Preview

Пищевые системы

Расширенный поиск

Современные подходы к использованию съедобных покрытий овощей и фруктов

https://doi.org/10.21323/2618-9771-2025-8-3-355-361

Аннотация

В современном мире возрастает интерес к производству и потреблению продуктов питания с минимальной обработкой. Потребители все чаще отдают предпочтение свежим овощам и фруктам, т. к. употребление этих продуктов связано с многочисленными преимуществами для здоровья. Фрукты и овощи являются богатым источником фитохимических веществ, обладающих противовоспалительными, антиоксидантными и фитоэстрогенными свойствами. В связи с этим для производителей первостепенной задачей становится максимальное сохранение свежести и полезных свойств фруктов и овощей в течение длительного периода хранения. Фрукты и овощи относятся к категории скоропортящихся продуктов, поскольку немногие из них способны долго сохранять свои качества при комнатной температуре. Потребители стремятся приобретать высококачественные продукты с длительным сроком годности, не содержащие химические консерванты. В качестве замены традиционной пластиковой упаковке все большую популярность приобретают съедобные покрытия. Тонкий защитный слой съедобных покрытий способствует увеличению срока хранения продуктов после сбора урожая, обработки, транспортировки и хранения. Благодаря своим свойствам, эти покрытия предотвращают порчу и  обезвоживание продуктов, сохраняют их качество и  органолептические характеристики. Они не оказывают влияния на пищевую ценность фруктов и овощей, но могут быть модифицированы путем добавления ингредиентов, улучшающих их пищевую ценность. Важное преимущество съедобных покрытий — возможность введения в полимерную структуру активных веществ, которые улучшают органолептические характеристики продукта и употребляются вместе с ним. Целью данного обзора являлось рассмотрение видов материалов, методов применения съедобных покрытий для улучшения качества фруктов и овощей и для продления срока годности после сбора урожая.

Об авторах

Н. Е. Посокина
Всероссийский научно-исследовательский институт технологии консервирования
Россия

Посокина Наталья Евгеньевна — кандидат технических наук, заведующая лабораторией, лаборатория технологии консервирования

142703, Московская обл., Видное, Школьная ул., 78



А. И. Захарова
Всероссийский научно-исследовательский институт технологии консервирования
Россия

Захарова Анна Ивановна — научный сотрудник, лаборатория технологии консервирования

142703, Московская обл., Видное, Школьная ул., 78



Список литературы

1. Cosme, F., Pinto, T., Aires, A., Morais, M. C., Bacelar, E., Anjos, R. et al. (2022). Red fruits composition and their health benefits — a review. Foods, 11(5), Article 644. https://doi.org/10.3390/foods11050644

2. Gammage, S., Marangoni, A. G. (2025). Safety of edible coatings on fruits and vegetables. Comprehensive Reviews in Food Science and Food Safety, 24(2), Article e70108. https://doi.org/10.1111/1541-4337.70108

3. Посокина, Н. Е., Захарова, А. И. (2023). Современные нетермические способы обработки растительного сырья, применяемые для увеличения его хранимоспособности. Пищевые системы, 6(1), 4–10. https://doi.org/10.21323/2618-9771-2023-6-1-4-10

4. Miteluț, A. C., Popa, E. E., Draghici, M. C., Popescu, P. A., Popa, V. I., Bujor, O. C. et al. (2021). Latest developments in edible coatings on minimally processed fruits and vegetables: A review. Foods, 10(11), Article 2821. https://doi.org/10.3390/foods10112821

5. Yahia, E. M., García-Solís, P., Celis M. E. M. (2019). Contribution of fruits and vegetables to human nutrition and health. Chapter in a book: Postharvest Physiology and Biochemistry of Fruits and Vegetables. Woodhead Publishing, 2019. https://doi.org/10.1016/B978-0-12-813278-4.00002-6

6. Kirci, M., Isaksson, O., Seifert, R. (2022). Managing perishability in the fruit and vegetable supply chains. Sustainability, 14(9), Article 5378. https://doi.org/10.3390/su14095378

