Preview

Пищевые системы

Расширенный поиск

Аддитивные технологии в пищевой промышленности

https://doi.org/10.21323/2618-9771-2025-8-3-450-468

Аннотация

3D-печать, также известная как аддитивное производство, представляет собой технологию, которая используется для изготовления объектов с помощью послойной печати на основе цифровых моделей. Она применяется в пищевой промышленности для персонализации питания, оптимизации цепочек поставок и  расширения ассортимента доступных продуктов. Кроме того, показано, что эта технология помогает решать глобальные задачи, включая сокращение пищевых отходов за счет оптимизации технологических процессов и рационального использования сырья, в том числе через включение восстановленных питательных веществ из побочных продуктов агропромышленного производства в печатные продукты питания. В статье рассмотрены сильные стороны и риски применения аддитивных технологий, ключевые тренды и  особенности их применения в  пищевой промышленности, а также современное состояние мирового рынка 3D‑технологий. Проанализированы возможности 3D‑печати различных видов продуктов на основе последних научных разработок, рассмотрены проблемы печати мясных продуктов и их аналогов, а также перспективы использования 3D‑печати для персонализации питания с учетом требований и  предпочтений потребителей. В  статье оценили препятствия для выхода пищевых 3D‑принтеров и технологий на потребительский рынок. Проанализированы свойства исходных материалов (пищевые чернила), оказывающих значительное влияние на пищевые продукты, напечатанные на 3D‑принтере, особенно на их механическую прочность и вязкость, которые влияют на точность и формуемость напечатанных продуктов. Показано, что метод смешивания функциональных компонентов и материалов для печати имеет высокий потенциал для индивидуальной настройки функциональных продуктов питания под потребности разных групп потребителей. Кроме того, в данной работе обобщены методы оценки эффективности 3D‑печати пищевых продуктов и определено влияние 3D‑печати на достижение «Целей устойчивого развития».

Об авторах

М. А. Никитина
Федеральный научный центр пищевых систем им. В. М. Горбатова
Россия

Никитина Марина Александровна — доктор технических наук, доцент, ведущий научный сотрудник, руководитель направления Информационные технологии Центра «Экономико-аналитических исследований и информационных технологий»

109316, Москва, ул. Талалихина, 26



Н. А. Горбунова
Федеральный научный центр пищевых систем им. В. М. Горбатова

Горбунова Наталья Анатольевна — кандидат технических наук, ученый секретарь

109316, Москва, ул. Талалихина, 26



Список литературы

1. Pereira, T., Barroso, S., Gil, M. M. (2021). Food texture design by 3D printing: A review. Foods, 10, Article 320. https://doi.org/10.3390/foods10020320

2. Millán, M. G. D., de la Torre, M. G. M. V. (2024). 3D food printing: Technological advances, personalization and future challenges in the food industry. International Journal of Gastronomy and Food Science, 37, Article 100963. https://doi.org/10.1016/j.ijgfs.2024.100963

3. Dictionary Merriam-Webster (2022). Retrieved from https://www.merriam-webster.com/dictionary/3D%20printing/ Accessed March 27, 2025.

4. Rinshana, P. F., Murugesan, B., Kim, Y. H., Alaguthevar, R., Rhim, J.-W. (2025). Advances in 3D food printing technology: Innovation and applications in the food industry. Food Science and Biotechnology, 34, 403–421. https://doi.org/10.1007/s10068-024-01779-7

5. Alami, A. H., Olabi, A. G., Khuri, S., Aljaghoub, H., Alasad, S., Ramadan, M. et al. (2024). 3D printing in the food industry: Recent progress and role in achieving sustainable development goals. Ain Shams Engineering Journal, 15(2), Article 102386. https://doi.org/10.1016/j.asej.2023.102386

6. Waseema, M., Tahira, A. U., Majeed Y. (2023). Printing the future of food: The physics perspective on 3D food printing. Food Physics, 1, Article 100003. https://doi.org/10.1016/j.foodp.2023.100003

7. Godoi, F. C., Prakash, S., Bhandari, B. R. (2016). 3d printing technologies applied for food design: Status and prospects. Journal of Food Engineering, 179, 44–54. https://doi.org/10.1016/j.jfoodeng.2016.01.025

8. Ramachandraiah, K. (2021) Potential development of sustainable 3d-printed meat analogues: A review. Sustainability, 13(2), Article 938. https://doi.org/10.3390/su13020938

9. Polaris Market Research (2022). 3D Food Printing Market Share, Size, Trends, Industry Analysis Report. Retrieved from https://www.polarismarketresearch.com/industry-analysis/3d-food-printing-market Accessed February 20, 2025.

