Preview

Food systems

Advanced search

Effect of organic extracts on growth of guar plants (Cyamopsis tetragonoloba (l) Taub) in closed ground conditions

https://doi.org/10.21323/2618-9771-2025-8-3-440-449

Abstract

Guar (Cyamopsis tetragonoloba) is a valuable crop grown to produce gum used in the food industry. At the same time, guar biomass can be used to feed animals. Guar is not inferior to soybean oil meal in nutritional value. The main criteria for choosing a guar variety are: plant growth rate, grown plant biomass and their nutritional value. When growing guar in artificial and closed ground, special attention should be paid to the organomineral fertilization system. In this paper, we studied an effect of zoohumus extract (ZG) produced by the Black Soldier fly (Hermetia illucens Linnaeus) during the processing of food organic waste, and fulvic acid extract (FA) from lake sapropel on guar plants. An effect of three types of organomineral fertilizers on seven guar varieties taken from the collections of the Caspian Agrarian Federal Research Center of the Russian Academy of Sciences and the N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR) was studied. The plants were grown under controlled lighting and in closed artificial soil conditions. The control used a mineral solution of Hoagland's NPK. In the variants with the use of organic fertilizers, the dose of Hoagland's NPK solution was reduced by 4 times. At the end of the 20-day experiment, biometric indicators and profiles of chemical elements in the plants were measured. The profiles of chemical elements were processed by the authors' computational neural network program, which calculates the dimensionless index of cognitive significance CSI = 0…10 (Cognitive Salience Index), representing the level of fractal composition of chemical elements in plants and the rate of mass-accumulative biochemical processes in them. The highest CSI values were observed in guar plants of the Pobeda-17 and Avangard varieties grown with NPK + FA. Guar plants of the Nakhodka variety demonstrated the highest rate of mass accumulation processes with NPK+ZG. This confirms the feasibility of partial replacement of mineral fertilizers with organic additives.

About the Authors

S. I. Loskutov
All-Russian Research Institute of Food Additives
Russian Federation

Svyatoslav I. Loskutov, Candidate of Agricultural Sciences, Head of the Laboratory of Industrial Biotechnological Innovations

55, Liteiny pr., 191014, St. Petersburg



Y. V. Puhalsky
All-Russian Research Institute of Food Additives
Russian Federation

Yan V. Puhalsky, Researcher, Laboratory of Industrial Biotechnological Innovations

55, Liteiny pr., 191014, St. Petersburg



M. A. Chukaeva
Saint-Petersburg Mining University
Russian Federation

Maria A.  Chukaeva, Candidate of Technical Sciences, Senior Researcher, Laboratory for Monitoring the Environmental Situation, Scientific Center “Ecosystem”

2, 21st Line, 199106, St. Petersburg



N. I. Vorobyov
All-Russia Research Institute for Agricultural Microbiology
Russian Federation

Nikolay I. Vorobyov, Candidate of Technical Sciences, Leading Researcher, Laboratory of Biodiversity of Agricultural Microorganisms

3, Podbelsky highway, 196608, Pushkin 8, Saint-Petersburg



Z. S. Vinogradov
Federal Research Center the N. I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Zosim S. Vinogradov, Candidate of Agricultural Sciences, Leading Researcher, Department of Plant Physiology

42, 44, Bolshaya Morskaya Str., 190031 St. Petersburg



A. I. Osipov
Agrophysical Research Institute
Russian Federation

Anatoly I.  Osipov, Doctor of Agricultural Sciences, Professor, Chief Researcher, Department of Modeling Adaptive Agricultural Technologies

14, Grazhdansky Prospekt, 195220, St. Petersburg



A. S. Mityukov
Institute of Limnology of the Russian Academy of Sciences
Russian Federation

Aleksey S. Mityukov, Doctor of Agricultural Sciences, Leading Researcher, Laboratories of Complex Problems of Limnology

9, Sevast'yanova Str.,196105, St. Petersburg



N. V. Tyutyuma
Precaspian Agrarian Federal Scientific Center of the Russian Academy of Sciences
Russian Federation

Natalia V. Tyutyuma, Doctor of Agricultural Sciences, Corresponding Member of the Russian Academy of Sciences, Director

