Preview

Food systems

Advanced search

Biochemical characteristics of tea from amaranth leaves (Amaranthus cruentus L.) of the ‘Frant’ variety

https://doi.org/10.21323/2618-9771-2025-8-2-260-266

Abstract

Tea and various tea beverages have always been popular products rich in antioxidants. Amaranth is considered a “super product” due to the content of high-quality gluten-free protein, unsaturated fatty acids, vitamins and minerals. The leaves of the red-colored varieties of Amaranthus cruentus L., rich in amaranthine, are an excellent raw material for the production of tea beverages. The purpose of this study was comparative investigation of the biochemical composition and antioxidant activity of tea from amaranth leaves of the ‘Frant’ variety prepared both with and without fermentation. For the first time, the content of valuable biochemical substances in a tea drink made from amaranth has been established: ascorbic acid, chlorophylls, carotenoids and lutein, which are strong antioxidants and necessary for human health. The composition of tea has a high content of chlorophylls (540.14–567.65 mg/100g), carotenoids (116.62–127.64 mg/100g), and amaranthine (44.61– 54.18 mg/100g). During fermentation, there was a significant increase in ascorbic acid, lutein and total acidity. Analysis of the content of low-molecular-weight components of the carbohydrate profile showed a significant decrease of sucrose, raffinose and monosaccharide altrose and an increase in glucose and ribose. The composition of the acids included 28 compounds with a predominance of inorganic phosphoric acid and organic acids: succinic and glyceric. It has been established that during the fermentation process accompanied by an increase in total acidity, the carbohydrate content decreases, which leads to a decrease in the sweet taste of tea. Factors associated with the antioxidant activity of amaranth tea were identified. The benefit of amaranth tea is confirmed by the significant presence of quercetin, ferulic and ellagic acids. The identified correlations are of theoretical and practical importance for understanding the processes occurring during the fermentation of amaranth leaves.

About the Authors

D. V. Sokolova
N. I Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation

Diana V. Sokolova, Candidate of Biological Sciences, Senior Researcher, Department of Genetic Resources of Vegetable and Melon Crops

42, 44 B. Morskaya Str., 190031, St. Petersburg

Tel.: +7–812–312–51–61



A. E. Solovyeva
N. I Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation

Alla E. Solovyeva, Candidate of Biological Sciences, Senior Researcher, Department of Biochemistry and Molecular Biology

42, 44 B. Morskaya Str., 190031, St. Petersburg

Tel.: +7–812–312–51–61



References

1. Sokolova, D., Zvereva, O., Shelenga, T., Solovieva, A. (2021). Comparative characteristics of the amino acid composition in amaranth accessions from the VIR collection. Turkish Journal of Agriculture and Forestry, 45(1), 68–78. https://doi.org/10.3906/tar-2007-7

2. Joshi, D. C., Sood, S., Hosahatti, R., Kant, L., Pattanayak, A., Kumar, A. et al. (2018). From zero to hero: The past, present and future of grain amaranth breeding. Theoretical and Applied Genetics, 131(9), 1807–1823. https://doi.org/10.1007/s00122-018-3138-y

3. Gelaye, Y. (2023). A review of amaranth crop as a potential solution to Ethiopia’s nutritional crisis. Nutrition and Dietary Supplements, 15, 101–110. https://doi.org/10.2147/nds.s428058

4. Ruth, O. N., Unathi, K., Nomali, N., Chinsamy, M. (2021). Underutilization versus nutritional-nutraceutical potential of the amaranthus food plant: A mini-review. Applied Sciences, 11(15), Article 6879. https://doi.org/10.3390/app11156879

5. Baraniak, J., Kania-Dobrowolska, M. (2022). The dual nature of amaranth — functional food and potential medicine. Foods, 11(4), Article 618. https://doi.org/10.3390/foods11040618

6. Herrera, A.С., Zamudio, F.V., Campos, M.R.S. (2024). Therapeutic effects of amaranth: Analysis of the antidiabetic potential of the plant. Journal of Medicinal Food, 27(4), 279–286. https://doi.org/10.1089/jmf.2022.0159