10. Коноваленко, Л. Ю., Мишуров, Н. П., Голубев, И. Г., Никитина, М. А., Бредихин, С. А. (2020). Цифровая трансформация пищевой и перерабатывающей промышленности: аналит. Обзор. Москва: Издательство «Росинформагротех», 2020.

11. Hull, Ch. “Apparatus for Production of Three-Dimensional Objects by Stereolithography”, U. S. Patent 4,575,330, published March 11, 1986.

12. Deckard, C. “Method and apparatus for producing parts by selective sintering”, U. S. Patent 4,863,538, filed October 17, 1986, published September 5, 1989.

13. Feygin, M. “Apparatus and method for forming an integral object from laminations” patent 4,752,352 US № 07/040361 filed April 17, 1987, published June 21, 1988.

14. Crump, S. S. “Apparatus and method for creating three-dimensional objects” patent 5,121,329 US № 07/429012 filed October 30, 1989, published June 9, 1992.

15. Sachs, E., Cima, M., Williams, P., Brancazio, D., Cornie, J. (1992). Three dimensional printing: Rapid tooling and prototypes directly from a CAD model. Journal of Engineering for Industry, 114(4), Article 481. https://doi.org/10.1115/1.2900701

16. Sachs E., Haggerty J., Cima M., Williams. P. “Three-dimensional printing techniques” patent 5,204,055 US № 07/447677 filed December 8, 1989, published April 20, 1993.

17. Wilson, A., Anukiruthika, T., Moses, J. A., Anandharamakrishnan, C. (2020). Customized shapes for chicken meat–based products: Feasibility study on 3D printed nuggets. Food and Bioprocess Technology, 13(11), 1968–1983. https://doi.org/10.1007/s11947-020-02537-3

18. Wilson, A., Anukiruthika, T., Moses, J. A., Anandharamakrishnan, C. (2023). Preparation of fiber-enriched chicken meat constructs using 3D printing. Journal of Culinary Science and Technology, 21(1), 127–138. https://doi.org/10.1080/15428052.2021.1901817

19. Enfield, R. E., Pandya, J. K., Lu, J., McClements, D. J., Kinchla, A. J. (2022). The future of 3D food printing: Opportunities for space applications. Critical Reviews in Food Science and Nutrition, 63(29), 10079–10092. https://doi.org/10.1080/10408398.2022.2077299

20. Bulut, E. G., Candoğan, K. (2022). Development and characterization of a 3D printed functional chicken meat based snack: Optimization of process parameters and gelatin level. LWT, 154, Article 112768. https://doi.org/10.1016/j.lwt.2021.112768

21. Jiang, Q. Y., Zhang, M., Mujumdar, A. S. (2021). Novel evaluation technology for the demand characteristics of 3D food printing materials: A review. Critical Reviews in Food Science and Nutrition, 62(3), 4669–4683. https://doi.org/10.1080/10408398.2021.1878099

22. Molimi, M. B., Egan, P., Adeb, O. A. (2025) Progress in three-dimensional (3D) printed foods for dysphagia patients: Food sources, processing techniques, printability, nutrition, acceptability, and safety aspects. Food Research International, 202, Article 115629. https://doi.org/10.1016/j.foodres.2024.115629

23. Бредихин С. А., Антипов С. Т., Андреев В. Н., Мартеха А. Н. (2021). Влияние реологических характеристик на качество 3Д печати пищевых паст. Вестник ВГУИТ, 83 (2), 40–47. https://doi.org/10.20914/2310-1202-2021-2-40-47

24. Lorenz, T., Iskandar, M. M., Baeghbali, V., Ngadi, M. O., Kubow, S. (2022). 3D food printing applications related to dysphagia: A narrative review. Foods, 11(12), Article 1789. https://doi.org/10.3390/foods11121789

25. Wen, Y., Chao, C., Che, Q. T., Kim, H. W., Park, H. J. (2023). Development of plantbased meat analogs using 3D printing: Status and opportunities. Trends in Food Science and Technology, 132, 76–92. https://doi.org/10.1016/j.tifs.2022.12.010

