsfa.11372

70. Sathyabhama, M., Dharshini, L. C. P., Karthikeyan, A., Kalaiselvi, S., Min, T. (2022). The credible role of curcumin in oxidative stress-mediated mitochondrial dysfunction in mammals. Biomolecules, 12(10), Article 1405. https://doi.org/10.3390/biom12101405

71. Jakubczyk, K., Drukżga, A., Katarzyna, J., Skonieczna-Żydecka, K. (2020). Antioxidant potential of curcumin -A meta-analysis of randomized clinical trials. Antioxidants, 9(11), Article 1092. https://doi.org/10.3390/antiox9111092

72. Fouad, G. I., Ahmed, K. A. (2022). Curcumin ameliorates doxorubicin-induced cardiotoxicity and hepatotoxicity via suppressing oxidative stress and modulating iNOS, NF κB, and TNF α in rats. Cardiovascular Toxicology, 22(2), 152–166. https://doi.org/10.1007/s12012-021-09710-w

73. Dai, C., Lin, J., Li, H., Shen, Z., Wang, Y., Velkov, T. et al. (2022). The natural product curcumin as an antibacterial agent: Current achievements and problems. Antioxidants, 11(3), Article 459. https://doi.org/10.3390/antiox11030459

74. Adamczak, A., Ożarowski, M., Karpiński, T. M. (2020). Curcumin, a natural antimicrobial agent with strain-specific activity. Pharmaceuticals, 13(7), Article 153. https://doi.org/10.3390/ph13070153

75. Trigo-Gutierrez, J. K., Vega-Chacón, Y., Soares, A. B., Mima, E. G. O. (2021). Antimicrobial activity of curcumin in nanoformulations: A comprehensive review. International Journal of Molecular Sciences, 22(13), Article 7130. https://doi.org/10.3390/ijms22137130

76. Dizaj, S. M, Shokrgozar, H., Yazdani, J., Memar, M. Y., Sharifi, S., Ghavimi, M. A. (2022). Antibacterial effects of curcumin nanocrystals against porphyromonas gingivalis isolated from patients with implant failure. Clinics and Practice, 12(5), 809–817. https://doi.org/10.3390/clinpract12050085

77. Marton, L. T., Pescinini-E-Salzedas, L. M., Camargo, M. E. C., Barbalho, S. M., Haber, J. F. D. S., Sinatora, R. V. et al. (2021). The effects of curcumin on diabetes mellitus: A systematic review. Frontiers in Endocrinology, 12(1), Article 669448. https://doi.org/10.3389/fendo.2021.669448

78. Cho, J. A., Park, S. H., Cho, J., Kim, J. O., Yoon, J. H., Park, E. (2020). Exercise and curcumin in combination improves cognitive function and attenuates er stress in diabetic rats. Nutrients, 12(5), Article 1309. https://doi.org/10.3390/nu12051309

79. Najafian, M. (2015). The effects of curcumin on alpha amylase in diabetics rats. Zahedan Journal of Research in Medical Sciences, 17(12), Article e5198. http://doi.org/10.17795/zjrms5198

80. Lu, X., Wu, F., Jiang, M., Sun, X., Tian, G. (2019). Curcumin ameliorates gestational diabetes in mice partly through activating AMPK. Pharmaceutical Biology, 57(1), 250–254. https://doi.org/10.1080/13880209.2019.1594311

81. Clapp, M., Aurora, N., Herrera, L., Bhatia, M., Wilen, E., Wakefield, S. (2017). Gut microbiota's effect on mental health: The gut-brain axis. Clinics and Practice, 7(4), Article 987. https://doi.org/10.4081/cp.2017.987

82. Wu, S. -X., Li, J., Zhou, D. -D., Xiong, R. -G., Huang, S.-Y., Saimaiti, A. et al. (2022). Possible effects and mechanisms of dietary natural products and nutrients on depression and anxiety: A Narrative review. Antioxidants, 11(11), Article 2132. https://doi.org/10.3390/antiox11112132