8, sq. Severny, village of Saline Zaymishche, 416251, Astrakhan region



A. N. Bondarenko
Precaspian Agrarian Federal Scientific Center of the Russian Academy of Sciences
Russian Federation

Anastasia N. Bondarenko, Doctor of Agricultural Sciences, Head of the Laboratory of Agrotechnology of vegetable crops

8, sq. Severny, village of Saline Zaymishche, 416251, Astrakhan region



V. Yu. Sitnov
All-Russian Research Institute of Food Additives
Russian Federation

Veniamin Yu. Sitnov, Director



References

1. Whistler, R. L., Hymowitz, T. (1979). Guar: Agronomy, Production, Industrial Use and Nutrition. Purdue University Press, Indiana, 1979.

2. Kostenkova, Е. V., Reinshtein, L. N., Ostapchuk, P. S. (2015). The problems and perspectives of application of Cyamopsis Tetragonoloba (L.) in feeding of agricultural animals, birds and fish. Taurida Herald of the Agrarian Sciences, 2(4), 108–117. (In Russian)

3. Chiofalo, B., Presti, V. L., D'Agata, A., Rao, R., Ceravolo, G., Gresta, F. (2018). Qualitative profile of degummed guar (Cyamopsis tetragonoloba L.) seeds grown in a Mediterranean area for use as animal feed. Journal of Animal Physiology and Animal Nutrition, 102(1), 260–267. https://doi.org/10.1111/jpn.12687

4. Biel, W., Jaroszewska, A. (2019). Compositional and nutritional evaluation of guar (Cyamopsis tetragonoloba L.) meal. Animal Nutrition and Feed Technology, 19(3), 385–393. https://doi.org/10.5958/0974-181X.2019.00036.2

5. Gautam, R., Verma, A. K., Dwivedi, S., Jhang, T. (2024). Breeding guar [Cyamopsis tetragonoloba (L.) Taub]: A variety compendium of a multifaceted industrial crop for resource-constrained scenario in India. Industrial Crops and Products, 214, Article 118502. https://doi.org/10.1016/j.indcrop.2024.118502

6. Dzyubenko, E. A., Safronova, V. I., Vishnyakova, M. A. (2023). Objectives of guar breeding in the Russian Federation in connection with the prospects of domestic guar gum production (review). Agricultural Biology, 58(1), 43–59. (In Russian)

7. Sharma, P., Gummagolmath, K. C. (2012). Reforming guar industry in India: Issues and strategies. Agricultural Economics Research Review, 25, 37–48.

8. Mudgil, D., Barak, S., Khatkar, B. S. (2014). Guar gum: Processing, properties and food applications — A Review. Journal of Food Science and Technology, 51(3), 409–418. https://doi.org/10.1007/s13197-011-0522-x

9. Bayurov, L. I., Dmitrienko, S. N. (2023). Guar and its importance in the nutrition of people and animals. Polythematic Online Scientific Journal of Kuban State Agrarian University, 192, 22–39. (In Russian)

10. Tahmouzi, S, Meftahizadeh, H, Eyshi, S, Mahmoudzadeh, A, Alizadeh, B, Mollakhalili-Meybodi N. et al. (2023). Application of guar (Cyamopsis tetragonoloba L.) gum in food technologies: A review of properties and mechanisms of action. Journal of Food Science and Nutrition, 11(9), 4869–4897. https://doi.org/10.1002/fsn3.3383

11. Kotnala, B., Panneerselvam, V., Vijayakumar, A. K. (2024). Physicochemical, structural, and functional characterization of guar meal protein isolate (Cyamopsis tetragonoloba). Heliyon, 10(3), Article e24925. https://doi.org/10.1016/j.heliyon.2024.e24925

12. Fazeli-Nasab, B., Khajeh, H., Piri, R., Moradian, Z. (2023). Effect of humic acid on germination characteristics of Lallemantia royleana and Cyamopsis tetragonoloba under salinity stress. Iranian Journal of Seed Research, 9(2), 51–62. https://doi.org/10.61186/yujs.9.2.51

13. Ahmadi, S., Hatamzadeh, A., Biglueii, M. H., Sahraroo, A. (2017). Effect of humic acid on some morphological traits of Guar (Cyamopsis tetragonoloba) in Karaj region. Journal of Biodiversity and Environmental Sciences (JBES), 11(1), 287–295.