26. Yuliarti, O., Ng, L., Koh, W. M., Abdullah Tan, M. F. B. M. F., Sentana, A. D. (2023). Structural properties of meat analogue with added konjac gels. Food Hydrocolloids, 142, Article 108716. https://doi.org/10.1016/j.foodhyd.2023.108716

27. Guo, Z., Arslan, M., Li, Z., Cen, S., Shi, J., Huang, X. et al. (2022). Application of protein in extrusion-based 3D food printing: Current status and prospectus. Foods, 11(13), Article 1902. https://doi.org/10.3390/foods11131902

28. Chen, Y., McClements, D. J., Peng, X., Chen, L., Xu, Z., Meng, M. et al. (2022). Starch as edible ink in 3D printing for food applications: A review. Critical Reviews in Food Science and Nutrition, 64(3), 456–471. https://doi.org/10.1080/10408398.2022.2106546

29. Zhong, Yu., Wang, B., Lv, W., Wu, Yi., Lv, Yi, Sheng, S. (2024). Recent research and applications in lipid-based food and lipid-incorporated bioink for 3D printing. Food Chemistry, 458, Article 140294. https://doi.org/10.1016/j.foodchem.2024.140294

30. Bhat, Z. F., Morton, J. D., Kumar, S., Bhat, H. F., Aadil, R. M., Bekhit A.-E.-D.-A. (2021). 3D printing: Development of animal products and special foods. Trends in Food Science and Technology, 118(Part A), 87–105. https://doi.org/10.1016/j.tifs.2021.09.020

31. Chen, J., Rosenthal A. (2015) Food texture and structure. Chapter in a book: Modifying Food Texture. Woodhead Publishing, 2015. https://doi.org/10.1016/B978-1-78242-333-1.00001-2

32. Nida, S., Anukiruthika, T., Moses, J. A., Anandharamakrishnan, C. (2020). 3D printing of grinding and milling fractions of rice husk. Waste Biomass Valorization, 12(1), 81–90. https://doi.org/10.1007/s12649-020-01000-w

33. Scheele, S. C., Hoque, M. N., Christopher, G., Egan, P. F. (August 17–19, 2021). Printability and fidelity of protein-enriched 3d printed foods: A case study using cricket and pea protein powder. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. https://doi.org/10.1115/detc2021-67783

34. Liu, Y., Liu, D., Wei, G., Ma, Y., Bhandari, B., Zhou, P. (2018). 3D printed milk protein food simulant: Improving the printing performance of milk protein concentration by incorporating whey protein isolate. Innovative Food Science and Emerging Technologies, 49, 116–126. https://doi.org/10.1016/j.ifset.2018.07.018

35. Anukiruthika, T., Moses, J. A., Anandharamakrishnan, C. (2020). 3D printing of egg yolk and white with rice flour blends. Journal of Food Engineering, 265, Article 109691. https://doi.org/10.1016/j.jfoodeng.2019.109691

36. Montoya, J., Medina, J., Molina, A., Gutiérrez, J., Rodríguez, B., Marín, R. (2021). Impact of viscoelastic and structural properties from starch-mango and starcharabinoxylans hydrocolloids in 3D food printing. Additive Manufacturing, 39(2), Article 101891. https://doi.org/10.1016/j.addma.2021.101891

37. Cheng, Y., Wang, B., Li, B., Li, G., Zhong, Yu., Lv, W., Xiao, H. (2025). Modifed Starch-Based Emulsion-Filled Gels for 3D Printing: Preparation, Characterization, and Printability. Food and Bioprocess Technology, 18, 3732–3746. https://doi.org/10.1007/s11947-024-03669-6

38. Carvajal-Mena, N., Tabilo-Munizaga, G., Perez-Won, M., Lemus-Mondaca, R. (2022). Valorization of salmon industry by-products: Evaluation of salmon skin gelatin as a biomaterial suitable for 3D food printing. LWT, 155, Article 112931. https://doi.org/10.1016/j.lwt.2021.112931

39. Chen, J., Mu, T., Goffin, D., Blecker, C., Gaëtan, R., Richel, A. et al. (2019). Application of soy protein isolate and hydrocolloids based mixtures as promising food material in 3D food printing. Journal of Food Engineering, 261, 76–86. https://doi.org/10.1016/J.jfoodeng.2019.03.016