83. Lamanna-Rama, N., Romero-Miguel, D., Desco, M., Soto-Montenegro, M. L. (2022). An update on the exploratory use of curcumin in neuropsychiatric disorders. Antioxidants, 11(2), Article 353. https://doi.org/10.3390/antiox11020353

84. Kulkarni, S., Dhir, A., Akula, K. K. (2009). Potentials of curcumin as an antidepressant. ScientificWorldJournal, 9(1), 1233–1241. http://doi.org/10.1100/tsw.2009.137

85. Kanchanatawan, B., Tangwongchai, S., Sughondhabhirom, A., Suppapitiporn, S., Hemrunrojn, S., Carvalho, A. F. et al. (2018). Add-on treatment with curcumin has antidepressive effects in thai patients with major depression: Results of a randomized double-blind placebo-controlled study. Neurotoxicity Research, 33(3), 621–633. https://doi.org/10.1007/s12640-017-9860-4

86. Anand, U., Dey, A., Chandel, A. K. S., Sanyal, R., Mishra, A., Pandey, D. K. et al. (2022). Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes and Diseases, 10(4), 1367–1401. https://doi.org/10.1016/j.gendis.2022.02.007

87. Yang, Z.-J., Huang, S.-Y., Zhou, D.-D., Xiong, R.-G., Zhao, C.-N., Fang, A.-P. et al. (2022). Effects and mechanisms of curcumin for the prevention and management of cancers: An updated review. Antioxidants, 11(8), Article 1481. https://doi.org/10.3390/antiox11081481

88. Hosseini, S. S., Reihani, R. Z., Doustvandi, M. A., Amini, M., Zargari, F., Baradaran, B. et al. (2022). Synergistic anticancer effects of curcumin and crocin on human colorectal cancer cells. Molecular Biology Reports, 49(9), 8741–8752. https://doi.org/10.1007/s11033-022-07719-0

89. Wang, M., Jiang, S., Zhou, L., Yu, F., Ding, H., Li, P. et al. (2019). Potential mechanisms of action of curcumin for cancer prevention: Focus on cellular signaling pathways and miRNAs. International Journal of Biological Sciences, 15(6), 1200–1214. https://doi.org/10.7150/ijbs.33710

90. Li, P., Pu, S., Lin, C., He, L., Zhao, H., Yang, C. et al. (2022). Curcumin selectively induces colon cancer cell apoptosis and S cell cycle arrest by regulates Rb/E2F/ p53 pathway. Journal of Molecular Structure, 1263, Article 133180. https://doi.org/10.1016/j.molstruc.2022.133180

91. Farahani, M. K., Atashi, A., Asadi, A. (2022). Evaluation of anticancer effects of curcumin on multicellular breast cancer spheroids. Turkish Journal of Oncology, 37(3), 285–290. http://doi.org/10.5505/tjo.2022.3512

92. Marsh, K., Bugusu, B. (2007). Food packaging? Roles, materials, and environmental issues. Journal of Food Science, 72(3), R39–R55. https://doi.org/10.1111/j.1750-3841.2007.00301.x

93. Karanth, S., Feng, S., Patra, D., Pradhan, A. K. (2023). Linking microbial contamination to food spoilage and food waste: The role of smart packaging, spoilage risk assessments, and date labeling. Frontiers in Microbiology, 14(1), Article 1198124. https://doi.org/10.3389/fmicb.2023.1198124

94. Nair, S. S., Trafiałek, J., Kolanowski, W. (2023). Edible packaging: A technological update for the sustainable future of the food industry. Applied Sciences, 13(14), Article 8234. https://doi.org/10.3390/app13148234

95. Gupta, D., Lall, A., Kumar, S., Patil, T. D., Gaikwad, K K. (2024). Plant-based edible films and coatings for food-packaging applications: Recent advances, applications, and trends. Sustainable Food Technology, 2(5), 1428–1455. http://doi.org/10.1039/D4FB00110A

96. Janowicz, M., Galus, S., Ciurzyńska, A., Nowacka, M. (2023). The potential of edible films, sheets, and coatings based on fruits and vegetables in the context of sustainable food packaging development. Polymers, 15(21), Article 4231. https://doi.org/10.3390/polym15214231