7. Hazarika, T. K., Lalhriatpuia, C., Ngurthankhumi, R., Lalruatsangi, E., Lalhmachhuani, H. (2023). Edible coatings in extending the shelf life of fruits: A review. Indian Journal of Agricultural Research, 57(5), 555–558. https://doi.org/10.18805/IJARe.A5725

8. Kunwar, A., Bist, D. R., Khatri, L., Dhami, R., Joshi, G. R. (2024). Optimizing post-harvest handling practices to reduce losses and enhance quality of fruits and vegetables. Food and Agri Economics Review (FAER), 4(2), 78–82. http://doi.org/10.26480/faer.02.2024.78.82

9. Sandarani, M. D. J. C., Dasanayaka, D. C. M. C. K., Jayasinghe, C. V. L. (2018). Strategies used to prolong the shelf life of fresh commodities. Journal of Agricultural Science and Food Research, 9(1), Article 1000206.

10. Pan, J.-N., Sun, J., Shen, Q.-J., Zheng, X., Zhou, W.-W. (2025). Fabrication, properties, and improvement strategies of edible films for fruits and vegetables preservation: A comprehensive review. Food Innovation and Advances, 4(1), 43–52. https://doi.org/10.48130/fia0025-0003

11. Neme, K., Nafady, A., Uddin, S., Tola, Y. B. (2021). Application of nanotechnology in agriculture, postharvest loss reduction and food processing: Food security implication and challenges. Heliyon, 7(12), Article e08539. https://doi.org/10.1016/j.heliyon.2021.e08539

12. Elik, A., Yanik, D. K., Istanbullu, Y., Guzelsoy, N. A., Yavuz, A., Gogus, F. (2019). Strategies to reduce post-harvest losses for fruits and vegetables. International Journal of Scientific and Technological Research, 5(3), 29–39. https://doi.org/10.7176/JSTR/5-3-04

13. Sanjay, P., Saxena, D., Kazimi, R. (2022). Enhancing shelf life of fresh fruits by the application of different edible coatings. The Pharma Innovation Journal, 11(5S), 626–632.

14. Adhikary, T., Singh, S., Sinha, A., Gill, P. P. S. (2020). Recent advances in packaging and edible coating for shelf life enhancement in fruit crops. Current Journal of Applied Science and Technology, 39(16), 116–133. https://doi.org/10.9734/cjast/2020/v39i1630744

15. Rajial, H., Varma, S. (2024). Edible coatings: A novel approach to extending the shelf life of fruits and vegetables. Journal of Advances in Biology and Biotechnology, 27(7), 25–37. https://doi.org/10.9734/jabb/2024/v27i7963

16. Sapper, M., Palou, L., Pérez-Gago, M. B., Chiralt, A. (2019). Antifungal starch– gellan edible coatings with thyme essential oil for the postharvest preservation of apple and persimmon. Coatings, 9(5), Article 333. https://doi.org/10.3390/coatings9050333

17. Dhall, R. K. (2013) Advances in edible coatings for fresh fruits and vegetables: A review. Critical Reviews in Food Science and Nutrition, 53(5), 435–450. https://doi.org/10.1080/10408398.2010.541568

18. Tang, Y., Mao, R., Guo, S. (2020). Effects of LED spectra on growth, gas exchange, antioxidant activity and nutritional quality of vegetable species. Life Sciences in Space Research, 26, 77–84. https://doi.org/10.1016/j.lssr.2020.05.002

19. Hassanzadeh, H., Ahmed, S. A., Qadir, N. S. H. (2025). Application of the active edible film reinforced with nanoparticles and nanoemulsions as the coating systems to improve the quality and shelf life of fruits and vegetables. Journal of Nanotechnology, 2025(1), Article 7036931. https://doi.org/10.1155/jnt/7036931

20. Yadav, V., Pal, D., Poonia, A. K. (2024). Edible coatings for enhancing the shelf-life of foods: Meaningful or myth. Exon, 1(2), 38–53. https://doi.org/10.69936/en09y0024

