Preview

Food systems

Advanced search

Effect of legume fermentation on the reduction of the anti-nutritional factor. Review

https://doi.org/10.21323/2618-9771-2025-8-3-401-406

Abstract

Legumes are valuable food raw materials due to the content of plant protein, essential amino acids and fiber. However, they contain anti-nutrients such as tannins, phytates, oligosaccharides, oxalates, saponins and protease inhibitors, which upon excessive intake or improper technological processing can have a negative and even toxic effect on the human body. In the conditions of the growing demand for food products from plant raw materials, including legumes, there is a necessity to reduce risks associated with excessive intake of anti-nutrients. The aim of this work was to analyze studies carried out over the last five years that are dedicated to an assessment of the efficiency of the main methods for technological processing of legumes (soaking, thermal processing, sprouting and fermentation) to reduce the content of anti-nutrients. Also, the comparison of the obtained data was carried out to reveal the most effective methods. The results of the review prove the expediency of combination of several methods of legume treatment to reduce the content of anti-nutrients and increase the nutritional value of products from leguminous raw materials. Based on the analyzed data, the most efficient approach to legume processing was determined. This approach significantly reduces the main anti-nutrients in legumes. An effect of the key anti-nutrients on human health has been examined and the main problems of the food industry linked to legume fermentation have been analyzed.

About the Authors

A. A. Kim
ITMO University
Russian Federation

Anastasia A. Kim, Graduate Student, Faculty of Biotechnologies

49, Kronverksky Ave, Saint Petersburg, 197101



P. E. Balanov
ITMO University
Russian Federation

Petr E.  Balanov, Candidate of Technical Sciences, Docent, Faculty of Biotechnologies

49, Kronverksky Ave, Saint Petersburg, 197101



I. V. Smotraeva
ITMO University
Russian Federation

Irina V. Smotraeva, Candidate of Technical Sciences, Docent, Faculty of Biotechnologies

49, Kronverksky Ave, Saint Petersburg, 197101



References

1. Kahala, M., Mäkinen, S., Pihlanto, A. (2021). Impact of fermentation on antinutritional factors. Chapter in a book: Bioactive Compounds in Fermented Foods. CRC Press, 2021. https://doi.org/10.1201/9780429027413-10

2. Gandhi, H., Toor, B. S., Kaur, A., Kaur, J. (2022). Effect of processing treatments on physicochemical, functional, and thermal characteristics of lentils (Lens culinaris). Journal of Food Measurement and Characterization, 16(6), 4603–4614. https://doi.org/10.1007/s11694-022-01549-1

3. Milán-Noris, A. K., Gutierrez-Uribe, J. A., Serna-Saldivar, S. O. (2023). Influence of soaking and boiling on flavonoids and saponins of nine desi chickpea cultivars with potential antiproliferative effects. Journal of Food Measurement and Characterization, 17(4), 3473–3481. https://doi.org/10.1007/s11694-023-01861-4

4. Anaemene, D., Fadupin, G. (2022). Anti-nutrient reduction and nutrient retention capacity of fermentation, germination, and combined germination-fermentation in legume processing. Applied Food Research, 2(1), Article 100059. https://doi.org/10.1016/j.afres.2022.100059

5. Ojo M. A. (2022). Tannins in foods: Nutritional implications and processing effects of hydrothermal techniques on underutilized hard-to-cook legume seeds — a review. Preventive Nutrition and Food Science, 27(1), 14–19. https://doi.org/10.3746/pnf.2022.27.1.14

6. Badjona, A., Bradshaw, R., Millman, C., Howarth, M., Dubey, B. (2023). Faba bean processing: Thermal and non-thermal processing on chemical, antinutritional factors, and pharmacological properties. Molecules, 28(14), Article 5431. https://doi.org/10.3390/molecules28145431