97. Devi, L. S., Jaiswal, A. K., Jaiswal, S. (2024). Lipid incorporated biopolymer based edible films and coatings in food packaging: A review. Current Research in Food Science, 8(1), Article 100720. https://doi.org/10.1016/j.crfs.2024.100720

98. Zhao, M., Han, P., Mu, H., Sun, S., Dong, J., Sun, J. et al. (2025). Food packaging films from natural polysaccharides and protein hydrogels: A comprehensive review. Food Chemistry: X, 25(1), Article 102174. https://doi.org/10.1016/j.fochx.2025.102174

99. Zibaei, R., Hasanvand, S., Hashami, Z., Roshandel, Z., Rouhi, M., Guimarães, J. T. et al. (2021). Applications of emerging botanical hydrocolloids for edible films: A review. Carbohydrate Polymers, 256(1), Article 117554. https://doi.org/10.1016/j.carbpol.2020.117554

100. Mihalca, V., Kerezsi, A. D., Weber, A., Gruber-Traub, C., Schmucker, J., Vodnar, D. C. et al. (2021). Protein-based films and coatings for food industry applications. Polymers, 13(5), Article 769. https://doi.org/10.3390/polym13050769

101. Jahangiri, F., Mohanty, A. K., Misra, M. (2024). Sustainable biodegradable coatings for food packaging: Challenges and opportunities. Green Chemistry, 26(9), 4934–4974. http://doi.org/10.1039/D3GC02647G

102. Weng, S., Marcet, I., Rendueles, M., Díaz, M. (2025). Edible films from the laboratory to industry: A review of the different production methods. Food and Bioprocess Technology, 18(1), 3245–3271. http://doi.org/10.1007/s11947-024-03641-4

103. Patil, V., Shams, R., Dash, K. K. (2023). Techno-functional characteristics, and potential applications of edible coatings: A comprehensive review. Journal of Agriculture and Food Research, 14(1), Article 100886. https://doi.org/10.1016/j.jafr.2023.100886

104. Benbettaïeb, N., Karbowiak, T., Debeaufort, F. (2019). Bioactive edible films for food applications: Influence of the bioactive compounds on film structure and properties. Critical Reviews in Food Science and Nutrition, 59(7), 1137–1153. https://doi.org/10.1080/10408398.2017.1393384

105. Moeini, A., Pedram, P., Fattahi, E., Cerruti, P., Santagata, G. (2022). Edible polymers and secondary bioactive compounds for food packaging applications: Antimicrobial, mechanical, and gas barrier properties. Polymers, 14(12), Article 2395. https://doi.org/10.3390/polym14122395

106. Chawla, R., Sivakumar, S., Kaur, H. (2021). Antimicrobial edible films in food packaging: Current scenario and recent nanotechnological advancements — A review. Carbohydrate Polymer Technologies and Applications, 2(1), Article 100024. https://doi.org/10.1016/j.carpta.2020.100024

107. Rezagholizade-Shirvan, A., Soltani, M., Shokri, S., Radfar, R., Arab, M., Shamloo, E. (2024). Bioactive compound encapsulation: Characteristics, applications in food systems, and implications for human health. Food Chemistry: X, 24(1), Article 101953. https://doi.org/10.1016/j.fochx.2024.101953

108. Barbosa, C. H., Andrade, M. A., Vilarinho, F., Fernando, A. L., Silva, A. S. (2021). Active edible packaging. Encyclopedia, 1(2), 360–370. https://doi.org/10.3390/encyclopedia1020030

109. Kumar, A., Nirmal, P., Kumar, M., Jose, A., Tomer, V., Oz, E. et al. (2023). Major phytochemicals: Recent advances in health benefits and extraction method. Molecules, 28(2), Article 887. https://doi.org/10.3390/molecules28020887

110. Kocaadam, B., Şanlier, N. (2017). Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Critical Reviews in Food Science and Nutrition, 57(13), 2889–2895. https://doi.org/10.1080/10408398.2015.1077195