21. Banu, A. T., Murugan, A., Lakshmi, D. S. (2022). Edible coatings to enhance shelf life of fruits and vegetables: A mini-review. Current Nutrition and Food Science, 18(6), 525–538. https://doi.org/10.2174/1573401318666220303161527

22. Miteluț, A. C., Popa, E. E., Drăghici, M. C., Popescu, P. A., Popa, V. I., Bujor, O.-C. et al. (2021). Latest developments in edible coatings on minimally processed fruits and vegetables: A review. Foods, 10(11), Article 2821. https://doi.org/10.3390/foods10112821

23. Chettri, S., Sharma, N., Mohite, A. M. (2023). Edible coatings and films for shelflife extension of fruit and vegetables. Biomaterials Advances, 154, Article 213632. https://doi.org/10.1016/j.bioadv.2023.213632

24. Suresh, S. N., SenthilKumar, P., Pushparaj, C., Sarangi, P. K., Regina, V. R., Subramani, R. (2024). Almond gum-chitosan nanocomposite as edible formulation for advancing postharvest longevity of fruits and vegetables. Polymers for Advanced Technologies, 35(6), Article e6453. https://doi.org/10.1002/pat.6453

25. Liyanapathiranage, A., Dassanayake, R. S., Gamage, A., Karri, R. R., Manamperi, A., Evon, P. (2023). Recent developments in edible films and coatings for fruits and vegetables. Coatings, 13(7), Article 1177. https://doi.org/10.3390/coatings13071177

26. Tiamiyu, Q. O., Adebayo, S. E., Yusuf, A. A. (2023). Gum Arabic edible coating and its application in preservation of fresh fruits and vegetables: A review. Food Chemistry Advances, 2, Article 100251. https://doi.org/10.1016/j.focha.2023.100251

27. de Oliveira, K. A. R., Fernandes K. F. D., de Souza, E. L. (2021). Current advances on the development and application of probiotic-loaded edible films and coatings for the bioprotection of fresh and minimally processed fruit and vegetables. Foods, 10(9), Article 2207. https://doi.org/10.3390/foods10092207

28. Perez-Vazquez, A., Barciela, P., Carpena, M., Prieto, M. (2023). Edible coatings as a natural packaging system to improve fruit and vegetable shelf life and quality. Foods, 12(19), Article 3570. https://doi.org/10.3390/foods12193570

29. Momin, M., Jamir, A. R, Ankalagi, N., Henny, T., Devi, O. B. (2021). Edible coatings in fruits and vegetables: A brief review. The Pharma Innovation Journal, 10(7), 71–78.

30. Patil, V., Shams, R., Dash, K. K. (2023). Techno-functional characteristics, and potential applications of edible coatings: A comprehensive review. Journal of Agriculture and Food Research, 14, Article 100886. https://doi.org/10.1016/j.jafr.2023.100886

31. Gupta, D., Lall, A., Kumar, S., Patilc, T. D., Gaikwad, K. K. (2024). Plant-based edible films and coatings for food-packaging applications: Recent advances, applications, and trends. Sustainable Food Technology, 2(5), 1428–1455. https://doi.org/10.1039/D4FB00110A

32. Valdes, A., Burgos, N., Jimenez, A., Garrigos, M. (2015). Natural pectin polysaccharides as edible coatings. Coatings, 5(4), 865–886. https://doi.org/10.3390/coatings5040865

33. Fan, X.-J., Zhang, B., Yan, H., Feng, J.-T., Ma, Z.-Q., Zhang, X. (2019). Effect of lotus leaf extract incorporated composite coating on the postharvest quality of fresh goji (Lycium Barbarum L.) fruit. Postharvest Biology and Technology, 148, 132–140. https://doi.org/10.1016/J.POSTHARVBIO.2018.10.020

34. Prakash, A., Baskaran, R., Vadivel V. (2020). Citral nanoemulsion incorporated edible coating to extend the shelf life of fresh cut pineapples. LWT, 118, Article 108851. https://doi.org/10.1016/J.LWT.2019.108851

35. Priya, K., Thirunavookarasu, N., Chidanand, D. V. (2023). Recent advances in edible coating of food products and its legislations: A review. Journal of Agriculture and Food Research, 12, Article 100623. https://doi.org/10.1016/J.JAFR.2023.100623