7. Zheng, Q., Wang, F., Nie, C., Zhang, K., Sun, Y., AL-Ansi, W. et al (2024). Elevating the significance of legume intake: A novel strategy to counter aging-related mitochondrial dysfunction and physical decline. Comprehensive Reviews in Food Science and Food Safety, 23(3), Article 13342. https://doi.org/10.1111/1541-4337.13342

8. Tan, Y., Tam, C. C., Meng, S., Zhang, Y., Alves, P., Yokoyama, W. (2021). Cooked black turtle beans ameliorate insulin resistance and restore gut microbiota in C57BL/6J mice on high-fat diets. Foods, 10(8), Article 1691. https://doi.org/10.3390/foods10081691

9. Patel, L., La Vecchia, C., Negri, E., Mignozzi, S., Augustin, L. S., Levi, F. et al (2024). Legume intake and cancer risk in a network of case-control studies. European Journal of Clinical Nutrition, 78(5), 391–400. https://doi.org/10.21203/rs.3.rs2398023/v1

10. Chamberlin, M. L., Wilson, S. M. G., Gaston, M. E., Kuo, W. -Y., Miles, M. P. (2024). Twelve weeks of daily lentil consumption improves fasting cholesterol and postprandial glucose and inflammatory responses — A randomized clinical trial. Nutrients, 16(3), Article 419. https://doi.org/10.3390/nu16030419

11. Sharma, N., Sahu, J. K., Joshi, S., Khubber, S., Bansal, V., Bhardwaj, A. et al. Bal, L. M. (2022). Modulation of lentil antinutritional properties using non-thermal mediated processing techniques — A review. Journal of Food Composition and Analysis, 109, Article 104498. https://doi.org/10.1016/j.jfca.2022.104498

12. Adamcová A., Laursen K. H., Ballin N. Z. (2021). Lectin activity in commonly consumed plant-based foods: Calling for method harmonization and risk assessment. Foods, 10(11), Article 2796. https://doi.org/10.3390/foods10112796

13. Dangi, P., Chaudhary, N., Gajwani, D., Neha (2021). Antinutritional factors in legumes. Chapter in a book: Handbook of Cereals, Pulses, Roots, and Tubers. CRC Press, 2021.

14. Sun, X., Ma, L., Xuan, Y., Liang, J. (2024). Degradation of anti-nutritional factors in maize gluten feed by fermentation with bacillus subtilis: A focused study on optimizing fermentation conditions. Fermentation, 10(11), Article 555. https://doi.org/10.3390/fermentation10110555

15. Christensen, L. F., García-Béjar, B., Bang-Berthelsen, C. H., Hansen, E. B. (2022). Extracellular microbial proteases with specificity for plant proteins in food fermentation. International Journal of Food Microbiology, 381, Article 109889. https://doi.org/10.1016/j.ijfoodmicro.2022.109889

16. Gautam, G., Gänzle, M. G. (2023). Conversion of (poly)phenolic compounds in food fermentations by lactic acid bacteria: Novel insights into metabolic pathways and functional metabolites. Current Research in Food Science, 6, Article 100448. https://doi.org/10.1016/j.crfs.2023.100448

17. Abu Hafsa S. H., Hassan, A. A., Elghandour, M. M. M. Y., Barbabosa-Pliego, A., Mellado, M., Salem, A. Z. M. (2022). Dietary anti-nutritional factors and their roles in livestock nutrition. Chapter in a book: Sustainable Agriculture Reviews. Springer, Cham, 2022. http://doi.org/10.1007/978-3-031-07496-7_4

18. Kumar, A., Dash, G. K., Sahoo, S. K., Lal, M. K., Sahoo, U., Sah, R. P. et al. (2023). Phytic acid: A reservoir of phosphorus in seeds plays a dynamic role in plant and animal metabolism. Phytochemistry Reviews, 22(5), 1281–1304. https://doi. org/10.1007/s11101-023-09868-x