111. Kunnumakkara, A. B., Hegde, M., Parama, D., Girisa, S., Kumar, A., Daimary, U. D. et al. (2023). Role of turmeric and curcumin in prevention and treatment of chronic diseases: Lessons learned from clinical trials. ACS Pharmacology and Translational Science, 6(4), 447–518. https://doi.org/10.1021/acsptsci.2c00012

112. Masuda, T., Toi, Y., Bando, H., Maekawa, T., Takeda, Y., Yamaguchi, H. (2002). Structural identification of new curcumin dimers and their contribution to the antioxidant mechanism of curcumin. Journal of Agricultural and Food Chemistry, 50(9), 2524–2530. https://doi.org/10.1021/jf011601s

113. Nunes, Y. C., Mendes, N. M., de Lima, E. P., Chehadi, A. C., Lamas, C. B., Haber, J. F. S. et al. (2024). Curcumin: A golden approach to healthy aging: A systematic review of the evidence. Nutrients, 16(16), Article 2721. https://doi.org/10.3390/nu16162721

114. Kumari, A., Raina, N., Wahi, A., Goh, K. W., Sharma, P., Nagpal, R. et al. (2022). Wound-healing effects of curcumin and its nanoformulations: A comprehensive review. Pharmaceutics, 14(11), Article 2288. https://doi.org/10.3390/pharmaceutics14112288

115. Dairaku, I., Han, Y., Yanaka, N., Kato, N. (2010). Inhibitory effect of curcumin on IMP dehydrogenase, the target for anticancer and antiviral chemotherapy agents. Bioscience, Biotechnology, and Biochemistry, 74(1), 185–187. https://doi.org/10.1271/bbb.90568

116. Gupta, S. C., Patchva, S., Koh, W., Aggarwal, B. B. (2012). Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clinical and Experimental Pharmacology and Physiology, 39(3), 283–299. https://doi.org/10.1111/j.1440-1681.2011.05648.x

117. WHO. (2013). Global action plan for the prevention and control of noncommunicable diseases 2013–2020. World Health Organization, Geneva, 2013.

118. He, Y., Yue, Y., Zheng, X., Zhang, K., Chen, S., Du, Z. (2015). Curcumin, inflammation, and chronic diseases: How are they linked? Molecules, 20(5), 9183– 9213. https://doi.org/10.3390/molecules20059183

119. Peng, Y., Ao, M., Dong, B., Jiang, Y., Yu, L., Chen, Z. et al. (2021). Anti-inflammatory effects of curcumin in the inflammatory diseases: Status, limitations and countermeasures. Drug Design, Development and Therapy, 15(1), 4503–4525. https://doi.org/10.2147/DDDT.S327378

120. Varì, R., Scazzocchio, B., Silenzi, A., Giovannini, C., Masella, R. (2021). Obesityassociated inflammation: Does curcumin exert a beneficial role? Nutrients, 13(3), Article 1021. https://doi.org/10.3390/nu13031021

121. Safarian, H., Parizadeh, S. M. R., Saberi-Karimain, M., Darroudi, S., Javandoost, A., Mohammadi, F. et al. (2019). The effect of curcumin on serum copper and zinc and zn/cu ratio in individuals with metabolic syndrome: A double-blind clinical trial. Journal of Dietary Supplements, 16(6), 625–634. https://doi.org/10.1080/19390211.2018.1472711

122. Zhang, D. W., Fu, M., Gao, S. -H., Liu, J. -L. (2013). Curcumin and diabetes: A systematic review. Evidence-Based Complementary and Alternative Medicine, 2013(1), Article 636053. https://doi.org/10.1155/2013/636053

123. Assis, R. P., Arcaro, C. A., Gutierres, V. O., Oliveira, J. O., Costa, P. I., Baviera, A. M. et al. (2017). Combined effects of curcumin and lycopene or bixin in yoghurt on inhibition of LDL oxidation and increases in HDL and paraoxonase levels in streptozotocin-diabetic rats. International Journal of Molecular Sciences, 18(4), Article 332. https://doi.org/10.3390/ijms18040332