40. Mu, R., Wang, B., Lv, W., Yu, J., Li, G. (2023). Improvement of extrudability and selfsupport of emulsion-filled starch gel for 3D printing: Increasing oil content. Carbohydrate Polymers, 301(Part 1), Article 120293. https://doi.org/10.1016/j.carbpol.2022.120293

41. You, S., Huang, Q., Lu, X. (2023). Development of fat-reduced 3D printed chocolate by substituting cocoa butter with water-in-oil emulsions. Food Hydrocolloids, 135, Article 108114. https://doi.org/10.1016/j.foodhyd.2022.108114

42. Ross, M. M., Crowley, S. V., Crotty, S., Oliveira, J., Morrison, A. P., Kelly, A. L. (2021). Parameters affecting the printability of 3D printed processed cheese. Innovative Food Science and Emerging Technologies, 72, Article 102730. https://doi.org/10.1016/j.ifset.2021.102730

43. Domzalska, Z., Jakubczyk, E. (2025) Characteristics of food printing inks and their impact on selected product properties. Foods, 14(3), Article 393. https://doi.org/10.3390/foods14030393

44. Dong, H., Wang, P., Yang, Z., Xu, X. (2023). 3D printing based on meat materials: Challenges and opportunities. Current Research in Food Science, 6(12), Article 100423. https://doi.org/10.1016/j.crfs.2022.100423

45. Alarcon-Rojo, A. D., Janacua, H., Rodriguez, J. C., Paniwnyk, L., Mason, T. J. (2015). Power ultrasound in meat processing. Meat Science, 107, 86–93. https://doi.org/10.1016/j.meatsci.2015.04.015

46. Cai, L., Feng, J., Cao, A., Zhang, Y., Lv, Y., Li, J. (2018). Denaturation kinetics and aggregation mechanism of the sarcoplasmic and myofibril proteins from grass carp during microwave processing. Food and Bioprocess Technology, 11(2), 417–426. https://doi.org/10.1007/s11947-017-2025-x

47. Wang, Y., Zhou, Y., Wang, X., Li, P., Xu, B., Chen, C. (2020). Water holding capacity of sodium-reduced chicken breast myofibrillar protein gel as affected by combined CaCl2 and high-pressure processing. International Journal of Food Science and Technology, 55(2), 601–609. https://doi.org/10.1111/ijfs.14313

48. Yang, H.-J,, Han, M.-Y., Wang, H.-f., Cao, G.-t., Tao, F., Xu, X.-L. et al. (2021). HPP improves the emulsion properties of reduced fat and salt meat batters by promoting the adsorption of proteins at fat droplets/water interface. LWT, 137(17), Article 110394. https://doi.org/10.1016/j.lwt.2020.110394

49. Dick, A., Bhandari, B., Prakash, S. (2019). Post-processing feasibility of composite-layer 3D printed beef. Meat Science, 153, 9–18. https://doi.org/10.1016/j.meatsci.2019.02.024

50. Dick, A., Bhandari, B., Prakash, S. (2019). 3D printing of meat. Meat Science, 153, 35–44. https://doi.org/10.1016/j.meatsci.2019.03.005

51. Zhao, Z., Wang, Q., Yan, B., Gao, W., Jiao, X., Huang, J. et al. (2021). Synergistic effect of microwave 3D print and transglutaminase on the self-gelation of surimi during printing. Innovative Food Science and Emerging Technologies, 67, Article 102546. https://doi.org/10.1016/j.ifset.2020.102546

52. Chen, Y., Zhang, M., Bhandari, B. (2021). 3D printing of steak-like foods based on textured soybean protein. Foods, 10(9), Article 2011. https://doi.org/10.3390/foods10092011

53. Xia, S., Shen, S., Song, J., Li, K., Qin, X., Jiang, X. et al. 2023). Physicochemical and structural properties of meat analogues from yeast and soy protein prepared via high-moisture extrusion. Food Chemistry, 402, Article 134265. https://doi.org/10.1016/j.foodchem.2022.134265

54. Bhuiyan, Md. H. R., Yeasmen, N., Ngadi, M. (2025). Effect of food hydrocolloids on 3D meat-analog printing and deep-fat-frying. Food Hydrocolloids, 159, Article 110716. https://doi.org/10.1016/j.foodhyd.2024.110716

55. Su, W., Woo, H., Hyeock, M., Jin, H. (2023). Improved printability of pea protein hydrolysates for protein-enriched 3D printed foods. Journal of Food Engineering, 350, Article 111502. https://doi.org/10.1016/j.jfoodeng.2023.111502