7. Evon, P., de Langalerie, G., Labonne, L., Merah, O., Talou, T., Ballas, S. et al. (2021). Low-density insulation blocks and hardboards from amaranth (Amaranthus cruentus) stems, a new perspective for building applications. Coatings, 11, Article 349. https://doi.org/10.3390/coatings11030349

8. Gins, M. S., Gins, V. K., Kononkov, P. F., Udalova, Zh. V., Zinov’eva, S. V. (2020). The effect of amaranthine on the stress-resistance of tomatoes (Lycopersicon esculentum Mill.) invaded by the root-knot nematode (Meloidogyne incognita). Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 55(1), 97–106. https://doi.org/10.15389/agrobiology.2020.1.97eng

9. Bastos, E. L., Schliemann, W. (2022). Betalains as Antioxidants. Chapter in a book: Plant Antioxidants and Health. Reference Series in Phytochemistry. Springer, 2022. https://doi.org/10.1007/978-3-030-78160-6

10. Ninfali, P., Antonini, E., Frati, A., Scarpa, E. S. (2017). C-Glycosyl flavonoids from Beta vulgaris Cicla and betalains from Beta vulgaris rubra: Antioxidant, anticancer and anti-inflammatory activities — A review. Phytotherapy Research, 31, 871–884. https://doi.org/10.1002/ptr.5819

11. Rajabian, F., Rajabian, A., Tayarani-Najaran, Z. (2023). The Antioxidant activity of betanin protects MRC-5 cells against cadmium induced toxicity. Biological Trace Element Research, 201(11), 5183–5191. https://doi.org/10.1007/s12011-023-03662-8

12. Zhang, M., Zhou, C., Zhang, C., Xu, K., Lu, L., Huang, L. et al. (2023). Analysis of characteristics in the macro-composition and volatile compounds of understory Xiaobai white tea. Plants, 12(24), Article 4102. https://doi.org/10.3390/plants12244102

13. Khan, R. M., Islam, A., Uddin, R., Kalam, A., Baishakh, N. N., Barua, P. et al. (2023). Biochemical investigation of Bangladeshi black tea and their correlation to organoleptic quality evaluation. Heliyon, 9(6), Article e16802. https://doi.org/10.1016/j.heliyon.2023.e16802

14. Jolvis Pou, K. R. (2016). Fermentation: The key step in the processing of black tea. Journal of Biosystems Engineering, 41(2), 85–92. https://doi.org/10.5307/jbe.2016.41.2.085

15. Wong, M., Sirisena, S., Ng, K. (2022). Phytochemical profile of differently processed tea: A review. Journal of Food Science, 87(5), 1925–1942. https://doi.org/10.1111/1750-3841.16137

16. Assad, M., Ashaolu, T. J., Khalifa, I., Baky, M. H., Farag, M. A. (2023). Dissecting the role of microorganisms in tea production of different fermentation levels: A multifaceted review of their action mechanisms, quality attributes and future perspectives. World Journal of Microbiology and Biotechnology, 39, Article 265. https://doi.org/10.1007/s11274-023-03701-5

17. Sokolova D. V. Purple amaranth (Amaranthus cruenthus L.) ‘Frant’. Patent RF, no. 11940, 2022. State Register of Varieties and Hybrids of Agricultural Plants Admitted for Usage. (In Russian)

18. Sokolova D. V. method for producing fermented tea from red-coloured amaranth varieties. Patent RF, no. 12793627, 2022. (In Russian)

19. Ermakov, A. I. (1987). Biochemical research methods of plants. Leningrad: Agropromizdat, 1987. (In Russian)

20. Saenko, I. I., Таrasenko, О. V., Deineka, V. I., Deineka, L. А. (2012). Betacyanins of roots of red beetrot. Belgorod State University Scientific Bulletin. Series: Natural Sciences, 3(122), 194–200. (In Russian)

21. Golubkina, N. A., Kekina, E. G., Molchanova, A. V., Antoshkina, M. S., Nadezhkin, S. M., Soldatenko, A. V. (2018). Plant antioxidants and methods of their detection. Moscow: INFRA-M, 2023. (In Russian)

22. Brand-Williams, W., Cuvelier, M. E., Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25–30. http://doi.org/10.1016/S0023-6438(95)80008-5