124. Jamilian, M., Foroozanfard, F., Kavossian, E., Aghadavod, E., Shafabakhsh, R., Hoseini, A. et al. (2020). Effects of curcumin on body weight, glycemic control and serum lipids in women with polycystic ovary syndrome: A randomized, double-blind, placebo-controlled trial. Clinical Nutrition ESPEN, 36(1), 128– 133. https://doi.org/10.1016/j.clnesp.2020.01.005

125. Davoodvandi, A., Farshadi, M., Zare, N., Akhlagh, S. A., Nosrani, E. A., Mahjoubin-Tehran, M. et al. (2021). Antimetastatic effects of curcumin in oral and gastrointestinal cancers. Frontiers in Pharmacology, 12(1), Article 668567. https://doi.org/10.3389/fphar.2021.668567

126. Spanoudaki, M., Papadopoulou, S. K., Antasouras, G., Papadopoulos, K. A., Psara, E., Vorvolakos, T. et al. (2024). Curcumin as a multifunctional spice ingredient against mental disorders in humans: Current clinical studies and bioavailability concerns. Life, 14(4), Article 479. https://doi.org/10.3390/life14040479

127. Sabet, S., Rashidinejad, A., Melton, L. D., McGillivray, D. J. (2021). Recent advances to improve curcumin oral bioavailability. Trends in Food Science and Technology, 110(1), 253–266. https://doi.org/10.1016/j.tifs.2021.02.006

128. Peng, S., Li, Z., Zou, L., Liu, W., Liu, C., McClements, D. J. (2018). Improving curcumin solubility and bioavailability by encapsulation in saponin-coated curcumin nanoparticles prepared using a simple pH driven loading method. Food and Function, 9(3), 1829–1839. https://doi.org/10.1039/c7fo01814b

129. Zheng, B., Peng, S., Zhang, X., McClements, D. J. (2018). Impact of delivery system type on curcumin bioaccessibility: Comparison of curcumin-loaded nanoemulsions with commercial curcumin supplements. Journal of Agricultural and Food Chemistry, 66(41), 10816–10826. https://doi.org/10.1021/acs.jafc.8b03174

130. Peng, S., Li, Z., Zou, L., Liu, W., Liu, C., McClements, D. J. (2018). Enhancement of curcumin bioavailability by encapsulation in sophorolipid-coated nanoparticles: An in vitro and in vivo study. Journal of Agricultural and Food Chemistry, 66(6), 1488–1497. https://doi.org/10.1021/acs.jafc.7b05478

131. Liu, Q., Li, F., Ji, N., Dai, L., Xiong, L., Sun, Q. (2021). Acetylated debranched starch micelles as a promising nanocarrier for curcumin. Food Hydrocolloids, 111(1), Article 106253. https://doi.org/10.1016/j.foodhyd.2020.106253

132. Gómez-Mascaraque, L. G., Sipoli, C. C., de La Torre, L. G., López-Rubio, A. (2017). Microencapsulation structures based on protein-coated liposomes obtained through electrospraying for the stabilization and improved bioaccessibility of curcumin. Food Chemistry, 233(1), 343–350. https://doi.org/10.1016/j.foodchem.2017.04.133

133. Alavi, F., Ciftci, O. N. (2024). Increasing the bioavailability of curcumin using a green supercritical fluid technology-assisted approach based on simultaneous starch aerogel formation-curcumin impregnation. Food Chemistry, 455(1), Article 139468. https://doi.org/10.1016/j.foodchem.2024.139468

134. Aditya, N. P., Aditya, S., Yang, H., Kim, H. W., Park, S. O., Ko, S. (2015). Co-delivery of hydrophobic curcumin and hydrophilic catechin by a water-in-oil-inwater double emulsion. Food Chemistry, 173(1), 7–13. https://doi.org/10.1016/j.foodchem.2014.09.131

135. Ahmed, K., Li, Y., McClements, D. J., Xiao, H. (2012). Nanoemulsion -and emulsionbased delivery systems for curcumin: Encapsulation and release properties. Food Chemistry, 132(2), 799–807. https://doi.org/10.1016/j.foodchem.2011.11.039