56. Koranne, V., Jonas, O. L. C., Mitra, H., Bapat, S., Ardekani, A. M., Sealy, M. P. et al. (2022). Exploring properties of edible hydrolyzed collagen for 3D food printing of scaffold for biomanufacturing cultivated meat. Procedia CIRP, 110, 186–191. https://doi.org/10.1016/j.procir.2022.06.034

57. Bhuiyan, M. H. R., Ngadi, M. (2024). Thermomechanical transitions of meatanalog based fried foods batter coating. Food Chemistry, 447, Article 138953. https://doi.org/10.1016/j.foodchem.2024.138953

58. Bhuiyan, H. R., Yeasmen, N., Ngadi, M. (2024). Restructuring plant-derived composites towards the production of meat-analog based coated fried food. Food Chemistry, 443. Article 138482. https://doi.org/10.1016/j.foodchem.2024.138482

59. Mittal, S., Bhuiyan, M. H. R., Ngadi, M. (2023). Challenges and prospects of plantprotein-based 3D printing. Foods, 12(24), Article 4490. https://doi.org/10.3390/foods12244490

60. Liberty, J. T., Dehghannya, J., Ngadi, M. O. (2019). Effective strategies for reduction of oil content in deep-fat fried foods: A review. Trends in Food Science and Technology, 92, 172–183. https://doi.org/10.1016/j.tifs.2019.07.050

61. Zhang, X., Zhang, M., Adhikari, B. (2020). Recent developments in frying technologies applied to fresh foods. Trends in Food Science and Technology, 98, 68–81. https://doi.org/10.1016/j.tifs.2020.02.007

62. Kang, D.-H., Louis, F., Liu, H., Shimoda, H., Nishiyama, Y., Nozawa, H. et al. (2021). Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting. Nature Communications, 12. Article 5059. https://doi.org/10.1038/s41467-021-25236-9

63. Аймалетдинов, А. М., Маланьева, А. Г., Тамбовский, М. А., Закирова, Е. Ю. (2024). 3D биопечать, как метод тканевой инженерии: применение и перспективы. Биотехнология, 40(2), 3–22. https://doi.org/10.56304/S0234275824020029

64. Golovin, S. N., Kirichenko, E. Yu., Khanukaev, M. M., Logvinov, A. K. (2026). 3D bioprinting of hybrid cultured meat from rabbit cells and sunflower protein. Foods and Raw Materials, 14(1), 52–60. https://doi.org/10.21603/2308-4057-2026-1-659

65. Belova, K., Dushina, E., Popov, S., Zlobin, A., Martinson, E., Vityazev, F. et al. (2023). Enrichment of 3D-Printed k-Carrageenan food gel with callus tissue of narrow-leaved lupin Lupinus angustifolius. Gels, 9(1), Article 45. https://doi.org/10.3390/gels9010045

66. Zhu, Y., Chen, L., Zhang, X., Meng, T., Liu, Z., Chitrakar, B. et al. (2024). 3D printed pea protein — based dysphagia diet affected by different hydrocolloids. Food and Bioprocess Technology, 17, 1492–1506. https://doi.org/10.1007/s11947-023-03210-1

67. Ульрих, Е. В., Верхотуров, В. В. (2022). Особенности фуд-дизайна на 3D принтере. Обзор. Пищевые системы, 5(2), 100–106. https://doi.org/10.21323/2618-9771-2022-5-2-100-106

68. Hemsley, B., Palmer, S., Kouzani, A., Adams, S., Balandin, S. (January 8–11, 2019). Review informing the design of 3d food printing for people with swallowing disorders: Constructive, conceptual, and empirical problems. Proceedings of the 52nd Hawaii International Conference on System Sciences, University of Hawaiʻi at Mānoa, Honolulu, 2019. https://doi.org/10.24251/hicss.2019.692

69. Zhu, W., Iskandar, M. M., Baeghbali, V., Kubow, S. (2023). Three-dimensional printing of foods: A critical review of the present state in healthcare applications, and potential risks and benefits. Foods, 12(17), Article 3287. https://doi.org/10.3390/foods12173287

70. Costa, A., Carrion, S., Puig-Pey, M., Juarez, F., Clave, P. (2019). Triple adaptation of the mediterranean diet: Design of a meal plan for older people with oropharyngeal dysphagia based on home cooking. Nutrient, 11(2), Article 425. https://doi.org/10.3390/nu11020425