19. Marcos-Méndez D. A, Canseco-Nava, H., Oliart-Ros, R. M., Ramírez-Higuera, A. (2021). Presence of antinutritional factors in legumes. Journal of Innovative Engineering / Revista de Ingenieria Innovativa, 5(17), 6–13. https://doi.org/10.35429/JOIE.2021.17.5.6.13

20. Avila-Nava, A., Medina-Vera, I., Rodríguez-Hernández, P., Guevara-Cruz, M., Canton, P. K. H. G., Tovar, A. R. et al. (2021). Oxalate content and antioxidant activity of different ethnic foods. Journal of Renal Nutrition, 31(1), 73–79. https://doi.org/10.1053/j.jrn.2020.04.006

21. Salgado, N., Silva, M. A., Figueira, M. E., Costa, H. S., Albuquerque, T. G. (2023). Oxalate in foods: Extraction conditions, analytical methods, occurrence, and health implications. Foods, 12(17), Article 3201. https://doi.org/10.3390/foods12173201

22. Boschin, G., Tesio, E., Arnoldi, A. (2022). A field case of pig poisoning by accidental feed contamination by alkaloid-rich lupin seeds. Journal of Applied Animal Research, 50(1), 725–731. https://doi.org/10.1080/09712119.2022.2147181

23. Das, G., Sharma, A., Sarkar, P. K. (2022). Conventional and emerging processing techniques for the post-harvest reduction of antinutrients in edible legumes. Applied Food Research, 2(1), Article 100112. https://doi.org/10.1016/j.afres.2022.100112

24. Bloot, A. P. M., Kalschne, D. L., Amaral, J. A. S., Baraldi, I. J., Canan, C. (2021). A review of phytic acid sources, obtention, and applications. Food Reviews International, 39(1), 73–92. https://doi.org/10.1080/87559129.2021.1906697

25. Fu, Z., Akula, S., Thorpe, M., Hellman, L. (2021). Marked difference in efficiency of the digestive enzymes pepsin, trypsin, chymotrypsin, and pancreatic elastase to cleave tightly folded proteins. Biological Chemistry, 402(7), 861–867. https://doi.org/10.1515/hsz 2020-0386

26. Chauhan, D., Kumar, K., Ahmed, N., Thakur, P., Rizvi, Q. U. E. H., Jan, S. et al. (2022). Impact of soaking, germination, fermentation, and roasting treatments on nutritional, anti-nutritional, and bioactive composition of black soybean (Glycine max L.). Journal of Applied Biology and Biotechnology, 10(5), 186–192. https://doi.org/10.5039/agraria.v18i4a3313

27. Zhu, X., Liu, J., Yang, G. (2021). Effects of soybean oligosaccharide, stachyose, and raffinose on growth performance and cecal microbiota in broiler chickens. Animal Science Journal, 92(1), Article e13668. https://doi.org/10.1111/asj.13668

28. Emkani, M., Oliete, B., Saurel, R. (2022). Effect of lactic acid fermentation on legume protein properties, a review. Fermentation, 8(6), Article 244. https://doi.org/10.3390/fermentation8060244

29. Cao, Y., Xu, M., Lu, J., Cai, G. (2023). Simultaneous microbial fermentation and enzymolysis: A biotechnology strategy to improve the nutritional and functional quality of soybean meal. Food Reviews International, 40(5), 1296–1311. https://doi.org/10.1080/87559129.2023.2212048

30. Pedrosa, M. M., Guillamón, E., Arribas, C. (2021). Autoclaved and extruded legumes as a source of bioactive phytochemicals: A review. Foods, 10(2), Article 379. https://doi.org/10.3390/foods10020379

31. Chisowa, D. M. (2022). Comparative evaluation of the effect of boiling and autoclaving of legume grains on tannin concentration. Magna Scientia Advanced Biology and Pharmacy, 7(1), 009–017. https://doi.org/0.30574/msabp.2022.7.1.0080