136. Shah, B. R., Zhang, C., Li, Y., Li, B. (2016). Bioaccessibility and antioxidant activity of curcumin after encapsulated by nano and Pickering emulsion based on chitosan-tripolyphosphate nanoparticles. Food Research International, 89 (Part 1), 399–407. https://doi.org/10.1016/j.foodres.2016.08.022

137. Song, Y., Su, S., Yang, T., Li, B., Li, L., Zhang, X. (2023). Enhanced bioaccessibility of curcumin in Pickering emulsions stabilized by solid lipid particles. LWT, 188(1), Article 115481. https://doi.org/10.1016/j.lwt.2023.115481

138. Pan, K., Luo, Y., Gan, Y., Baek, S.J., Zhong, Q. (2014). pH driven encapsulation of curcumin in self-assembled casein nanoparticles for enhanced dispersibility and bioactivity. Soft Matter, 10(35), 6820–6830. http://doi.org/10.1039/c4sm00239c

139. Roy, S., Rhim, J. -W. (2021). Antioxidant and antimicrobial poly (vinyl alcohol)- based films incorporated with grapefruit seed extract and curcumin. Journal of Environmental Chemical Engineering, 9(1), Article 104694. https://doi.org/10.1016/j.jece.2020.104694

140. Xiao, Y., Liu, Y., Kang, S., Cui, M., Xu, H. (2021). Development of pH responsive antioxidant soy protein isolate films incorporated with cellulose nanocrystals and curcumin nanocapsules to monitor shrimp freshness. Food Hydrocolloids, 120(1), Article 106893. https://doi.org/10.1016/j.foodhyd.2021.106893

141. Roy, S., Rhim, J. -W. (2020). Carboxymethyl cellulose-based antioxidant and antimicrobial active packaging film incorporated with curcumin and zinc oxide. International Journal of Biological Macromolecules, 148(1), 666–676. https://doi.org/10.1016/j.ijbiomac.2020.01.204

142. Tian, Y., Yang, X., Cao, C., Lv, Z., Han, C., Guo, Q. et al. (2024). Improved antioxidant activities of edible films by curcumin-containing with zein/polysaccharide. Food Bioscience, 57(1), Article 103538. https://doi.org/10.1016/j.fbio.2023.103538

143. Rostami, H., Esfahani, A. A. (2019). Development a smart edible nanocomposite based on mucilage of Melissa officinalis seed/montmorillonite (MMT)/ curcumin. International Journal of Biological Macromolecules, 141(1), 171–177. https://doi.org/10.1016/j.ijbiomac.2019.08.261

144. Taghinia, P., Abdolshahi, A., Sedaghati, S., Shokrollahi, B. (2021). Smart edible films based on mucilage of lallemantia iberica seed incorporated with curcumin for freshness monitoring. Food Science and Nutrition, 9(2), 1222–1231. http://doi.org/10.1002/fsn3.2114

145. Manna, P. J., Mitra, T., Pramanik, N., Kavitha, V., Gnanamani, A., Kundu, P. P. (2015). Potential use of curcumin loaded carboxymethylated guar gum grafted gelatin film for biomedical applications. International Journal of Biological Macromolecules, 75(1), 437–446. https://doi.org/10.1016/j.ijbiomac.2015.01.047

146. Musso, Y.S., Salgado, P.R., Mauri, A.N. (2017). Smart edible films based on gelatin and curcumin. Food Hydrocolloids, 66(1), 8–15. https://doi.org/10.1016/j.foodhyd.2016.11.007

147. Hegde, M., Girisa, S., BharathwajChetty, B., Vishwa, R., Kunnumakkara, A. B. (2023). Curcumin formulations for better bioavailability: What we learned from clinical trials thus far? ACS Omega, 8(12), 10713–10746. https://doi.org/10.1021/acsomega.2c07326

148. Ghosh, S. S., He, H., Wang, J., Gehr, T. W., Ghosh, S. (2018). Curcumin-mediated regulation of intestinal barrier function: The mechanism underlying its beneficial effects. Tissue Barriers, 6(1), Article e1425085. https://doi.org/10.1080/21688370.2018.1425085