71. Корниенко, В. Ю., Минаев, М. Ю. (2022). Тенденции в развитии трехмерной печати продуктов питания. Пищевые системы, 5(1), 23–29. https://doi.org/10.21323/2618-9771-2022-5-1-23-29

72. Derossi, A., Caporizzi, R., Azzollini, D., Severini, C. (2018). Application of 3D printing for customized food. A case on the development of a fruit-based snack for children. Journal of Food Engineering, 220, 65–75. https://doi.org/10.1016/j.jfoodeng.2017.05.015

73. Vieira, M. V., Oliveira, S. M., Amado, I. R., Fasolin, L. H., Vicente, A. A., Pastrana, L. M. et al. (2020). 3D printed functional cookies fortified with Arthrospira platensis: Evaluation of its antioxidant potential and physical-chemical characterization. Food Hydrocolloids, 107, Article 105893. https://doi.org/10.1016/j.foodhyd.2020.105893

74. Pant, A., Lee, A. Y., Karyappa, R., Lee, C. P., An, J., Hashimoto, M. et al. (2021). 3D food printing of fresh vegetables using food hydrocolloids for dysphagic patients. Food Hydrocolloids, 114, Article 106546. https://doi.org/10.1016/j.foodhyd.2020.106546

75. Qiu, L., Zhang, M., Adhikari, B., Lin, J., Luo, Z. (2024). Preparation and characterization of 3D printed texture-modified food for the elderly using mung bean protein, rose powder, and flaxseed gum. Journal of Food Engineering, 361(6), Article 111750. https://doi.org/10.1016/j.jfoodeng.2023.111750

76. Yun, H. J., Jung, W.-K., Kim, H. W., Lee, S. (2023). Embedded 3D printing of abalone protein scaffolds as texture-designed food production for the elderly. Journal of Food Engineering, 342, Article 111361. https://doi.org/10.1016/j.jfoodeng.2022.111361

77. Dick, A., Bhandari, B., Dong, X., Prakash, S. (2020). Feasibility study of hydrocolloid incorporated 3D printed pork as dysphagia food. Food Hydrocolloids, 107, Article 105940. https://doi.org/10.1016/j.foodhyd.2020.105940

78. Lille, M., Kortekangas, A., Heinio, R.-L., Sozer, N. (2020). Structural and textural characteristics of 3d-printed protein- and dietary fibre-rich snacks made of milk powder and wholegrain rye flour. Foods, 9(11), Article 1527. https://doi.org/10.3390/foods9111527

79. Mirazimi, F., Saldo, J., Sepulcre, F, Gràcia, A., Pujola, M. (2022). Enriched puree potato with soy protein for dysphagia patients by using 3D printing. Food Frontiers. 3(4), 706–715. https://doi.org/10.1002/fft2.149

80. Гусаков, Г., Калтович, И. (2024). 3D печать в индустрии питания. Наука и инновации, 10(259), 37–42.

81. Мелещеня, А. В., Гордынец, С. А., Калтович, И. В., Шакель, Т. П., Кимошевская, О. И., Пинчук, Г. П. (2021). Теоретические и практические аспекты использования аддитивных технологий при производстве пищевых продуктов. Минск: Институт мясо-молочной промышленности, 2021.

82. Wang, C., Wang, X., Liu, C., Liu, C. (2021). Application of LF-NMR to the characterization of camellia oil-loaded pickering emulsion fabricated by soy protein isolate. Food Hydrocolloids, 112, Article 106329. https://doi.org/10.1016/j.foodhyd.2020.106329

83. Yang, D., Wu, G., Li, P., Qi, X., Zhang, H., Wang, X. et al. (2020). The effect of fatty acid composition on the oil absorption behavior and surface morphology of fried potato sticks via LF-NMR, MRI, and SEM. Food Chemistry: X, 7, Article 100095. https://doi.org/10.1016/j.fochx.2020.100095

84. Shao, J.-H., Deng, Y.-M., Song, L, Batur, A., Jia, N., Liu, D.-Y. (2016). Investigation the effects of protein hydration states on the mobility water and fat in meat batters by LF-NMR technique, LWT-Food Science and Technology, 66, 1–6. https://doi.org/10.1016/j.lwt.2015.10.008

85. Liu, Z., Zhang, M., Ye, Y. (2020). Indirect prediction of 3D printability of mashed potatoes based on LF-NMR measurements. Journal of Food Engineering, 287, Article 110137. https://doi.org/10.1016/j.jfoodeng.2020.110137