14. Ahmadi, F., Telavat, M. R. M., Siadat, S. A., Moshattati, A. (2019). Effect of different concentrations of humic acid on guar (Cyamopsis tetragonoloba L.) yield and nutrients uptake in different sowing densities. Journal of Crop Production and Processing, 9(1), 33–49. https://doi.org/10.29252/jcpp.9.1.33

15. Yashraj, Singh, M. K., Katiyar, H., Tyagi, V., Vinayak, Tomar, H. et al. (2023). The effect of integrated nutrient management on various growth parameters of cluster bean (Cyamopsis tetragonoloba L.). International Journal of Environment and Climate Change, 13(10), 3427–3431. https://doi.org/10.9734/ijecc/2023/v13i103011

16. Karthikeyan, M., Gajalakshmi, S., Abbasi, S. A. (2014). Comparative efficacy of vermicomposted paper waste and inorganic fertilizer on seed germination, plant growth and fruition of Cyamopsis tetragonoloba. Journal of Applied Horticulture, 16(1), 40–45. https://doi.org/10.37855/jah.2014.v16i01.05

17. Dashko, R., Vlasov, D., Pushina, Z., Utenkova, T., Ivanov, S. (2023). Multicomponent composition of sapropels as a basis for perfection of technique and technology of their dehydration. Russian Journal of Earth Sciences, 23(2), Article ES2002. (In Russian)

18. Pendyurin, E. A., Rybina, S. Yu., Smolenskaya, L. M. (2020). Using the zoo compost of the black lioness as an organic fertilizer. Agrarian Science, 7–8, 106–110. (In Russian)

19. Elissen, H., van der Weide, R., Gollenbeek, L. (2023). Effects of black soldier fly frass on plant and soil characteristics: A literature overview. Wageningen Plant Research, Report WPR 996.

20. Vasavi, G., Arunakumari, J., Reddy, G. K., Nirmala, A., Anitha, V. (2024). Impact of black soldier fly larval frass on growth and yield of cluster bean (Cyamopsis Tetragonoloba L.). International Journal of Plant and Soil Science, 36(8), 854–863. https://doi.org/10.9734/ijpss/2024/v36i84916

21. Pendyurin, E. A., Zdorovtsov, V. A., Rybina, S. Yu., Svyatchenko, A. V. (2024). Agrochemical characteristics of zoocompost black soldier fly larvae. Agrochemical Herald, 3, 59–62. (In Russian)

22. Pestsov, G. V., Tretyakova, A. V., Prokudina, O. V. (2022). Environmentally safe disposal of agricultural waste using the insect species Hermetia illucens. Biosfera, 14(4), 362– 364. (In Russian)

23. Arnone, S., De Mei, M., Petrazzuolo, F., Musmeci, S., Tonelli L., Salvicchi A. et al. (2022). Black soldier fly (Hermetia illucens L.) as a high-potential agent for bioconversion of municipal primary sewage sludge. Environmental Science and Pollution Research, 29(43), 64886–64901. https://doi.org/10.1007/s11356-022- 20250-w

24. Rehman, S. ur, De Castro, F., Aprile, A., Benedetti, M., Fanizzi, F. P. (2023). Vermicompost: Enhancing plant growth and combating abiotic and biotic stress. Agronomy, 13(4), Article 1134. https://doi.org/10.3390/agronomy13041134

25. Beesigamukama, D., Subramanian, S. Tanga, C. M. (2022). Nutrient quality and maturity status of frass fertilizer from nine edible insects. Scientific Reports, 12, Article 7182. https://doi.org/10.1038/s41598-022-11336-z

26. Lopes, I. G., Yong, J. W., Lalander, C. (2022). Frass derived from black soldier fly larvae treatment of biodegradable wastes. A critical review and future perspectives. Waste Management, 142, 65–76. https://doi.org/10.1016/j.wasman.2022.02.007