149. Li, H., Liu, M., Ju, X., Zhang, H., Xia, N., Wang, J. et al. (2024). Physico-chemical characteristics of pH driven active film loading with curcumin based on the egg white protein and sodium alginate matrices. Foods, 13(9), Article 1340. https://doi.org/10.3390/foods13091340

150. Gunathilake, T.M.S.U., Ching, Y.C., Chuah, C.Y., Rahman, N. A., Nai-Shang, L. (2020). pH responsive poly (lactic acid)/sodium carboxymethyl cellulose film for enhanced delivery of curcumin in vitro. Journal of Drug Delivery Science and Technology, 58(1), Article 101787. https://doi.org/10.1016/j.jddst.2020.101787

151. Zhang, Z., Zhang, R., Zou, L., Chen, L., Ahmed, Y., Al Bishri, W. et al. (2016). Encapsulation of curcumin in polysaccharide-based hydrogel beads: Impact of bead type on lipid digestion and curcumin bioaccessibility. Food Hydrocolloids, 58(1), 160–170. https://doi.org/10.1016/j.foodhyd.2016.02.036

152. Ghosh, T., Nakano, K., Katiyar, V. (2021). Curcumin doped functionalized cellulose nanofibers based edible chitosan coating on kiwifruits. International Journal of Biological Macromolecules, 184(1), 936–945. https://doi.org/10.1016/j.ijbiomac.2021.06.098

153. Shen, W., Yan, M., Wu, S., Ge, X., Liu, S., Du, Y. et al. (2022). Chitosan nanoparticles embedded with curcumin and its application in pork antioxidant edible coating. International Journal of Biological Macromolecules, 204(1), 410–418. https://doi.org/10.1016/j.ijbiomac.2022.02.025

154. Bojorges, H., Ríos-Corripio, M. A., Hernández-Cázares, A. S., Hidalgo-Contreras, J. V., Contreras-Oliva, A. (2020). Effect of the application of an edible film with turmeric (Curcuma longa L.) on the oxidative stability of meat. Food Science and Nutrition, 8(8), 4308–4319. https://doi.org/10.1002/fsn3.1728

155. Hussain, Y., Alam, W., Ullah, H., Dacrema, M., Daglia, M., Khan, H. et al. (2022). Antimicrobial potential of curcumin: Therapeutic potential and challenges to clinical applications. Antibiotics, 11(3), Article 322. https://doi.org/10.3390/antibiotics11030322

156. Farshidfar, N., Tanideh, N., Emami, Z., Aslani, F. S., Sarafraz, N., Khodabandeh, Z. et al. (2022). Incorporation of curcumin into collagen-multiwalled carbon nanotubes nanocomposite scaffold: An in vitro and in vivo study. Journal of Materials Research and Technology, 21(1), 4558–4576. https://doi.org/10.1016/j.jmrt.2022.11.022

157. Singh, B. G., Bagora, N., Nayak, M., Ajish, J. K., Gupta, N., Kunwar, A. (2024). The preparation of curcumin-loaded pickering emulsion using gelatin — chitosan colloidal particles as emulsifier for possible application as a bio-inspired cosmetic formulation. Pharmaceutics, 16(3), Article 356. https://doi.org/10.3390/pharmaceutics16030356

158. Vostrikova, N. L., Minaev, M. Y., Chikovany, K. G. (2021). Determining the authenticity of turmeric. Food Systems, 4(1), 62–70. https://doi.org/10.21323/2618-9771-2021-4-1-62-70 (In Russian)

159. Etxabide, A., Kilmartin, P. A., Maté, J. I. (2021). Color stability and pH indicator ability of curcumin, anthocyanin and betanin containing colorants under different storage conditions for intelligent packaging development. Food Control, 121(1), Article 107645. https://doi.org/10.1016/j.foodcont.2020.107645


Review

For citations:


Pratama B.P., Khairullah A.R., Ma’ruf I.F., Akintunde A.O., Mustofa I., Mulyati S., Ahmad R.Z., Ansori A.N. Revolutionizing curcumin bioavailability: From health benefits to placement in food packaging products. Food systems. 2025;8(3):343-354. https://doi.org/10.21323/2618-9771-2025-8-3-343-354

Views: 38


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)