36. Lara, G., Yakoubi, S., Villacorta, C. M., Uemura, K., Kobayashi, I., Takahashi, C. et al. (2020). Spray technology applications of xanthan gum-based edible coatings for fresh-cut lotus root (Nelumbo nucifera). Food Research International, 137, Article 109723. https://doi.org/10.1016/J.FOODRES.2020.109723

37. Owusu-Akyaw Oduro, K. (2022). Postharvest Technology — Recent Advances, New Perspectives and Applications. IntechOpen, 2022. https://doi.org/10.5772/intechopen.101283

38. Lipin, A. A., Lipin, A. G. (2022). Prediction of coating uniformity in batch fluidized-bed coating process. Particuology, 61, 41–46. https://doi.org/10.1016/J.PARTIC.2021.03.010

39. Бурак, Л. Ч. (2024). Использование современных технологий обработки для увеличения срока хранения фруктов и овощей. Обзор предметного поля. Ползуновский вестник, 1, 99–119. https://doi.org/10.25712/ASTU.2072–8921.2024.01.013

40. Popescu, P.-A., Palade, L. M., Nicolae, I.-C., Popa, E. E., Miteluț, A. C., Drăghici, M C. et al. (2022). Chitosan-based edible coatings containing essential oils to preserve the shelf life and postharvest quality parameters of organic strawberries and apples during cold storage. Foods, 11(21), Article 3317. https://doi.org/10.3390/foods11213317

41. Aparna, M., Geetha Lekshmi, P. R. (2024). Chitosan based edible coatings: Enhancing shelf life and quality in fruits and vegetables. Journal of Advances in Biology and Biotechnology, 27(11), 178–191. https://doi.org/10.9734/jabb/2024/v27i111603

42. Saberi Riseh, R., Vatankhah, M., Hassanisaadi, M., Kennedy, J. F. (2023). Chitosan-based nanocomposites as coatings and packaging materials for the postharvest improvement of agricultural product: A review. Carbohydrate Polymers, 309, Article 120666. https://doi.org/10.1016/j.carbpol.2023.120666

43. Zheng, H., Deng, W., Yu, L., Shi, Y., Deng, Y., Wangx, D. et al. (2024). Chitosan coatings with different degrees of deacetylation regulate the postharvest quality of sweet cherry through internal metabolism. International Journal of Biological Macromolecules, 254(1), Article 127419. https://doi.org/10.1016/j.ijbiomac.2023.127419

44. Chaudhary, S., Kumar, S., Kumar, V., Sharma, R. (2020). Chitosan nanoemulsions as advanced edible coatings for fruits and vegetables: Composition, fabrication and developments in last decade. International Journal of Biological Macromolecules, 152, 154–170. https://doi.org/10.1016/j.ijbiomac.2020.02.276

45. Sun, J., Wang, T., Liu, L., Li, Q., Liu, H., Wang, X. et al. (2025). Preparation and application of edible chitosan coating incorporating natamycin. Polymers, 17(8), Article 1062. https://doi.org/10.3390/polym17081062

46. Zhou, Y., Hu, L., Chen, Y., Liao, L., Li, R., Wang, H. et al. (2022). The combined effect of ascorbic acid and chitosan coating on postharvest quality and cell wall metabolism of papaya fruits. LWT, 171, Article 114134. https://doi.org/10.1016/j.lwt.2022.114134

47. Zhou, Y., Liu, X., Liang, X., Li, H., Lai, J., Liao, Y. et al. (2024) Biochemical and metabolomics analyses reveal the mechanisms underlying ascorbic acid and chitosan coating mediated energy homeostasis in postharvest papaya fruit. Food Chemistry, 439, Article 138168. https://doi.org/10.1016/j.foodchem.2023.138168

48. Saleem, M. S., Anjum, M. A., Naz, S., Ali, S., Hussain, S., Azam, M. et al. (2021). Incorporation of ascorbic acid in chitosan-based edible coating improves postharvest quality and storability of strawberry fruits. International Journal of Biological Macromolecules, 189, 160–169. https://doi.org/10.1016/j.ijbiomac.2021.08.051