32. Ghanati, K., Oskoei, V., Rezvani-Ghalhari, M., Shavali-Gilani, P., Mirzaei, G., Sadighara, P. (2024). Oxalate in plants, amount, and methods to reduce exposure, a systematic review. Toxin Reviews, 43(3), 411–422. https://doi.org/10.1080/15569543.2024.2344493

33. Sun, X., Ma, L., Xuan, Y., Liang, J. (2024). Degradation of anti-nutritional factors in maize gluten feed by fermentation with bacillus subtilis: A focused study on optimizing fermentation conditions. Fermentation, 10(11), Article 555. https://doi.org/10.3390/fermentation10110555

34. Ampofo, J., Abbey, L. (2023). Sprouted legumes: Biochemical changes, nutritional impacts, and food safety concerns. Chapter in a book: Advances in Plant Sprouts. Springer, Cham, 2023. https://doi.org/10.1007/978-3-031-40916-5_7

35. Manzoor, M., Singh, D., Aseri, G. K., Sohal, J. S., Vij, S., Sharma, D. (2021). Role of lacto-fermentation in reduction of antinutrients in plant-based foods. Journal of Applied Biology and Biotechnology, 9(3), 7–16. https://doi.org/10.7324/JABB.2021.9302

36. Nagessa, W. B., Chambal, B., Macuamule, C. (2023). Effects of processing methods on phytate and tannin content of black small common beans (Phaseolus vulgaris L.) cultivated in Mozambique. Cogent Food and Agriculture, 9(2), Article 2289713. https://doi.org/10.1080/23311932.2023.2289713

37. Elliott, H., Woods, P., Green, B. D., Nugent, A. P. (2022). Can sprouting reduce phytate and improve the nutritional composition and nutrient bioaccessibility in cereals and legumes. Nutrition Bulletin, 47(2), 138–156. https://doi.org/10.1111/nbu.12549

38. Ghaffar, F., Mehmood, Z., Khurshid, H., Sana, R. (2025). Influence of wet processing techniques (soaking, boiling, and pressure cooking) on phytic acid reduction, mineral retention, and solubility in common beans Phaseolus Vulgaris L, Vigna Unguiculata, Vigna Radiata, and Cicer Arietinum L. Indus Journal of Bioscience Research, 3(4), 782–793. https://doi.org/10.70749/ijbr.v3i4.1168

39. Arbab Sakandar, H., Chen, Y., Peng, C., Chen, X., Imran, M., Zhang, H. (2023). Impact of fermentation on antinutritional factors and protein degradation of legume seeds: A review. Food Reviews International, 39(3), 1227–1249. https://doi.org/10.1080/87559129.2021.1931300

40. Jeyakumar, E., Lawrence, R. (2022). Microbial fermentation for reduction of antinutritional factors. Chapter in a book: Current Developments in Biotechnology and Bioengineering. Elsevier, 2021. https://doi.org/10.1016/B978-0-12-823506-5.00012-6

41. Tasneem, F., Shradha, S., Arunraj, R., (2025). Traditional methods of soaking or sprouting pulses reduce the flatulence causing raffinose family alpha-galactosidase in regularly used nutritious edible legumes. Indian Journal of Traditional Knowledge, 24(3), 253–257. https://doi.org/10.56042/ijtk.v24i3.11017

42. Kitum, V. C., Kinyanjui, P. K., Mathara, J. M., Sila, D. N. (2022). Oligosaccharide and antinutrient content of whole red haricot bean fermented in salt–sugar and saltonly solutions. Legume Science, 4(2), Article e110. https://doi.org/10.1002/leg3.110

43. Huynh, N. K., Nguyen, D. H., Nguyen, H. V. (2022). Effects of processing on oxalate contents in plant foods: A review. Journal of Food Composition and Analysis, 112, Article 104685. https://doi.org/10.1016/j.jfca.2022.104685