27. Basri, N. E. A., Azman, N. A., Ahmad, I. K., Suja, F., Jalil, N. A. A., Amrul, N. F. (2022). Potential applications of frass derived from black soldier fly larvae treatment of food waste: A review. Foods, 11(17), Article 2664. https://doi.org/10.3390/foods11172664

28. Gärttling, D., Schulz, H. (2021). Compilation of black soldier fly frass analyses. Journal of Soil Science and Plant Nutrition, 22(1), 937–943. https://doi.org/10.1007/s42729-021-00703-w

29. Green, T. R., Popa, R. (2012). Enhanced ammonia content in compost leachate processed by black soldier fly larvae. Applied Biochemistry and Biotechnology, 166(6), 1381–1387. https://doi.org/10.1007/s12010-011-9530-6

30. Jalil, N. A. A., Abdullah, S. H., Ahmad, I. K., Basri, N. E. A., Mohamed, Z. S. (2021). Decomposition of food waste from protein and carbohydrate sources by black soldier fly larvae, Hermetia illucens L. Journal of Environmental Biology, 42(3(SI)), 756–761. https://doi.org/10.22438/jeb/42/3(SI)/JEB04

31. Sarpong, D., Oduro-Kwarteng, S., Gyasi, S. F., Buamah, R., Donkor, E., Awuah, E. et al. (2019). Biodegradation by composting of municipal organic solid waste into organic fertilizer using the black soldier fly (Hermetia illucens) (Diptera: Stratiomyidae) larvae. International Journal of Recycling of Organic Waste in Agriculture, 8(S1), 45–54. https://doi.org/10.1007/s40093-019-0268-4

32. Schmitt, E., de Vries, W. (2020). Potential benefits of using Hermetia illucens frass as a soil amendment on food production and for environmental impact reduction. Current Opinion in Green and Sustainable Chemistry, 25, Article 100335. https://doi.org/10.1016/j.cogsc.2020.03.005

33. Surendra, K., Tomberlin, J. K., van Huis, A., Cammack, J. A., Heckmann, L.-H. L., Khanal, S. K. (2020). Rethinking organic wastes bioconversion: Evaluating the potential of the black soldier fly (Hermetia illucens (L.)) (Diptera: Stratiomyidae) (BSF). Waste Management, 117, 58–80. https://doi.org/10.1016/j.wasman.2020.07.050

34. Scala, A., Cammack, J. A., Salvia, R., Scieuzo, C., Franco, A., Bufo, S. A. et al. (2020). Rearing substrate impacts growth and macronutrient composition of Hermetia illucens (L.) (Diptera: Stratiomyidae) larvae produced at an industrial scale. Scientific Reports, 10(1), Article 19448. https://doi.org/10.1038/s41598-020-76571-8

35. Poveda, J., González-Andrés, F. (2021). Bacillus as a source of phytohormones for use in agriculture. Applied Microbiology and Biotechnology, 105(23), 8629–8645. https://doi.org/10.1007/s00253-021-11492-8

36. Zhang, Y., Meng, Z., Li, S., Liu, T., Song, J., Li, J. et al. (2023). Two antimicrobial peptides derived from bacillus and their properties. Molecules, 28(23), Article 7899. https://doi.org/10.3390/molecules28237899

37. Puan, S. L., Erriah, P., Baharudin, M. M. A., Yahaya, N. M., Kamil, W. N. I. W. A., Ali, M. S. M. et al. (2023). Antimicrobial peptides from Bacillus spp. and strategies to enhance their yield. Applied Microbiology and Biotechnology, 107(18), 5569–5593. https://doi.org/10.1007/s00253-023-12651-9

38. Choyam, S., Jain, P. M., Kammara, R. (2021). Characterization of a potent newgeneration antimicrobial peptide of bacillus. Frontiers in Microbiology, 12, Article 710741. https://doi.org/10.3389/fmicb.2021.710741

39. Tran, Q. V., Pakina, E. N., Ha, C. V. (2024). Identification of antimicrobial peptide biosynthetic genes of Bacillus pumilus in suppression of Phytophthora spp. Far Eastern Agricultural Journal, 18(2), 80–88. https://doi.org/10.22450/1999-6837-2024-18-2-80-88