49. Seung, D. (2020). Amylose in starch: Towards an understanding of biosynthesis, structure and function. Open Access, 228(5), 1490–1504. https://doi.org/https://doi.org/10.1111/nph.16858

50. Zerbet, I., Benidire, L. (2025). Gum Arabic: A Sustainable Biotechnological Solution to Prolong the Shelf Life and Improve Post-Harvest Quality of Fruits. Chapter in a book: Green Chemistry, Sustainable Processes, and Technologies. IGI Global, 2025. https://doi.org/10.4018/979-8-3693-9826-5.ch014

51. Mugo, E. M., Mahungu, S. M., Chikamai, B. N., Mwove, J. (2020). Evaluation of gum arabic from Acacia senegal var kerensis and Acacia senegal var senegal as a stabilizer in low-fat yoghurt. International Journal of Food Studies, 9(3), 110–124. https://doi.org/10.7455/ijfs/9.si.2020.a9

52. Huang, Q., Wan, C., Zhang, Y., Chen, C., Chen, J. (2021). Gum arabic edible coating reduces postharvest decay and alleviates nutritional quality deterioration of ponkan fruit during cold storage. Nutrition and Food Science Technology, 8, Article 717596. https://doi.org/10.3389/fnut.2021.717596

53. Kathirvelu, T., Xavier, J. R., Innasimuthu, N., Chauhan, O. P. (2024). Exploring composite edible coatings for shelf life extension and quality preservation of tomato (Solanum lycopersicum L.). Future Postharvest and Food, 1(4), 401–413. https://doi.org/10.1002/fpf2.12030

54. Qaiser, H., Khalid, M., Noreen, F. (2024). Impact of natural polysaccharides based edible coatings on postharvest physiology and bioburden of Lycopersicon esculentum. Lahore Garrison University Journal of Life Sciences, 8(3), 325–340. https://doi.org/10.54692/lgujls.2024.0803349

55. Fawole, O. A., Riva, S., Silue, Y., Opara, U. L. (2024). Evaluating commercial viability of gum Arabic-based edible coatings for enhancing shelf life of “African Delight™” plum under simulated packhouse conditions. South African Journal of Botany, 174, 902–915. https://doi.org/10.1016/j.sajb.2024.10.005

56. Tahir, H. E., Xiaobo, Z., Mahunu, G. K., Arslan, M., Abdalhai, M., Zhihua, L. (2019). Recent developments in gum edible coating applications for fruits and vegetables preservation: A review. Carbohydrate Polymers, 224, Article 115141. https://doi.org/10.1016/j.carbpol.2019.115141

57. Salehi, F. (2020). Edible coating of fruits and vegetables using natural gums: A review. International Journal of Fruit Science, 20(2), S570–S589. https://doi.org/10.1080/15538362.2020.1746730

58. Boamah, P. O., Afoakwah, N. A., Onumah, J., Osei, E. D., Mahunu, G. K. (2023). Physicochemical properties, biological properties and applications of gum tragacanth-a review. Carbohydrate Polymer Technologies and Applications, 5, Article 100288. https://doi.org/10.1016/j.carpta.2023.100288

59. Ali, S., Anjum, M. A., Nawaz, A., Naz, S., Ejaz, S., Sardar, H. et al. (2020). Tragacanth gum coating modulates oxidative stress and maintains quality of harvested apricot fruits. International Journal of Biological Macromolecules, 163, 2439–2447. https://doi.org/10.1016/j.ijbiomac.2020.09.179

60. Mohebbi, M., Ansarifar, E., Hasanpour, N., Amiryousefi, M. R. (2012). Suitability of aloe vera and gum tragacanth as edible coatings for extending the shelf life of button mushroom. Food and Bioprocess Technology, 5(8), 3193–3202. https://doi.org/10.1007/s11947-011-0709-1