23. Loskutov, I. G., Shelenga, T. V., Konarev, A. V., Vargach, Y. I., Porokhovinova, E. A., Blinova, E. V. et al. (2020). Modern approach of structuring the variety diversity of the naked and covered forms of cultural oats (Avena sativa L.). Ecological Genetics, 18(1), 27–41. https://doi.org/10.17816/ecogen12977

24. Puzanskiy, R., Tarakhovskaya, E., Shavarda, A., Shishova, M. (2018). Metabolomic and physiological changes of Chlamydomonas reinhardtii (Chlorophyceae, Chlorophyta) during batch culture development. Journal of Applied Phycology, 30(2), 803–818. https://doi.org/10.1007/s10811-017-1326-9

25. Shtark, O. Y., Puzanskiy, R. K., Avdeeva, G. S., Yurkov, A. P., Smolikova, G. N., Yemelyanov, et al. (2019). Metabolic alterations in pea leaves during arbuscular mycorrhiza development. PeerJ, 7, Article e7495. https://doi.org/10.7717/peerj.7495

26. Cruz-Rus, E., Amaya, I., Sánchez-Sevilla, J. F., Botella, M. A., Valpuesta, V. (2011). Regulation of L-ascorbic acid content in strawberry fruits. Journal of Experimental Botany, 62(12), 4191–4201. https://doi.org/10.1093/jxb/err122

27. Tyapkina, D. Y., Kochieva, E. Z., Slugina, M. A. (2019). Vitamin C in fleshy fruits: Biosynthesis, recycling, genes, and enzymes. Vavilov Journal of Genetics and Breeding, 23(3), 270–280. https://doi.org/10.18699/vj19.492

28. Paciolla, C., Fortunato, S., Dipierro, N., Paradiso, A., De Leonardis, S., Mastropasqua, L. et al. (2019). Vitamin C in plants: From functions to biofortification. Antioxidants, 8(11), Article 519. https://doi.org/10.3390/antiox8110519

29. Li, M., Chen, X., Wang, P., Ma, F. (2011). Ascorbic acid accumulation and expression of genes involved in its biosynthesis and recycling in developing apple fruit. Journal of the American Society for Horticultural Science, 136(4), 231–238. https://doi.org/10.21273/jashs.136.4.231

30. Platonova, N., Belous, O. (2020). Biochemical composition of tea and its changes under different factors. Food Processing: Techniques and Technology, 50(3), 404–414. https://doi.org/10.21603/2074-9414-2020-3-404-414

31. Bokuchava, M. A., Skobeleva, N. I. (1969). The chemistry and biochemistry of tea and tea manufacture. Advances in Food Research, 17, 215–292. https://doi.org/10.1016/s0065-2628(08)60311-0

32. Wang, S., Qiu, Y., Gan, R.-Y., Zhu, F. (2022). Chemical constituents and biological properties of Pu-erh tea. Food Research International, 154, Article 110899. https://doi.org/10.1016/j.foodres.2021.110899

33. Li, F., Boateng, I. D., Yang, X., Li, Y., Liu, W. (2023). Effects of processing methods on quality, antioxidant capacity, and cytotoxicity of Ginkgo biloba leaf tea product. Journal of the Science of Food and Agriculture, 103(10), 4993–5003. https://doi.org/10.1002/jsfa.12577

34. Gins, M. S., Gins, V. K., Motyleva, S. M., Kulikov, I. M., Medvedev, S. M., Piovarov, V. F. (2020). The metabolites of autotrophic and heterotrophic leaves of Amaranthus tricolor L. early splendor variety. Agricultural Вiology, 55(5), 920–931. https://doi.org/10.15389/agrobiology.2020.5.920eng

35. Feng, N., You, J., Xu, R., Chen, L., Wang, D., Li, L. et al. (2024). Ferulic acid reduces gut redox potential and alleviates chronic Mg-induced diarrhea by modulating gut microbiota and metabolites. Animal Advances, 1, Article e004. https://doi.org/10.48130/animadv-0024-0004

36. Matowane, G. R., Ramorobi, L. M., Mashele, S. S., Bonnet, S. L., Noreljaleel, A. E. M., Swain, S. S. et al. (2022). Complexation potentiated promising anti-diabetic and anti-oxidative synergism between ZN(ii) and ferulic acid: A multimode study. Diabetic Medicine, 39(9), Article e14905. https://doi.org/10.1111/dme.14905