86. Phuhongsung, P., Zhang, M., Devahastin, S. (2020). Investigation on 3D printing ability of soybean protein isolate gels and correlations with their rheological and textural properties via LF-NMR spectroscopic characteristics. LWT, 122, Article 109019. https://doi.org/10.1016/j.lwt.2020.109019

87. Chen, H.-Z., Zhang, M., Yang, C.-H. (2021). Comparative analysis of 3D printability and rheological properties of surimi gels via LF-NMR and dielectric characteristics. Journal of Food Engineering, 292, Article 110278. https://doi.org/10.1016/j.jfoodeng.2020.110278

88. Guo, C.-H., Zhang, M., Bhandari, B. (2019). A comparative study between syringe-based and screw-based 3D food printers by computational simulation. Computers and Electronics in Agriculture, 162, 397–404. https://doi.org/10.1016/j.compag.2019.04.032

89. Guo, C., Zhang, M., Devahastin, S. (2020). 3D extrusion-based printability evaluation of selected cereal grains by computational fluid dynamic simulation. Journal of Food Engineering, 286, Article 110113. https://doi.org/10.1016/j.jfoodeng.2020.110113

90. Yang, F., Guo, C., Zhang, M., Bhandari, B., Liu, Y. (2019). Improving 3D printing process of lemon juice gel based on fluid flow numerical simulation. LWT, 102, 89–99. https://doi.org/10.1016/j.lwt.2018.12.031

91. Jonkers, N., van Dommelen, J. A. W., Geers, M. G. D. (2020). Experimental characterization and modeling of the mechanical behavior of brittle 3D printed food. Journal of Food Engineering, 278, Article 109941. https://doi.org/10.1016/j.jfoodeng.2020.109941

92. Nijdam, J. J., LeCorre-Bordes, D., Delvart, A., Schon, B. S. (2021). A rheological test to assess the ability of food inks to form dimensionally stable 3D food structures. Journal of Food Engineering, 291, Article 110235. https://doi.org/10.1016/j.jfoodeng.2020.110235

93. Kim, H. W., Bae, H, Park, H. J. (2018). Reprint of: Classification of the printability of selected food for 3D printing: Development of an assessment method using hydrocolloids as reference material. Journal of Food Engineering, 220, 28–37. https://doi.org/10.1016/j.jfoodeng.2017.10.023

94. Xu, P., Li, J., Meda, A., Osei-Yeboah, F., Peterson, M. L., Repka, M. et al. (2020). Development of a quantitative method to evaluate the printability of filaments for fused deposition modeling 3D printing. International Journal of Pharmaceutics, 588, Article 119760. https://doi.org/10.1016/j.ijpharm.2020.119760

95. Шибанов, Э. Д., Рылов, С. А., Благовещенский, И. Г. (2023). Алгоритм автоматизированного контроля и управления процессом 3D печати шоколадной массой. Известия СПбГЭТУ «ЛЭТИ», 16(8), 57–63. https://doi.org/10.32603/2071-8985-2023-16-8-57-63

96. Pulatsu, E., Su, J.-W., Kenderes, S. M., Lin, J., Vardhanabhuti, B., Lin, M. (2022). Restructuring cookie dough with 3D printing: Relationships between the mechanical properties, baking conditions, and structural changes. Journal of Food Engineering, 319, Article 110911. https://doi.org/10.1016/j.jfoodeng.2021.110911

97. Sun, J., Peng, Z., Zhou, W., Fuh, J. Y. H., Hong, G. S., Chiu, A. (2015). A review on 3D printing for customized food fabrication. Procedia Manufacturing, 1, 308–319. https://doi.org/10.1016/j.promfg.2015.09.057

98. Rinshana, P. F., Murugesan, B., Kim, Y. H., Alaguthevar, R., Rhim, J.-W. (2025) Advances in 3D food printing technology: Innovation and applications in the food industry. Food Science and Biotechnology, 34, 403–421. https://doi.org/10.1007/s10068-024-01779-7

99. Zhang, J. Y., Pandya, J. K., McClements, D. J., Lu, J., Kinchla, A. J. (2022). Advancements in 3D food printing: A comprehensive overview of properties and opportunities. Critical Reviews in Food Science and Nutrition, 62(17), 4752–4768. https://doi.org/10.1080/10408398.2021.1878103