61. Panahirad, S., Dadpour, M., Peighambardoust, S. H., Soltanzadeh, M., Gullon, B., Alirezalu, K. et al. (2021). Applications of carboxymethyl cellulose- and pectinbased active edible coatings in preservation of fruits and vegetables: A review. Trends in Food Science and Technology, 110, 663–673. https://doi.org/10.1016/j.tifs.2021.02.025

62. Dey, P., Bhattacharjee, S., Yadav, D. K., Hmar, B. Z., Gayen, K., Bhowmick, T. K. (2023). Valorization of waste biomass for synthesis of carboxy-methyl-cellulose as a sustainable edible coating on fruits: A review. International Journal of Biological Macromolecules, 253(7), Article 127412. https://doi.org/10.1016/j.ijbiomac.2023.127412

63. Yilmaz, N. (2025). Xanthan gum and carboxymethyl cellulose-based coating maintain postharvest quality and organic acids of button mushrooms (Agaricus bisporus). Food Measure, 19(5), 3741–3753. https://doi.org/10.1007/s11694-025-03223-8

64. Lara, G., Yakoubi, S., Villacorta, C.M., Uemura, K., Kobayashi, I., Takahashi, C. et. al. (2020). Spray technology applications of xanthan gum-based edible coatings for fresh-cut lotus root (Nelumbo nucifera). Food Research International, 137, Article 109723. https://doi.org/10.1016/j.foodres.2020.109723

65. Mohammadi, M., Rastegar, S., Rohani, A. (2024). Enhancing Mexican lime (Citrus aurantifolia cv.) shelf life with innovative edible coatings: Xanthan gum edible coating enriched with Spirulina platensis and pomegranate seed oils. BMC Plant Biology, 24, Article 906(2024). https://doi.org/10.1186/s12870-024-05606-3

66. Chikhala, T., Seke, F., Slabbert, R. M., Sultanbawa, Y., Sivakumar, D. (2024). Utilizing xanthan gum coatings as probiotic bacteria carriers to enhance postharvest quality and antioxidants in fresh-cut cantaloupe and honeydew (Cucumis melo L.) melons. Foods, 13(6), Article 940. https://doi.org/10.3390/foods13060940

67. Mihalca, V., Kerezsi, A. D., Weber, A., Gruber-Traub, C., Schmucker, J., Vodnar, D. C., et al. (2021). Protein-based films and coatings for food industry applications. Polymers, 13(5), Article 769. https://doi.org/10.3390/polym13050769

68. Galus, S., Kadzińska, J. (2016). Whey protein edible films modified with almond and walnut oils. Food Hydrocoll, 52, 78–86. https://doi.org/10.1016/j.foodhyd.2015.06.013

69. Picchio, M. L., Linck, Y. G., Monti, G. A., Gugliotta, L. M., Minari, R. J., Igarzabal, C. I. A. (2018). Casein films crosslinked by tannic acid for food packaging applications. Food Hydrocoll, 84, 424–434. https://doi.org/10.1016/j.foodhyd.2018.06.028

70. Guimarães, M. C., Motta, J. F. G., Madella, D. K. S. F., Moura, L. de A. G., Teodoro, C. E. de S., de Melo, N. R. (2025). Edible coatings used for conservation of minimally processed vegetables: A review. Research, Society and Development, 9(8), Article e756986018. https://doi.org/10.33448/rsd-v9i8.6018

71. Milani, J. M., Nemati, A. (2022). Lipid-based edible films and coatings: A review of recent advances and applications. Journal of Packaging Technology and Research, 6(1), 11–22. https://doi.org/10.1007/s41783-021-00130-3


Рецензия

Для цитирования:


Посокина Н.Е., Захарова А.И. Современные подходы к использованию съедобных покрытий овощей и фруктов. Пищевые системы. 2025;8(3):355-361. https://doi.org/10.21323/2618-9771-2025-8-3-355-361

For citation:


Posokina N.E., Zakharova A.I. Modern approaches to the use of edible coatings for vegetables and fruits. Food systems. 2025;8(3):355-361. (In Russ.) https://doi.org/10.21323/2618-9771-2025-8-3-355-361

Просмотров: 41


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)