40. Sumi, C. D., Yang, B. W., Yeo, I.-C., Hahm, Y. T. (2015). Antimicrobial peptides of the genus Bacillus: A new era for antibiotics. Canadian Journal of Microbiology, 61(2), 93–103. https://doi.org/10.1139/cjm2014-0613

41. Arabzadeh, G., Delisle-Houde, M., Vandenberg, G. W., Derome, N., Deschamps, M.-H., Dorais, M. et al. (2023). Assessment of antifungal/anti-oomycete activity of frass derived from black soldier fly larvae to control plant pathogens in horticulture: Involvement of Bacillus velezensis. Sustainability, 15, Article 10957. https://doi.org/10.3390/su151410957

42. Siddiqui, S. A., Gadge, A. S., Hasan, M., Rahayu, T., Povetkin, S. N., Fernando, I. et al. (2024). Future opportunities for products derived from black soldier fly (BSF) treatment as animal feed and fertilizer — A systematic review. Environment, Development and Sustainability, 26, 30273–30354. https://doi.org/10.1007/s10668-024-04673-8

43. Pendyurin, Е.А., Sapronova, Zh. A., Tokach, Yu. E. (2023). Zoocompost of black lion fly larvae as a moisture-retaining agent in soils. Prirodoobustrojstvo, 3, 59–65. (In Russian)

44. Chilachava, K. B., Pestsov, G. V., Glazunova, A. V., Muravlev, N. S., Boykova, O. V. (2019). Study of the fungicidal properties of fulvic acids. Agrarian Science, 2, 172–174. (In Russian)

45. Kamel, S. M., Afifi, M. M. I., El-Shoraky, F. S., El-Sawy, M. M. (2014). Fulvic acid: A tool for controlling powdery and downy mildew in cucumber plants. International Journal of Phytopathology, 3(2), 101–104. https://doi.org/10.33687/phytopath.003.02.0866

46. Vanimuthu, K., Kavitha, K., Paul, J. A. J., Kumar, P., Gowrishankar, S., Balachandar, R. et al. (2024). Isolation, characterization and antifungal behavior of humic acid and fulvic acid fractions from biowaste derived vermiproducts. Research Square, Preprint Article. https://doi.org/10.21203/rs.3.rs4221685/v1

47. Udalova, O. R., Mirskaya, G. V., Kononchuk, P. Yu., Panova, G. G. (2021). About the influence of solutions of fulvic acids from sapropel on lettuce plants in various types of its processing, Agrarian Bulletin of the Urals, 06(209), 22–33. (In Russian)

48. Barakova, N. V., Sharova, N. Y., Juskauskajte, A. R., Mityukov, A. S. Romanov, V. A., Nsengumuremyi, D. (2017). Fungicidal activity of ultradisperse humic sapropel suspensions. Agronomy Research, 15(3), 639–648. https://doi.org/10.17586/2310-1164-2019-12-3-25-31

49. Akçura, M., Müftüoğlu, N. M., Kaplan, M., Türkmen, C. (2020). Nutrient potential and mineral contents of some vegetable cluster bean genotypes. Cereal Chemistry, 97(6), 1193–1203. https://doi.org/10.1002/cche.10341

50. Kuniya, N., Patel, B. B., Malav, J. K., Chaudhary, N., Pavaya, R. P., Patel, J. K. et al. (2019). Yield and nutrient content and uptake by cluster bean (Cyamopsis tetragonoloba L.) as influenced by different levels of sulphur and zinc application under light textured soil. Journal of Pharmacognosy and Phytochemistry, 8(3), 2160–2163.

51. Manohar, C. V. S., Sharma, O. P., Verma, H. P. (2018). Nutrient status and yield of cluster bean [Cyamopsis tetragonoloba (L.) Taub] as influenced by fertility levels and liquid biofertilizers. Journal of Pharmacognosy and Phytochemistry, 7(5), 1840–1843.