37. Bakholdina, L. A., Sevodin, V. P., Markova, A. A., Khlebnikov, A. I., (2019). Cytotoxicity of new ferulic-acid derivatives on human colon carcinoma (HCT116) cells. Pharmaceutical Chemistry Journal, 53(6), 516–520. https://doi.org/10.1007/s11094-019-02030-y

38. Amić, A., Marković, Z., Marković, J. M. D., Milenković, D., Stepanić, V. (2020). Antioxidative potential of ferulic acid phenoxyl radical. Phytochemistry, 170, Article 112218. https://doi.org/10.1016/j.phytochem.2019.112218

39. Mrowicka, M., Mrowicki, J., Kucharska, E., Majsterek, I. (2022). Lutein and zeaxanthin and their roles in age-related macular degeneration — neurodegenerative disease. Nutrients, 14, Article 827. https://doi.org/10.3390/nu14040827

40. Sanlier, N., Yildiz, E., Ozler, E. (2024). An overview on the effects of some carotenoids on health: lutein and zeaxanthin. Current Nutrition Reports, 13(4), 828–844. https://doi.org/10.1007/s13668-024-00579-z

41. Manayi, A., Abdollahi, M., Raman, T., Nabavi, S. F., Habtemariam, S., Dag lia, M. et al. (2015). Lutein and cataract: From bench to bedside. Critical Reviews in Biotechnology, 36(5), 829–839. https://doi.org/10.3109/07388551.2015.1049510

42. Sawa, M., Shunto, T., Nishiyama, I., Yokoyama, A., Shigeta, R., Miura, S. et al. (2020). Effects of Lutein Supplementation in Japanese patients with unilateral age-related macular degeneration: The Sakai lutein study. Scientific Reports, 10(1), Article 5958. https://doi.org/10.1038/s41598-020-62483-0

43. Niu, G., Guo, Q., Wang, J., Zhao, S., He, Y., Liu, L. (2020). Structural basis for plant lutein biosynthesis from α-carotene. Proceedings of the National Academy of Sciences, 117(25), 14150–14157. https://doi.org/10.1073/pnas.2001806117

44. Nisar, N., Li, L., Lu, S., Khin, N. C., Pogson, B. J. (2015). Carotenoid metabolism in plants. Molecular Plant, 8(1), 68–82. https://doi.org/10.1016/j.molp.2014.12.007

45. Hirdyani, H. (2017). Lutein — the less explored carotenoid. World Journal of Pharmaceutical Research, 528–53. https://doi.org/10.20959/wjpr20176-8671

46. Chung, R. W. S., Leanderson, P., Gustafsson, N., Jonasson, L. (2019). Liberation of lutein from spinach: Effects of heating time, microwave-reheating and liquefaction. Food Chemistry, 277, 573–578. https://doi.org/10.1016/j.foodchem.2018.11.023

47. Shi, X.-M., Chen, F. (1997). Stability of lutein under various storage conditions. Food / Nahrung, 41(1), 38–41. https://doi.org/10.1002/food.19970410110

48. Wojciechowski, D., Sroka, Z., Gamian, A. (2011). Investigation of antiradical potential of different kinds of teas and extracts from these teas using antiradical activity units (TAU). Postępy Higieny i Medycyny Doświadczalnej, 65, 796–803. https://doi.org/10.5604/17322693.968073

49. Deepika, Maurya, P. K. (2022). Health benefits of quercetin in age-related diseases. Molecules, 27(8), Article 2498. https://doi.org/10.3390/molecules27082498

50. Zhu, H., Yan, Y., Jiang, Y., Meng, X. (2022). Ellagic acid and its anti-aging effects on central nervous system. International Journal of Molecular Sciences, 23(18), Article 10937. https://doi.org/10.3390/ijms231810937


Review

For citations:


Sokolova D.V., Solovyeva A.E. Biochemical characteristics of tea from amaranth leaves (Amaranthus cruentus L.) of the ‘Frant’ variety. Food systems. 2025;8(2):260-266. (In Russ.) https://doi.org/10.21323/2618-9771-2025-8-2-260-266

Views: 20


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)