100. Piyush, С., Kumar, R., Kumar, R. (2020). 3D printing of food materials: A state of art review and future applications. Materials Today Proceedings, 33(30), 1463– 1467. https://doi.org/10.1016/j.matpr.2020.02.005

101. Baiano, A. (2020). 3D printed foods: A comprehensive review on technologies, nutritional value, safety, consumer attitude, regulatory framework, and economic and sustainability issues. Food Reviews International, 38, 986–1016. https://doi.org/10.1080/87559129.2020.1762091

102. Burke-Shyne, S., Gallegos, D., Williams, T. (2020). 3D food printing: Nutrition opportunities and challenges. British Food Journal, 123(2), 649–663. https://doi.org/10.1108/BFJ05-2020-0441

103. Severini, C., Derossi, A., Ricci, I., Caporizzi, R., Fiore, A. (2018). Printing a blend of fruit and vegetables. New advances on critical variables and shelf life of 3D edible objects. Journal of Food Engineering, 220, 89–100. https://doi.org/10.1016/j.jfoodeng.2017.08.025

104. Lupton, D., Turner, B. (2018). “Both fascinating and disturbing”: Consumer responses to 3D food printing and implications for food activism. Chapter in a book: Digital Food Activism. Routledge, 2018.

105. Ross, M. M., Collins, A. M., McCarthy, M. B., Kelly, A. L. (2022). Overcoming barriers to consumer acceptance of 3D printed foods in the food service sector. Food Quality and Preference, 100, Article 104615. https://doi.org/10.1016/j.foodqual.2022.104615

106. Lupton, D., Turner, B. (2018). Food of the future? Consumer responses to the idea of 3D printed meat and insect-based foods. Food and Foodways, 26(4), 269–289. https://doi.org/10.1080/07409710.2018.1531213

107. Manstan, T., McSweeney, M. B. (2020). Consumers’ attitudes towards and acceptance of 3D printed foods in comparison with conventional food products. International Journal of Food Science and Technology, 55(1), 323–331. https://doi.org/10.1111/ijfs.14292

108. Scerra, M., Barrett, A., Eswaranandam, S., Okamoto, M. (2018). Effects of 3D printing and thermal post processing on the stability of vitamin E acetate. Journal of the Academy of Nutrition and Dietetics, 118(10), Article A148. https://doi.org/10.1016/j.jand.2018.08.101

109. Martínez-Monzó, J., Cárdenas, J., García-Segovia, P. (2019). Effect of temperature on 3D printing of commercial potato puree. Food Biophysics, 14, 225–234. https://doi.org/10.1007/s11483-019-09576-0

110. He, C., Zhang, M., Fang, Z. (2020). 3D printing of food: Pretreatment and posttreatment of materials. Critical Reviews in Food Science and Nutrition, 60(14), 2379–2392. https://doi.org/10.1080/10408398.2019.1641065

111. Parada, J., Aguilera, J. M. (2007). Food microstructure affects the bioavailability of several nutrients. Journal of Food Science, 72(2), R21–R32. https://doi.org/10.1111/j.1750-3841.2007.00274.x

112. Smykov, I. T. (2022). Neophobia: Socio-ethical problems of innovative technologies of the food industry. Food Systems, 5(4), 308–318. https://doi.org/10.21323/2618-9771-2022-5-4-308-318

113. Yoha, K. S., Moses, J. A. (2023). 3D printing approach to valorization of agri-food processing waste streams. Foods, 12(1), Article 212. https://doi.org/10.3390/foods12010212

114. Jagadiswaran, B., Alagarasan, V., Palanivelu, P., Theagarajan, R., Moses, J. A., Anandharamakrishnan, C. (2021). Valorization of food industry waste and byproducts using 3D printing: A study on the development of value-added functional cookies. Future Foods, 4(10), Article 100036. https://doi.org/10.1016/j.fufo.2021.100036


Рецензия

Для цитирования:


Никитина М.А., Горбунова Н.А. Аддитивные технологии в пищевой промышленности. Пищевые системы. 2025;8(3):450-468. https://doi.org/10.21323/2618-9771-2025-8-3-450-468

For citation:


Nikitina M.A., Gorbunova N.A. Additive manufacturing in the food industry. Food systems. 2025;8(3):450-468. (In Russ.) https://doi.org/10.21323/2618-9771-2025-8-3-450-468

Просмотров: 62


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)