52. Müftüoğlu, N. M., Çikili, Ya., Türkmen, C., Akçura, M. (2022). Molibden uygulamasının sakız fasulyesinin (Cyamopsis tetragonoloba l.) farklı organlarında bazı besin elementleri miktarına etkisi. Journal of Advanced Research in Natural and Applied Sciences, 8(1), 1–7. (In Turkish). https://doi.org/10.28979/jaarnas.91062

53. Tiwari, D. K., Pareek, B. L., Singh B. (2017). Effect of sulphur and iron levels on yield and nutrient content and uptake of Clusterbean [Cyamopsis tetragonoloba (L.) Taub.] in arid region of Rajasthan. Annals of Agricultural Research, 38(2).

54. Virro, I., Arak, M., Maksarov, V., Olt, J. (2020). Precision fertilisation technologies for berry plantation. Agronomy Research, 18(S4), 2797–2810. https://doi.org/10.15159/AR.20.207

55. Vasilyeva, M., Kovshov, S., Zambrano, J., Zhemchuzhnikov, M. (2021). Effect of magnetic fields and fertilizers on grass and onion growth on technogenic soils. Journal of Water and Land Development, 49, 55–62. https://doi.org/10.24425/jwld.2021.137096

56. Hypochlorite, S., Singh, B. K., Ali, M. N., Samanta, S., Mandal, N. A (2021). Comparative analysis among different surface sterilisation methods for rice invitro culture. International Journal of Plant and Soil Science, 33(17), 148–154. https://doi.org/10.9734/ijpss/2021/v33i1730559

57. Kyriacou, M. C., El-Nakhel, C., Pannico, A., Graziani, G., Soteriou, G. A., Giordano, M. et al. (2020). Phenolic constitution, phytochemical and macronutrient content in three species of microgreens as modulated by natural fiber and synthetic substrates. Antioxidants, 9(3), Article 252. https://doi.org/10.3390/antiox9030252

58. Pashkevich, M. A., Bech, J., Matveeva, V. A., Alekseenko, A. V. (2020). Biogeochemical assessment of soils and plants in industrial, residential and recreational areas of Saint Petersburg. Journal of Mining Institute, 241, 125–130. https://doi.org/10.31897/PMI.2020.1.125

59. Alekseenko, V. A., Shvydkaya, N. V., Bech, J., Puzanov, A. V., Nastavkin, A. V. (2021). Trace element accumulation by soils and plantsin the North Caucasian geochemical province. Journal of Mining Institute, 247, 141–153. https://doi.org/10.31897/PMI.2021.1.15

60. Senila, M. (2024). Recent advances in the determination of major and trace elements in plants using inductively coupled plasma optical emission spectrometry. Molecules, 29(13), Article 3169. https://doi.org/10.3390/molecules29133169

61. Yener, İ. (2019). Trace element analysis in some plants species by inductively coupled plasma optical emission spectrometry (ICP-OES). Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(3), 1492–1502. https://doi.org/10.21597/jist.517739

62. Sutrop, U. (2001). List task and a cognitive salience index. Field Metods, 13(3), 263–276. https://doi.org/10.1177/1525822X0101300303

63. Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003

64. Pogodaev, A. K., Khabibullina, E. L., Inyutin, D. M. (2021). Applying neural network models to the construction of production rules expert systems. Applied Mathematics and Control Sciences, 2, 73–92. (In Russian)

65. Widrow, B., Greenblatt, A., Kim, Y., Park, D. (2013). The no-prop algorithm: A new learning algorithm for multilayer neural networks. Neural Networks, 37, 182–188. https://doi.org/10.1016/j.neunet.2012.09.020

66. Tang, D., Chen, M., Huang, X., Zhang, G., Zeng, L., Zhang, G. et al. (2023). SRplot: A free online platform for data visualization and graphing. PLoS One, 18(11), Article e0294236. https://doi.org/10.1371/journal.pone.0294236

67. Vera-Maldonado, P., Aquea, F., Reyes-Díaz, M., Cárcamo-Fincheira, P., Soto-Cerda, B., Nunes-Nesi, A. et al. (2024). Role of boron and its interaction with other elements in plants. Frontiers in Plant Science, 15, Article 1332459. https://doi.org/10.3389/fpls.2024.1332459