44. Mustafa, A. M., Abouelenein, D., Acquaticci, L., Alessandroni, L., Angeloni, S., Borsetta, G. et al. (2022). Polyphenols, saponins and phytosterols in lentils and their health benefits: An overview. Pharmaceuticals, 15(10), Article 1225. https://doi.org/10.3390/ph15101225

45. Ramli, N. A. M., Chen, Y. H., Zin, Z. M., Abdullah, M. A. A., Rusli, N. D., Zainol, M. K. (March 9, 2021). Effect of soaking time and fermentation on the nutrient and antinutrients composition of Canavalia ensiformis (Kacang Koro). IOP Conference Series: Earth and Environmental Science. 3rd Asia Pacific Regional Conference on Food Security (ARCoFS2021), Kelantan, Malaysia. IOP Publishing Ltd, 2021. https://doi.org/10.1088/1755-1315/756/1/012033

46. Anjum, N., Sheikh, M. A., Saini, C. S., Hameed, F., Sharma, H. K., Bhat, A. (2022). Cyanogenic glycosides. Chapter in a book: Handbook of plant and animal toxins in food. CRC Press, 2022. https://doi.org/10.1201/9781003178446

47. Adamcová, A., Laursen, K. H., Ballin, N. Z., (2021). Lectin activity in commonly consumed plant-based foods: Calling for method harmonization and risk assessment. Foods, 10(11), Article 2796. https://doi.org/10.3390/foods10112796

48. Du, Q., Li, H., Tu, M., Wu, Z., Zhang, T., Liu, J. et al. (2024). Legume protein fermented by lactic acid bacteria: Specific enzymatic hydrolysis, protein composition, structure, and functional properties. Colloids and Surfaces B: Biointerfaces, 238, Article 113929. https://doi.org/10.1016/j.colsurfb.2024.113929

49. Manus, J., Millette, M., Uscanga, B. R. A., Salmieri, S., Maherani, B., Lacroix, M. (2021). In vitro protein digestibility and physico-chemical properties of lactic acid bacteria fermented beverages enriched with plant proteins. Journal of Food Science, 86(9), 4172–4182. https://doi.org/10.1111/1750-3841.15859

50. Verni, M., Demarinis, C., Rizzello, C. G., Baruzzi, F. (2020). Design and characterization of a novel fermented beverage from lentil grains. Foods, 9(7), Article 893. https://doi.org/10.3390/foods9070893

51. Verni, M., Pontonio, E., Montemurro, M., Giuseppe Rizzello, C. (2022). Fermentation as strategy for improving nutritional, functional, technological, and sensory properties of legumes. Chapter in a book: Legumes Research-Volume 2. IntechOpen, 2022. https://doi.org/10.5772/intechopen.102523

52. Gaur, G., Gänzle, M. G. (2023). Conversion of (poly)phenolic compounds in food fermentations by lactic acid bacteria: Novel insights into metabolic pathways and functional metabolites. Current Research in Food Science, 6, Article 100448, https://doi.org/10.1016/j.crfs.2023.100448

53. Garrido-Galand, S., Asensio-Grau, A., Calvo-Lerma, J., Heredia, A., Andrés, A. (2021). The potential of fermentation on nutritional and technological improvement of cereal and legume flours: A review. Food Research International, 145, Article 110398. https://doi.org/10.1016/j.foodres.2021.110398

54. Tawalbeh, D., Ahmad, W. W., Sarbon, N. M. (2023). Effect of ultrasound pretreatment on the functional and bioactive properties of legumes protein hydrolysates and peptides: A comprehensive review. Food Reviews International, 39(8), 5423–5445. https://doi.org/10.1080/87559129.2022.2069258


Review

For citations:


Kim A.A., Balanov P.E., Smotraeva I.V. Effect of legume fermentation on the reduction of the anti-nutritional factor. Review. Food systems. 2025;8(3):401-406. (In Russ.) https://doi.org/10.21323/2618-9771-2025-8-3-401-406

Views: 43


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)