68. Alejandro, S., Höller, S., Meier, B., Peiter, E. (2020). Manganese in plants: From acquisition to subcellular allocation. Frontiers in Plant Science, 11, Article 300. https://doi.org/10.3389/fpls.2020.00300

69. Xu, X., Du, X., Wang, F., Sha, J., Chen, Q., Tian. G. at al. (2020). Effects of potassium levels on plant growth, accumulation and distribution of carbon, and nitrate metabolism in apple dwarf rootstock seedlings. Frontiers in Plant Science, 11, Article 904. https://doi.org/10.3389/fpls.2020.00904

70. Prajapati, K., Modi, H. A. (2012). The importance of potassium in plant growth–a review. Indian Journal of Plant Sciences, 2–3,177–186.

71. Hasanuzzaman, M., Bhuyan, B., Nahar, K., Hossain, S., Mahmud, J. A., Hossen, S. et al. (2018). Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agronomy, 8, Article 31. https://doi.org/10.3390/agronomy8030031

72. Lozek, O., Fecenko, J. (1996). Effect of foliar application of manganese, boron and sodium humate on the potato production. Zeszyty Problemowe Postepow Nauk Rolniczych, 434, 169–172.

73. Sharma, A., Aakash, Singh, D., Singh, V., Bhayal, D., Rajput, B. (2023). Effect of foliar application of boron, zinc and manganese on dry matter accumulation, total tuber yield and economic feasibility of potato (Solanum Tuberosum) Cv. Kufri Chipsona 1 under Gwalior climatic conditions. Journal of Experimental Agriculture International, 45(11), 253–262, https://doi.org/10.9734/jeai/2023/v45i112256

74. Rahman, M., Islam, M., Alam, M., Sharifuzzaman, S., Mian, M. (2022). Effect of foliar application of boron on the yield and quality of potato. Bangladesh Journal of Agricultural Research, 45(2), 125–135. https://doi.org/10.3329/bjar.v45i2.59860

75. Mehdi, K., Reza, M. M., Reza, K. A., Soheila, R. (2008). Evaluation of manganese, boron, potassium, calcium and zinc effects on yield and fruit quality of barberry (Berberis vulgaris L.) plants. Horticulture Environment and Biotechnology, 49(5), 293–297.

76. Baqir, H. A., Zeboon, N. H., Al-Behadili, A. A. J. (2019). The role and importance of amino acids within plants: A review. Plant Archives, 19, 1402–1410.

77. Vorobyov, N. I., Pukhalsky, Ya. V., Sviridova, O. V., Pishchik, V. N., Panferova, T. V., Ivakhnyuk, G. K. (October 01–02, 2020). Fractal composition of quantitative relations of chemical elements in plants. Contribution of agrophysics to solving the fundamental tasks of agricultural science. SaintPetersburg: Agrophysical Research Institute, 2020. (In Russian)

78. Kuznetsova, I. G., Sazanova, A. L., Safronova, V. I., Popova, J. P., Sokolova, D. V., Tikhomirova, N. Yu. et al. (2018). Isolation and identification of root nodule bacteria from guar Cyamopsis tetragonoloba (L.) Taub. Agricultural Biology, 53(6), 1285–1293. (In Russian)

79. Ulianich, P. S., Belimov, A. A., Kuznetsova, I. G., Sazanova, A. L., Yuzikhin, O. S., Laktionov, Yu. V. et al. (2022). Effectiveness of nitrogen-fixing symbiosis of guar (Cyamopsis tetragonoloba) with strains Bradyrhizobium retamae rcam05275 and Ensifer aridi rcam05276 in pot experiment. Agricultural Biology, 57(3), 555–565. (In Russian)


Review

For citations:


Loskutov S.I., Puhalsky Y.V., Chukaeva M.A., Vorobyov N.I., Vinogradov Z.S., Osipov A.I., Mityukov A.S., Tyutyuma N.V., Bondarenko A.N., Sitnov V.Yu. Effect of organic extracts on growth of guar plants (Cyamopsis tetragonoloba (l) Taub) in closed ground conditions. Food systems. 2025;8(3):440-449. (In Russ.) https://doi.org/10.21323/2618-9771-2025-8-3-440-449

Views: 57


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)